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Abstract—In the Infrastructure-as-a-Service (IaaS) cloud com-
puting market, spot instances refer to virtual servers that are
rented via an auction. Spot instances allow IaaS providers to
sell spare capacity while enabling IaaS users to acquire virtual
servers at a lower pricer than the regular market price (also
called “on demand” price). Users bid for spot instances at their
chosen limit price. Based on the bids and the available capacity,
the IaaS provider sets a clearing price. A bidder acquires their
requested spot instances if their bid is above the clearing price.
However, these spot instances may be terminated by the IaaS
provider impromptu if the auction’s clearing price goes above
the user’s limit price. In this context, this paper addresses the
following question: Can spot instances be used to run paid web
services while achieving performance and availability guaran-
tees? The paper examines the problem faced by a Software-as-
a-Service (SaaS) provider who rents spot instances from an IaaS
provider and uses them to provide a web service on behalf of
a paying customer. The SaaS provider incurs a monetary cost
for renting computing resources from the IaaS provider, while
charging its customer for executing web service transactions and
paying penalties to the customer for failing to meet performance
and availability objectives. To address this problem, the paper
proposes a bidding scheme and server allocation policies designed
to optimize the average revenue earned by the SaaS provider per
time unit. Experimental results show that the proposed approach
delivers higher revenue to the SaaS provider than an alternative
approach where the SaaS provider runs the web service using
“on demand” instances. The paper also shows that the server
allocation policies seamlessly adapt to varying market conditions,
traffic conditions, penalty levels and transaction fees.

I. INTRODUCTION

This paper is motivated by the challenges arising when a
Software-as-a-Service (SaaS) provider runs a web service on
behalf of a paying customer using (virtual) servers provided
by an Infrastructure-as-a-Service (IaaS) provider. In line with
contemporary pay-per-use practices, the customer pays a fixed
charge (fee) to the SaaS provider per web service transaction.
The service delivery is governed by a Service Level Agreement
(SLAs) that includes performance and availability objectives.
Failure to achieve these objectives over a period of time binds
the SaaS provider to pay a penalty to the customer.

In this context, the SaaS provider seeks to maximize its net
revenue, that is, the total fees charged by the SaaS provider to
its customer minus the cost for renting servers from the IaaS
provider and the penalties for violating SLA objectives. To
maximize its net revenue, the provider seeks to reduce costs by
renting servers at the lowest possible price, while still meeting
the SLA objectives in order to avoid those penalties.

IaaS providers generally provide virtual servers on a per-
hour basis at an “on demand” price. This price is such that
the IaaS provider has enough capacity to meet all requests.
In the Amazon’s Elastic Cloud Computing (EC2) platform1,
customers can also reserve instances in advance (modulo a
reservation fee) and pay a lower price per-hour than the “on
demand” price. This option is attractive when utilization can
be planned in advance. [1] and [2] have addressed the question
of whether to acquire “on demand” or “reserved” instances.

In order to improve its data centers’ utilization, Amazon
has introduced an additional pricing model, namely spot
pricing. Spot instances are virtual servers sold per hour (or
fraction thereof) via an auction. Users bid for one or multiple
virtual servers at a limit price (the maximum price the bidder
is willing to pay per hour). Amazon gathers the bids and
determines a clearing price (a.k.a. spot price) based on the
bids and the available capacity. A bidder gets the required
instances if his/her limit price is above the clearing price. In
this case, the bidder pays the clearing price (not his/her limit
price). The clearing price is updated as new bids arrive. If the
clearing price goes above the bidder’s limit price, the bidder’s
running spot instances are terminated.

In this paper, we consider the case where the SaaS provider
uses spot instances to deliver a web service. One issue is that
in case of spot instance termination due to the clearing price
crossing above the limit price, the web service is unavailable
until the SaaS provider acquires new servers. This may result
in the provider having to pay an unavailability penalty and
losing revenue from unfulfilled web service transactions. In
parallel, the SaaS provider faces the decision of how many
spot instances to acquire. The more instances it acquires, the
better performance it can offer, but at a higher cost.

