
Achieving Network on Chip Fault Tolerance by Adaptive Remapping

Cristinel Ababei
Electrical and Computer Engineering Dept.

North Dakota State University, Fargo ND, USA
cristinel.ababei@ndsu.edu

Rajendra Katti
Electrical and Computer Engineering Dept.

North Dakota State University, Fargo ND, USA
rajendra.katti@ndsu.edu

Abstract

This paper investigates achieving fault tolerance by adap-
tive remapping in the context of Networks on Chip. The
problem of dynamic application remapping is formulated
and an efficient algorithm is proposed to address single
and multiple PE failures. The new algorithm can be used
to dynamically react and recover from PE failures in order
to maintain system functionality. The quality of results is
similar to that achieved using simulated annealing but in
significantly shorter runtimes.

1. Introduction
Fault tolerance of Networks on Chip (NoC) [1] is

becoming an important design concern [2] - [10]. In the
context of networks, fault tolerance means the capability
to maintain the ability to route packets in the presence of
faulty components, and usually can be facilitated by system
adaptivity [11]- [13].

Typically, faults represent data errors or system malfunc-
tioning, which can occur due to fluxes of neutron and alpha
particles, power and interconnect noise, broken physical
links and routers or due to electromigration, stress migration,
time dependent dielectric breakdown, and thermal cycles.
The main techniques for improving fault tolerance are the
use of spare components and reconfigurable links [5],
[6] and adaptive or dynamic routing [9]. Router node
reconfiguration and the use of deterministic routing in faulty
parts and of adaptive routing in fault-free parts is proposed
in [7]. Backup or multiple paths can be utilized to achieve
spatial redundancy, which helps achieving tolerance against
faults or errors. When routers are the faulty components,
NoC fault tolerance is typically addressed by fault-tolerant
routing, which must employ non minimal routing techniques
or completely different communication paradigms [14]. In
situations when the PE becomes the faulty component [15],
the application has to be remapped on a different set of
PEs to maintain and guarantee correct functionality. In this
paper, we focus specifically on this issue by formulating the
problem of dynamic application remapping to address PE
failures. We propose an efficient two-step algorithm to solve
this problem. The proposed algorithm is validated against a
simulated annealing based approach.

E
migrate

E
GM

R
PE

2

3

1

4

6

5

GM

Router Processing Element (PE)

Link

Figure 1. Assumed homogeneous 2D NoC architec-
ture. Illustration of the main remapping energy con-
sumption components.

2. Remapping for Fault Tolerance
2.1. Motivation Example

Let us consider a simple application running on the
NoC shown in Fig. 1. Suppose that the PE located at
the address (2, 1) experiences a permanent failure, but the
communication network (i.e., routers and physical links)
remains functional. The application has to be remapped
and possibly rescheduled in order to continue to work
properly. The remapping has to be fast and with minimal
task migration (i.e., displacement due to task relocation) in
order to conserve energy. For example, the remapping in
Fig. 1 requires three task relocations.

2.2. Network Architecture and Energy Model
We adopt the terminology introduced in [16] and use

the bit energy metric proposed in [17] to model the total
communication energy consumption of the network:

Ecomm = ELbit

∑
aij∈A

w(aij)dist(ti, tj) +

ERbit

∑
aij∈A

w(aij)[dist(ti, tj) + 1] (1)



where ERbit and ELbit represent the energy consumed by
the router and link, respectively. w(aij) is the communica-
tion volume between two IP/cores and dist(ti, tj) represents
the Manhattan distance between tiles ti and tj . Eq. 1 states
that the energy consumption is proportional to the total
communication volume.

The NoC architecture (Fig. 1) is assumed to be similar
to that suggested in [18]. Remapping is done by a general
manager (GM), located on a selected tile of the network.
The GM actions depend on the control signals that collect
information on the status of every tile of the network. When
the GM receives information about a possible PE failure,
it executes the remapping algorithm and then sends back
the remapping information. The remapping information can
represent either task migration paths or complete reconfigu-
ration information for PEs. The reconfiguration information
could also be retrieved from selected local memories. The
NoC architecture is assumed to contain shared memories
distributed across the network that can store reconfiguration
information and data [19].

Dynamic system reaction via remapping to PE failures
will require additional energy consumed by the network
monitoring/control and application remapping. The energy
consumption due to remapping can be expressed as:

Eremap = EGM + Emigrate (2)

where EGM is the energy consumed by the GM while
running the remapping algorithm, and Emigrate is the energy
consumption required to relocate tasks to good PEs, which
includes the energy consumption of the steps involved
during reconfiguration. The first component in eq. 2 can
be minimized by reducing the runtime of the remapping
algorithm while the second component can be minimized by
decreasing the amount of task migration (i.e., displacement)
between the initial and new mappings. In this paper, our
goal is to minimize both components by efficient remapping
(hence shorter GM processing time) and minimization of
the initial mapping displacement. The design of the actual
hardware/software mechanisms to implement the actual sys-
tem recovery (GM, PE failure detection, task migration, and
control network) is outside the scope of this paper.