To manage these tradeoffs, we propose a revenue max-
imization scheme to optimize the average net revenue per
time unit on behalf of the SaaS provider. The scheme relies
on two components: (i) a price prediction model aimed at
determining the lowest limit price to bid in order to achieve a
given level of availability; and (ii) a policy for server allocation
and admission control based on dynamic estimates of traffic
parameters and models of system behavior. Two alternative
policies are proposed. The first one makes assumptions about
the nature of the user demand in order to evaluate analytically
the effect of particular decisions on the maximum achievable

1http://aws.amazon.com/ec2/



revenues. The second one, instead, emphasizes generality
rather than analytical tractability, allowing any kind of traffic.

The above revenue maximization problem does not appear
to have been studied before. Perhaps the most similar related
work is by Mazzucco et al [3], [4], but those studies do not
consider the variable cost of acquiring the servers nor do they
take into account the penalties arising for rejecting customers
in case of outage due to spot instance termination. Andrzejak
et al [5] present a probabilistic model aiming at minimizing
the budget needed to meet the performance and reliability
requirements of applications running on the Cloud, while [6]
introduces an autonomic solution that given a set of goals
to optimize (e.g., monetary cost or execution time) selects
the resources to best meet the specified target. Hu et al [7]
investigate how to deliver response time guarantees in a multi-
server and multi-class setting hosted on the Cloud by means of
allocation policies only. Similarly, [8], [9] and [10] investigate
how to deliver acceptable performance levels while minimiz-
ing monetary cost or electricity consumption. Stokely et al [11]
address the resource provisioning problem in a cluster in which
users bid for the available resources. Similarly, Mattess et
al [12] consider the economics of purchasing resources on the
spot market to deal with unexpected load spikes, while Chohan
et al [13] study how to best use spot instances for speeding
up MapReduce workflows and investigate how the bid price
affects the likelihood of premature instance termination.

The rest of this paper is organized as follows. Section II
discusses the general approach to exploit spot instances on
Amazon EC2 for delivering a service with guarantees. Next,
the system model and the associated QoS contract are de-
scribed in Section III. The mathematical analysis and the
resulting policies for server allocation and admission control
are presented in Section IV. A number of experiments are
discussed in Section V, while Section VI concludes the paper.

II. SPOT PRICE PREDICTION

The first pillar of the proposal is a model to determine an
optimal limit price for the SaaS provider to bid on the spot
market. Importantly, in a (multi-unit) Vickrey auction such as
that used in the Amazon spot market, bidders have an incentive
to bid truthfully (i.e., bid according to their value) rather than
over- or under-bidding. In our context, the objective is to bid
in such a way as to achieve a desired level of availability.

As displayed in Figure II the spot price variation in Amazon
EC2 over time does not seem to follow any particular law. On
the other hand, in order to predict what future spot prices will
be, we have to gain some understanding of how they change
over the time. To this end, we use the autocorrelation function
(ACF), which measures the correlation of a random variable
with itself at different points in time, as a function of the two
times or of the time difference (lag, l) [14]

ACF (l) =
∑N−l
t=1 (xt − x̄)(xt+l − x̄)∑N

t=1(xt − x̄)2
, (1)

where N is the number of observations, x̄ is the average
value, xt is the value at time t, and xt+l is the value at time

(t + l). The value of the ACF lies in the range [−1, 1], with
1 indicating perfect correlation, −1 indicating perfect anti-
correlation and 0 indicating that there is no correlation between
values at different points in time. Hence, we analyzed the
ACF of the spot prices for small, large and extra large Linux
instances over a two months period for different lags. Figure II
shows that there is almost no correlation between prices, even
at lag 1. In other words, past values of the spot prices give
no information about future prices. Hence, standard predictive
tools such as ARIMA or Double Exponential Smoothing can
not be employed to predict the spot market’s behavior.

Having failed to establish a relationship between spot prices
at different times, we try to exploit properties of the price
distribution in order to predict how much the provider should
bid. Previous studies have shown that prices in similar markets
follow a normal distribution [15], [16]. Hence, we employ a
normal approximation to model the spot price distribution.

In Table I we report statistics of the spot prices over
the period December 25, 2010 – February 23, 2011 (us-
east-1 region) as well as the approximated values estimated
from a normal distribution with the same mean and variance
over 10,000 samples. According to our results the normal
approximation is adequate but not perfect, as the distribution
of the spot prices is more heavily-tailed: even though the first
three quantiles are a good match, the minimum and maximum
values in the historical data differ substantially from those
of the approximation. This was confirmed also by the Q-
Q plots as well as by the Shapiro-Wilk test.Similarly, the
third and fourth central moment of the distributions (skewness,
a measure of symmetry of the distribution, and kurtosis, a
measure of the peakedness of the distribution) differ from
those of the approximation.