2.3. Application Remapping
2.3.1. Problem Formulation. The problem of dynamic
application remapping can be formulated as follows.

Given the current application mapping of the application
characterization graph G(C,A) onto the PEs of the NoC
architecture and a set of failures of PEs on which IP/cores
of the current application are being executed;

Find a new region of good PEs and remapping function
M ′ : C → R that maps the application IP/cores to routers
(hence PEs/tiles) inside the new region, with the objective:

min{Ecomm + Eremap} (3)

Application

Yes

Initial mapping

Find new
mapping region

New PE
Failures?

IP/core
assignment

No

Static: off-line

Dynamic: real time

Figure 2. Block diagram of the proposed methodology.

This formulation is different from previous mapping prob-
lem formulations, such as [20]- [22], in that we start from
a given initial mapping - obtained by using any mapping
algorithm proposed in these works - which we assume to
be already of high quality. Then, our goal is to efficiently
find a new mapping region that uses only good PEs. The
new mapping region should be as close as possible to the
initial mapping region in order for the total application
displacement to be minimized, hence the task migration
component of Eremap. Moreover, Ecomm minimization is
equivalent to minimizing the total communication volume
variation (eq. 1) between the initial and new mappings.
In other words, the individual IP/cores remapping inside
the new mapping region should be such that the new total
communication volume should be as close as possible to that
of the initial mapping.

2.3.2. Proposed Remapping Algorithm. Motivated by the
above observations, we propose a two-step approach to solve
this problem, as illustrated in Fig. 2.
• Step 1: Find new mapping region

We solve this subproblem by starting with the set of all the
remaining good PEs on which the application was initially
mapped. These PEs form the mapping region that needs to
be augmented with additional good PEs to replace those
that suffered failures. We iteratively grow this set by adding
new PEs from its immediate vicinity. PEs closest to the mass
center of the current mapping region are preferred first. This
idea is similar to those presented in [18], [22], inspired
from [23], based on the observation that the closer the new
mapping region is to a convex shape, the closer it is to the
optimal solution.
• Step 2: Remapping of IP/cores within new mapping region

We regard this subproblem as a linear assignment problem
solved using the Kuhn-Munkres algorithm [24]. The bipar-
tite graph contains two sets of nodes: nodes representing
the application IP/cores and nodes representing the PEs that
form the new mapping region. Edges connect every node
from one set to all nodes in the other set (see Fig. 3.d).
Edge weights are proportional to the distance between the
initial tile location of an IP/core and the new PE locations



1

2

3

4

5

6

a) Initial mapping b) New mapping region

2

3

1

4

6

5

c) IP/core assignment d) Graph used in Step 2

1

2

3

4

5

6

2,1

1,2

2,2

3,2

1,4

2,4
IP/core nodes PE/tile nodes

Figure 3. Illustration of finding the new near convex
mapping region and assignment of IP/cores.

within the new mapping region. In this way we treat the
assignment of all IP/cores simultaneously and achieve an
overall minimal perturbation of each IP/core relative to the
others, compared to the initial mapping. In other words,
the total communication volume change between the initial
and new mappings is minimized. For example, if the initial
mapping of the application in Fig. 3.a experiences a PE
failure, our algorithm will find the new mapping region
shown in Fig. 3.b. After that, it will assign each IP/core
to the PEs forming the new region as shown in Fig. 3.c.

The complexity of the first step is O(m logm) due to
sorting, where m=N ×N is the number of PEs of the NoC
architecture. The second step has a complexity of O(n3),
where n is the number of nodes of the bipartite graph.

3. Simulation Results
3.1. Multimedia Applications

We verified the proposed remapping algorithm using the
Video Object Plane Decoder (VOPD) and MPEG-4 decoder
from [25]. We also used the DSP filter from [20] and
the UseCase2 from [21]. The initial mappings of VOPD
and DSP filter are from [20] and of MPEG-4 decoder and
UseCase2 are from [26] and [21].

3.1.1. Single Failures. First we consider single PE failures.
Each of the four multi-media applications is simulated for
single and two sequential single PE failure injection. The
results for each application are averaged over all possible
injections and are shown in Table 1.

In the first scenario, the average communication volume
change - as percentage of the total communication volume of

Table 1. Single and two sequential single PE failures

Single Two sequential
Failure Single Failures

Testcase Arch. Comm.vol. Migr. Comm.vol. Migr.
(Num. cores) N ×N change [%] change [%]
VOPD 4× 4 8.01 3.5 19.14 6.77
(12) 8× 8 8.33 3.83 19.15 7.59
MPEG-4 5× 5 13.63 6.43 27.44 9.41
(14) 9× 9 14.54 6.79 28.43 9.49
DSP filter 3× 3 21.11 2.33 32.44 4.33
(6) 7× 7 17.78 3 36 5.4
UseCase2 3× 3 9.02 2 15.79 3.86
(7) 7× 7 9.02 2 14.79 3.95

Table 2. Simultaneous two and three PE failures

Two Failures Three Failures
Testcase Arch. Comm.vol. Migr. Comm.vol. Migr.

N ×N change [%] change [%]
VOPD 4× 4 17.25 6.73 28.77 9.85

8× 8 18.71 7.41 30.29 9.4
MPEG-4 5× 5 28 8.99 39.93 12.03

9× 9 28.51 9.62 41.6 11.28
DSP filter 3× 3 31.11 4.4 47.33 5.4

7× 7 31.11 5.67 40.7 6.9
UseCase2 3× 3 16.54 3.95 - -

7× 7 12.03 4.33 26.02 6.46

the initial mapping - between the initial and final mappings is
small. This translates into reduced performance degradation.
The average task migration (as number of hops) is also
small, which translates into small energy consumption and
short reconfiguration time during tasks migration.

In the second scenario, we consider two PE failures that
occur sequentially at different times. Remapping is done
consecutively twice to address each failure. The second
remapping uses as initial mapping the result of the first
remapping. As expected, both the total communication vol-
ume change and average task migration deteriorate more
than in the first scenario.

3.1.2. Multiple Simultaneous Failures. Here we test the
proposed algorithm when two or three PE failures occur
concurrently. The expected task migration is larger due to
the increased number of PE failures which lead to larger
disturbance. The results are shown in Table 2. Data are not
available for UseCase2 for a 3 × 3 NoC because there are
only two good PEs available in this case. The variation of
the total communication volume, normalized with respect to
the failure-free initial mapping, for single, simultaneous two
and three failures is shown in Fig. 4, which demonstrates
graceful energy (proportional to communication volume)
consumption degradation.

3.2. Comparison to Simulated Annealing
In order to further validate our algorithm we compare

it against an in-house simulated annealing (SA) based



0 1 2 3
0

0.2
0.4
0.6
0.8

1
1.2
1.4
1.6

Number of failures

To
ta

l c
om

m
. v

ol
um

e

Figure 4. Variation of the communication volume after
remapping for up to three simultaneous injected failures.
Every data point represents the average of all testcases.

Table 3. Proposed algorithm vs. SA based algorithm

Proposed SA based
Testcase Arch. Comm.vol. Migr. Comm.vol. Migr.

N ×N change [%] change [%]
VOPD 8× 8 8.33 3.83 6.19 2.77
MPEG-4 9× 9 14.54 6.79 15.09 3.43
DSP filter 7× 7 17.78 3 12.12 1.83
UseCase2 7× 7 9.02 2 6.77 1.86

remapping algorithm (see Table 3). The goal of the an-
nealing process is to minimize both the application total
communication volume and displacement from the initial
mapping. The communication volume changes are similar,
while the SA based algorithm achieves slightly smaller
task migration amounts. The communication volume change
achieved using the SA based algorithm can be geared toward
smaller values by tuning the weight put on the displacement
penalty. This is a trade-off, which depends on how the energy
consumption due to task migration compares to the long-run
extra energy savings achieved by a smaller communication
volume change. The runtime of the proposed algorithm is in
the range 30 − 60µs (on Intel Core Duo 2.8GHz and 2GB
memory), which is at least 1000× shorter than the runtime
of the SA based algorithm.

4. Conclusion
This paper proposed the use of application remapping to

achieve fault tolerance in the context of Network on Chips.
An efficient remapping algorithm was introduced to address
single and multiple PE failures. The proposed algorithm can
be used to dynamically react and recover from PE failures
in order to maintain system functionality.

References

[1] Giovanni De Micheli, Luca Benini, Networks on Chips: Technology
and Tools, Morgan Kaufmann, 2006.

[2] A. Pullini, F. Angiolini, D. Bertozzi, L. Benini, ”Fault Tolerance
Overhead in Network-on-Chip Flow Control Schemes,” Symposium
on ICSD, 2005.

[3] M. Hubner, M. Ullmann, L. Braun, A. Klausmann, J. Becker,
“Scalable Application-Dependent Network on Chip Adaptivity for
Dynamical Reconfigurable Real-Time Systems,” International Con-
ference on FPL, 2004.