In light of the above, we propose the following algorithm:
1) Collect the prices over a period of time, in order to

estimate their mean and variance.
2) Use the normal approximation described above, i.e.,

assume that spot prices are normally distributed with
the same mean and variance.

3) If ACF (l) > 0.4, then try to predict the prices for the
next l hours using linear regression [14], y = a+ bx.

4) If ACF (l) ≤ 0.4 use the quantile function (inverse
cumulative distribution function) of the Normal dis-
tribution to predict the prices for the next l hours.
The quantile function returns the value of x such that
P (X ≤ x) with the desired probability p.

5) Use the maximum value returned at point 3 (or 4) as a
bid price.

6) If the bid price is smaller than the spot price, thus
causing a failure (out-of-bid event [5]), increase the bid
by 40% for the next interval.

In Table II we report the performance of the prediction
algorithm for different instance types, prediction horizons
and availability targets over the two months period under
consideration (the first 48 intervals were employed to train the
predictive scheme). The algorithm performs well, especially
for predicting the price of small and large instances, while the
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Fig. 1. Price history for (a) small and (b) large and (c) extra large Linux instances during the period 11 to 15 February, 2011 (us-east-1 region).
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Fig. 2. Autocorrelation function for the interval December 25, 2010 – February 23, 2011 of the spot price for (a) small and (b) large and (c) extra large
Linux instances (us-east-1 region).

m1.small (Linux/Unix)
Data Normal Approx.

Min. 0.029 0.02098
1st Quartile 0.0290 0.02877
Median 0.031 0.03020
3rd Quartile 0.031 0.03163
Max. 0.085 0.04010
Mean 0.0302 0.03025
Variance 4.503941 × 10−6 4.515323 × 10−6

Skewness 1.877202 × 10 1.659259 × 10−2

Kurtosis 4.700735 × 102 3.004374

m1.large (Linux/Unix)
Data Normal Approx.

Min. 0.1140 0.05558
1st Quartile 0.1170 0.10780
Median 0.1210 0.12190
3rd Quartile 0.1240 0.13550
Max. 0.3400 0.20670
Mean 0.1226 0.12180
Variance 4.469088 × 10−4 4.611706 × 10−4

Skewness 9.256405 −7.901398 × 10−3

Kurtosis 9.127482 × 10 3.218801

c1.xlarge (Linux/Unix)
Data Normal Approx.

Min. 0.228 0.0571
1st Quartile 0.234 0.2274
Median 0.243 0.2572
3rd Quartile 0.249 0.2984
Max. 0.800 0.4059
Mean 0.256 0.2585
Variance 4.55561 × 10−3 3.647205 × 10−3

Skewness 5.323107 -0.1564130
Kurtosis 3.370251 × 10 3.567116

TABLE I
CHARACTERISTICS OF THE SPOT PRICE DISTRIBUTION FOR DIFFERENT INSTANCE TYPES (us-east-1 REGION).

monetary saving compared to the scenario where “on demand”
instances are employed2 is evident. According to Table II, the
highest bid for spot instances ($/hour) is:
• 0.03463, achieving 99.673% uptime, compared to 0.085

for “on demand” instances (small instances).
• 0.21196, achieving 98.928 uptime, compared to 0.34 for

“on demand” instances (large instances).
• 0.51995, achieving 97.858% uptime, compared to 0.68

for “on demand” instances (extra large instances).
It is worth noting that the “best” price to bid heavily

depends on the desired level of availability. The bid price
can be reduced significantly by accepting a slightly smaller
availability level. This confirms the findings reported in [5].

III. MODEL AND SLA

The provider has a cluster of S processors/cores or virtual
machines (servers, from now on) which are used to provide

2“On demand” instances guarantee 99.95% availability, see http://aws.
amazon.com/ec2-sla/.

a service to paying customers. In this study we assume that
the available resources are homogeneous: if that is not the
case, a simple normalization function such as that suggested
in [17] should be employed. Also, we assume that a maximum
of m web service transactions (herewith called jobs) can
be processed in parallel on each server without significant
interference. Such a limit is dictated by the number of available
threads or processes3. We model this by assuming that there
m parallel servers on each machine/core. Consequently, there
are n = Sm total servers available. A job finding all n servers
busy is temporarily parked in a FIFO queue, which is shared
between all servers [18], [3]. As soon as a job completes its
service and leaves the system, the server which executed it
retrieves and runs another job from the head of the queue, if
any, or begins to idle if the queue is empty.

Service Level Agreements (SLAs) can express the Quality
of Service (QoS) requirements in different terms such as
the average (or the percentile) of the response time, the

3http://httpd.apache.org/docs/2.0/mod/prefork.html



m1.small (Linux/Unix)
Prediction Target Achieved Avg. bid ($)
6 0.9 0.99673 0.03170
6 0.95 0.99673 0.03212
6 0.99 0.99673 0.03270
6 0.999 0.99673 0.03355
6 0.99999 0.99673 0.03463
12 0.9 0.99675 0.03207
12 0.95 0.99675 0.03250
12 0.99 0.99675 0.03307
12 0.999 0.99675 0.03385
12 0.99999 0.99675 0.03499
24 0.9 0.99679 0.03253
24 0.95 0.99679 0.03266
24 0.99 0.99679 0.03350
24 0.999 0.99679 0.03411
24 0.99999 0.99679 0.03533

m1.large (Linux/Unix)
Prediction Target Achieved Avg. bid ($)
6 0.9 0.98051 0.15215
6 0.95 0.98051 0.15949
6 0.99 0.98928 0.17273
6 0.999 0.98928 0.18817
6 0.99999 0.98928 0.21196
12 0.9 0.98062 0.13293
12 0.95 0.98062 0.13476
12 0.99 0.98837 0.13683
12 0.999 0.98837 0.14079
12 0.99999 0.98934 0.14592
24 0.9 0.97868 0.13420
24 0.95 0.97868 0.13582
24 0.99 0.98837 0.13751
24 0.999 0.98837 0.14121
24 0.99999 0.98837 0.14642

c1.xlarge (Linux/Unix)
Prediction Target Achieved Avg. bid ($)
6 0.9 0.94599 0.35023
6 0.95 0.95810 0.36785
6 0.99 0.96741 0.40748
6 0.999 0.97392 0.45258
6 0.99999 0.97858 0.51995
12 0.9 0.93240 0.31604
12 0.95 0.94444 0.32256
12 0.99 0.95000 0.34232
12 0.999 0.95370 0.36329
12 0.99999 0.96018 0.39443
24 0.9 0.93425 0.31441
24 0.95 0.93796 0.32034
24 0.99 0.94166 0.33544
24 0.999 0.94907 0.34726
24 0.99999 0.95555 0.36986

TABLE II
PERFORMANCE OF THE PRICE PREDICTION ALGORITHM FOR DIFFERENT PREDICTION HORIZONS AND AVAILABILITY TARGETS. THE AVERAGE

PRICE/HOUR IN THE PERIOD DECEMBER 25, 2011 – FEBRUARY 23, 2011 WAS 0.03020 $ FOR M1.SMALL INSTANCES, 0.12284 $ FOR M1.LARGE
INSTANCES AND 0.25620 $ FOR C1.XLARGE INSTANCES.

throughput, or the availability (see, for example, [19], [20]).
In this paper we are concerned with guaranteeing the average
response time, β, over intervals of a given length t (e.g., t =
one minute), where the response time of a job is defined as
the interval between the job’s arrival and its completion. Thus:

β =
1
tγ

tγ∑
i=1

δi, (2)

where δi is the response time of the i-th job in the interval,
and γ is average number of jobs accepted into the system per
unit time .

The contract regulating the provisioning contract states,
among the other Service Level Objectives (SLOs), that for
each accepted and completed job the user pays a charge of
c $. On the other hand, the provider must fulfill the following:

1) Performance: the average response time, β, over an
agreed interval of length t should not exceed a certain
threshold q. If the average response time exceeds the
threshold, the provider is liable to pay a penalty of r1 $
for each job executed in that interval.

2) Availability: the provider is liable to pay a penalty of
r2 $ for every job which is rejected due to resources
unavailability.