[4] S. Murali, D. Atienza, L. Benini, G. De Micheli, ”A Method for
Routing Packets Across Multiple Paths in NoCs with In-Order
Delivery and Fault-Tolerance Gaurantees,” Hindawi VLSI Design,
2007.

[5] T. Lehtonen, P. Liljeberg, J. Plosila, ”Online Reconfigurable Self-
Timed Links for Fault Tolerant NoC,” Hindawi VLSI Design, 2007.

[6] D. Koch, C. Haubelt, J. Teich, “Efficient Reconfigurable On-Chip
Buses for FPGAs,” IEEE Symposium on FCCM, 2008.

[7] K. Kariniemi, J. Nurmi, ”Fault tolerant XGFT network on chip for
multi processor system on chip circuits,” Intl. Conf. on FPL, 2005.

[8] M. Koibuchi, H. Matsutani, H. Amano, T. Mark Pinkston, ”A
Lightweight Fault-Tolerant Mechanism for Network-on-Chip,” In-
ternational Symposium on Networks-on-Chip (NoCS), 2008.

[9] M. Ali, M. Welzl, M. Zwicknagl, S. Hellebrand, ”Considerations
for fault-tolerant network on chips,” International Conference on
Microelectronics, 2005.

[10] Z. Gu, C. Zhu, L. Shang, R.P. Dick, ”Application-Specific MPSoC
Reliability,” IEEE Tran. VLSI Systems, 2008.

[11] Jose Duato, Sudhakar Yalamanchili, Lionel Ni, Interconnection
Networks, Morgan Kaufmann Ed., 2003.

[12] T. Streichert, D. Koch, C. Haubelt, J. Teich, “Modeling and Design
of Fault-Tolerant and Self-Adaptive Reconfigurable Networked Em-
bedded Systems,” EURASIP Journal on Embedded Systems, 2006.

[13] M. Hubner, L. Braun, D. Gohringer, J. Becker, “Run-time re-
configurable adaptive multilayer network-on-chip for FPGA-based
systems,” International Symposium on IPDPS, 2008.

[14] P. Bogdan, T. Dumitras, R. Marculescu, ”Stochastic Communi-
cation: A New Paradigm for Fault-Tolerant Networks-on-Chip,”
Hindawi VLSI Design, 2007.

[15] A.K. Coskun, T. Simunic, K. Mihic, G.D. Micheli, Y. Leblebici,
”Analysis and Optimization of MPSoC Reliability,” Jounal of Low
Power Electronics, 2006.

[16] R. Marculescu, U.Y. Ogras, L.-S. Peh, N.E. Jerger, Y. Hoskote,
“Outstanding Research Problems in NoC Design: System, Microar-
chitecture, and Circuit Perspectives,” IEEE Tran. VLSI Sys., 2009.

[17] T.T. Ye, L. Benini, G. De Micheli, ”Analysis of Power Consumption
on Switch Fabrics in Network Routers,” Proc. DAC, 2002.

[18] C.-L. Chou, U.Y. Ogras, R. Marculescu, ”Energy- and Performance-
Aware Incremental Mapping for Networks on Chip With Multiple
Voltage Levels,” IEEE Tran. CAD, 2008.

[19] S. Bertozzi, A. Acquaviva, D. Bertozzi, A. Poggiali, ”Supporting
Task Migration in Multi-Processor Systems-on-Chip: A Feasibility
Study,” Proc. DATE, 2006.

[20] S. Murali, G. De Micheli, ”SUNMAP: a tool for automatic topology
selection and generation for NoCs,” Proc. DAC, 2004.

[21] S. Murali, M. Coenen, A. Radulescu, K. Goossens, G. De Micheli,
”A methodology for mapping multiple use-cases onto networks on
chips,” Proc. DATE, 2006.

[22] E. Carvalho, N. Calazans, F. Moraes, ”Heuristics for Dynamic Task
Mapping in NoC-based Heterogeneous MPSoCs,” IEEE Interna-
tional Workshop on Rapid System Prototyping, 2007.

[23] C.M. Bender, M.A. Bender, E.D. Demaine, S.P. Fekete, ”What is
the optimal shape of a city?,” Journal of Physics A: Mathematical
and General, 2004.

[24] J. Munkres, ”Algorithms for the Assignment and Transportation
Problems,” Journal of the Society of Industrial and Applied Math-
ematics, 1957.

[25] E.B. van der Tol, E.G.T. Jaspers, ”Mapping of MPEG-4 decoding
on a flexible architecture platform,” Proceedings of the SPIE, Media
Processors, 2002.

[26] D. Kim, K. Lee, S.-J. Lee, H.-J. Yoo ”A reconfigurable crossbar
switch with adaptive bandwidth control for networks-on-chip,” IEEE
ISCAS, 2005.