Also, the system is subject to disastrous failures at which
times all customers in the system (both waiting and being
served) as well as arrivals occurring while the system under-
goes repair are lost:

3) Disaster: the provider is liable to pay a penalty of r3 $
for every job which, after being accepted, is lost due to
resources becoming unavailable.

Given that renting servers from the Cloud costs r4 $/h, the
service provider tries to optimize is profits by means of a
resource allocation policy which controls how many servers
to run. The extreme value n = 0 correspond to rent 0 servers,
thus denying the service to all potential customers. Hence, as
far the provider is concerned, the performance of the system
is measured by the average revenue, R, earned per unit time.
That value can be estimated as

R = γ [c− r1P (β > q)]− r2(λ− γ)− r3P (lp < sp)L− r4n,
(3)

where P (β > q) is the probability that the average response
time during the interval under consideration exceeds the pre-
determined threshold, L is the average number of jobs inside
the system, and P (lp < sp) represents the probability that the
spot price exceeds the limit price, thus causing a disaster.
N.B. The relative magnitude of charge and penalties is irrele-
vant to the model.

IV. POLICIES

QoS can be guaranteed by means of different techniques
(see [21] and the references cited within). In this paper,
we adopt a general approach based on two complementary
policies. The first one is a resource allocation policy that,
based on traffic estimates, determines the number of servers
to rent. This policy is invoked periodically. The intervals
between consecutive allocation policy invocations are called
observation windows or epochs. During an epoch, the number
of running servers is constant, unless the acquired servers
are terminated due to the clearing price crossing above the
provider’s limit price (cf. Section II). Also, during an epoch,
the revenue optimization system collects traffic and service
statistics (e.g., mean arrival rate and service time), which are
used by the allocation policy at the start of the next epoch.

The second policy is an admission control policy, i.e., a
mechanism which may deliberately decide to reject some jobs.
The admission policy is defined by means of a threshold K
(the buffer size). Incoming jobs are rejected if K other requests
are in the system, without influencing future arrivals. The
extreme values K = 0 and K = ∞ correspond to accepting
none or all jobs. The problem of determining the optimal K
in multi-server systems with finite waiting room has a long
history. However the simultaneous optimization of K and of
the number of servers (n) is known to be a significantly more
complex problem [22]. Therefore, we approach this optimiza-
tion problem by first choosing the number of servers (n), and
then choosing an appropriate K for the chosen number of
servers. Unfortunately, the optimal value of K depends not
only on the number of available servers and average load, but
also on the distribution of the load (service times and inter-
arrival intervals). While some approximations exist (e.g., [23])
these approximations either suffer from high computational
complexity or they are only applicable in very restricted cases.
Hence, we make simplifying assumptions about the arrival



and service time processes. Specifically, we assume that jobs
enter the system according to an independent Poisson process
with rate λ while service times are exponentially distributed
with mean b, and make the “best” possible choice under these
assumptions. In other words, for a certain value K, the system
behaves like a multi-server queueing system with n servers and
a queue whose maximum size is (K−n), i.e., an M/M/n/K
queue. The admission policy might be sub-optimal if these
simplifying assumptions are violated, but even in such cases
it is likely to lead to reasonable performance levels.

Denote by pj the stationary probability that there are j jobs
in the M/M/n/K queue. We observe that the average number
of jobs being accepted into the system per unit time is

γ = λ(1− pk), (4)

where pk is the probability that the queue is full. The stationary
distribution of the number of jobs into the system may be
found by solving the balance equations

pj =


(nρ)j
j! p0 j = 1, . . . , n− 1

(nρ)n
n! ρj−np0 j = n, . . . ,K

, (5)

where ρ = λb is the offered load. Steady state for this Birth-
and-Death process always exists, as the queue is not allowed
to grow unbound. In other words

∑K
j=0 pj = 1.

Having computed the stationary distribution of the number
of jobs present, by means of Little’s law it is easy to estimate
the average response time, W . That value is given by the
relation W = L/γ, where γ is the effective arrival rate, see
Equation (4), while L is the average number of jobs present
(both waiting and being served)

L =
K∑
j=0

jpj . (6)

It is perhaps worth stressing that, even though the problem
we are tackling here looks similar to that discussed in [8],
the two are actually very different. In fact, while both are
trying to optimize the average response time, in this paper
we have constraints as well (costs and penalties) which make
the problem much more challenging. Therefore, the search
for the minimum amount of servers capable of satisfying
(β < q) would not optimize Equation (3). Similarly, Xiong
and Perros [9] approximate a multi-server system by means
of an M/M/1 queue, for which all the performance measures
(including the distribution of the response times) are well
known and easy to derive. On the other hand, in multi-server
queueing systems with limited waiting room, the distribution
of the response times is not exponential, in spite of making
Markovian assumptions [3]. However, we can exploit the fact
that the observed average response time over an interval,
which according to Equation (2) involves the sum of (tγ)
response times, can be treated as being approximately nor-
mally distributed with mean W and variance V AR(W )/(tγ),
with V AR(W ) being the variance of the response times. That

approximation appeals to the central limit theorem and ignores
the dependencies between individual response times.

Based on the normal approximation, the probability that the
observed average response time exceeds a given value, q, can
be estimated as

P (β > q) = 1− Φ

(
q −W√

V AR(W )/(tγ)

)
, (7)

where Φ(x) = P (N(0, 1) ≤ x) is the cumulative distribution
function (CDF) of the standard normal distribution having
mean 0 and variance 1. That function can be computed very
accurately by means of a rational approximation (see [24]).

In order for the approximation described in Equation (7)
to perform well we require a large number of arrivals for
each interval, e.g., t � λ and t � b. That condition also
guarantees that any dependency between individual response
times can be neglected. Finally, instead of estimating the
variance of the response times at runtime, we introduce a
further approximation by exploiting the observation that quite
often waiting times are negligible compared to service times.
Hence the variance of the response times can be approximated
as the variance of the service times, V AR(W ) ≈ V AR(b).
Several numerical experiments confirmed that the choice of
n nor that of K are affected when this approximation is
employed. The above expressions, together with Equation (3),
enable the average revenue R to be computed efficiently and
quickly. Having fixed n, R becomes a unimodal function of
K, i.e., it has a single maximum, which may be at K = ∞
for over-provisioned systems. We do not have a mathematical
proof of this statement, but have verified it in several numerical
experiments. The above observation implies that the following
Hill Climbing heuristics can be employed:

1) Choose an initial value of n; a good candidate is n =
dρe [3]. Set K to n+ 1.

2) At each iteration, try to increase the revenue by increas-
ing the value of K by 1.

3) If the increase of K does not lead to a revenue increase,
increase n by 1 and go to 2.

4) Stop when the revenue stops increasing, or when the
revenue increase is smaller than a fixed value ε.

Note that when n is increased in Step 3, K is not set back to
n (as it happens in Step 1). The reason is that it is unlikely that
a higher revenue is produced by increasing n and decreasing
K. Hence, a bulk of candidate solutions are discarded every
time step 3 is executed. Also, due to the plurality of cost
terms in Equation (3) the above algorithm is not guaranteed
to find the global maximum. Possible improvements include
using a tabu-list or trying to “jump” plateaus by using random
restarts (Stochastic Hill Climbing). However, those techniques
are not guaranteed to converge to a global maximum either.
On the other hand we have experimentally verified that the
local maxima found by the above Hill Climbing heuristics are
sufficient to achieve good revenue levels (i.e., the local maxima
are global maxima, or very close to it).



A. Simpler Heuristic

The policy we have described in the previous section is
rather complicated, as it requires not only the optimal number
of servers n to perform well, but also the optimal threshold,
K (see Figure 3(a)). It may therefore be desirable to design a
heuristic that is simpler but performs reasonably well.

The model we will introduce in this section is based on the
observation that in multi-server queueing systems the response
time is often dominated by the service time, while the waiting
time decreases if the load is scaled up with n, e.g., a 20 servers
system with a normalized load of 0.90 is less congested than a
2 servers system with a normalized load of 0.70 [25]. Hence,
a simple approximation is to assume that the buffer size is
unbounded, thus allowing all the traffic into the system. In
other words Equation (3) simplifies to

R = λ [c− r1P (β > q)]− r3P (lp < sp)L− r4n, (8)

under the assumption that the system is stable, i.e., ρ < n.
If that is the case the throughput is equal to the arrival
rate, otherwise the system is unstable, e.g. the queue grows
unbound. For the following, we will relax the assumptions
about the nature of the user demand, thus allowing for general
distributions of inter-arrival intervals as well as service times.
Since the heuristic policy does not reject any job we can model
the system as an GI/G/n queue in steady-state, for which
there is no exact solution (see, for example, [25]). In order
to estimated the average response time we are not required
to compute the stationary distribution of the number of jobs
present as in Section IV. Instead, we employ the two-moments
approximation proposed by Allen and Cunneen [26]

W ≈ b+
[
P (j ≥ n) · b

n− ρ
·
(
ca

2 + cs
2

2

)]
, (9)

where P (j ≥ n) is the probability that an incoming job will
have to wait (Erlang-C formula), while ca2 and c2

2 are the
squared coefficients of variation (the variance divided by the
square of the mean) of the inter-arrival intervals and services
times respectively. The Erlang-C formula includes factorial
and power elements, hence its evaluation requires special care
when n and ρ are large. However Halfin and Whitt [27] derived
a closed-form approximation which performs well

P (j ≥ n) ≈ [1 +
√

2πηΦ(η) e(η
2/2)]−1, (10)

where η = (1− ρ/n)
√
n and Φ(·) is the CDF of the standard

normal distribution (see also Equation (7)).
A search algorithm similar to that introduced in Section IV

can be employed for finding the values of n that optimizes
Equation (8).

V. PERFORMANCE EVALUATION

We carried out experiments with the aim of evaluating
how the price prediction model and the policies proposed in
Sections II and IV affect the maximum achievable revenues.

b 0.5 sec. Service time
q 1 sec. Performance threshold
c 2.951× 10−5 $ Charge per job
r1 1.5× c Penalty for performance
r2 2× c Penalty for availability
r3 3× c Penalty for disaster
r4 0.085 $/h Rental cost
t 1 min. Interval length (SLA)

TABLE III
SETTINGS.

Since the number of variables is high, we adopted default
values for some of them (cf. Table III).

The first experiment examines via numerical simulation the
extent to which the use of a sensible admission threshold can
improve revenues, for five different allocations. Figure 3(a)
shows that (a) in each case there is an optimal queue length,
(b) the heavier the load, the more important is to operate at,
or very close to, the optimum threshold, and (c) due to the
several cost factors in Equation (3), it is not always true that
the queue threshold should decrease in response to a load
increase. Thus, when n = 35 (i.e., the normalized load is
0.857) the queue threshold producing the best revenue (3.4
$/h) is K = 188. However the same revenue is obtained
for K = ∞, and an almost equal revenue is obtained for
K = 100. If n is reduced to 31, resulting in a normalized
load of 0.967, the optimal revenue (3.74 $/h) is achieved when
K = 500 (not shown in order not to clutter the graphs).
However, choosing K = 170 or K = ∞ would not make
a lot of difference. When n = 30 (saturated system) the best
revenue (3.54 $/h) is produced by setting K = 91, but it
drops very sharply if K exceeds the optimal value (R is a
discontinuous function). For example the revenue drops to
2.12 $/h when K = 94, while if K = 95 the system produces
a revenue of −1 $/h, or −4.24 $/h when K = 96, hence
losing money. That behavior is further emphasized when the
system becomes over-loaded (e.g., smaller amount of servers).
Figures 3(b) shows a similar experiment, with the difference
that now the disaster probability is 0.25. As a result, not only
the maximum achievable revenues are lower (e.g., 0.873 $/h
when n = 35), but the admission thresholds producing the
highest possible revenues are also smaller (e.g., 71 instead of
188 when n = 35, or 28 instead of 47 when n = 23). If
the probability of disaster is further increased to 0.5, the best
thresholds get even smaller. However the situation worsens to
the point that no solution is capable of producing a positive
revenue (see Figure 3(c)).

The next experiment aims at measuring to which extent the
value of the penalties affect the system’s behavior. Hence we
vary the values of the penalty for QoS violation, r1, and the
penalty for rejecting jobs, r2 for a fixed load, ρ = 10, and
number of servers, n = 10. Servers are “on demand” instances,
hence they never fail. The system is saturated on purpose
so that the policy has to carefully choose between a long
queue, hence increasing the chance of failing to meet agreed
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Fig. 3. Revenue as a function of the admission threshold, K, and number of servers, n. λ = 300, r4 = 0.085 $/h. Other settings as in Table III.

performance objectives, and a short queue, thus rejecting many
jobs. When the penalty for failing do deliver performance, r1,
is 0, the best revenue is achieved when accepting all jobs, i.e.,
by setting K = ∞. In the remaining five scenarios the best
admission threshold is always K = 30, however the produced
revenues differ, see Figure 4(a).

In the following set of experiments we evaluate by means of
discrete event simulation how the proposed policies perform
under different loading conditions, traffic characteristics and
instance type (“on demand” and “spot” instances of type
Linux/Unix m1.small). The load varies between 7.5 and 25
by increasing the arrival rate from 15 to 50 requests/second.
The average revenues obtained per hour are plotted against
the arrival rate. Each point in the figure represents one run
lasting 28 days, and include the corresponding 95% confi-
dence interval. That value is calculated using the Student’s
t-distribution. Allocation and admission decisions are taken
every six hours. In other words in the scenarios where the
SaaS employs “spot instances”, they are replaced every six
hours. Spot prices vary every hour as in Figure 1(a), while
the algorithm used to predict the prices (see Section II) limits
the probability of disaster to 0.001. Finally, servers’ bootstrap
as well as recovery from disasters take 5 minutes. For all the
policies, at the start of each run, before any statistic has been
collected, servers are allocated in the measure of 2ρ, while
the admission threshold is set to K = ∞ (e.g., all jobs are
accepted).

Apart from the revenues increase as a consequence of the
load increase, the most notable feature of the graph plotted
in Figure 4(b) is that the system is much more profitable
when using “spot instances” compared to the case where
“on demand” instances are employed, hence showing that the
price prediction scheme introduced in Section II performs well
(please note that in case of disaster the provider should pay
a penalty of 3cL $ due to the jobs in the system being lost
plus 600cλ $ due to the penalties arising from rejecting all the
jobs during the recovery). Another interesting finding is that
the heuristic policy performs very close to the algorithm using
admission thresholds, with most of the points being within
each other’s confidence intervals.

In the next experiment we depart from the assumption that
the traffic is Markovian in order to evaluate the effects of
inter-arrival and service time variability on performance. The

average values are kept the same as before. However now
both the inter-arrival intervals and service times are generated
according to a Log-Normal distribution. The corresponding
squared coefficient of variation are c2a = 2 and c2s = 5. It
is legitimate to expect the performance to deteriorate when
the traffic variability increases, since the system becomes less
predictable, and therefore it becomes more difficult to choose
the best n and K (for the threshold policy). Figure 4(c) shows
that the revenues achieved when the Markovian assumptions
are violated are slightly lower. However the difference is not
very large. It is perhaps worth mentioning that the relative in-
sensitivity of the system performance with respect to the nature
of the user demand is, from a practical point of view, a very
good feature. As in the previous experiment, the difference
between using “on demand’ and “spot” instances is evident,
while the threshold and heuristic policies perform almost the
same. This is probably due to the fact that the heuristic policy
uses approximate algorithms capable of dealing with any kind
of traffic.

VI. CONCLUSIONS

We presented an approach to maximize the net revenue per
time unit earned by a SaaS provider who hosts a paid web ser-
vice using spot instances. Since the revenue is affected by the
number of successfully served customers, paid penalties and
server rental cost, the proposed approach aims at maximizing
the first while minimizing the last two factors by deciding:
(a) how much to bid for resources on the spot market?, and
(b) how many servers to allocate for a given time period, and
how many jobs to accept? To address the first question, we
outlined an algorithm to determine the optimal (truthful) limit
price to bid on the spot market to achieve a desired availability
level. The second question is addressed by means of dynamic
policies for server allocation and admission control.

The experimental evaluation put into evidence the trade-offs
involved in this revenue optimization problem. In particular,
the optimal queue length (maximum number of jobs admitted
before rejecting further jobs) is highly dependent on the avail-
ability level. When the likelihood of premature termination of
the running instances is low, the threshold can be increased.
Vice versa, if the chance of early instance termination is high,
low thresholds are better. The experiments also showed that
the proposed policies are robust against traffic variability.
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Fig. 4. (a) Revenue as function of r1, r2 and admission threshold, K, and (b, c) revenue as a function of the arrival rate, λ. “On demand” instances cost
0.085 $/h, while “spot instances” are rented on the spot market. The bid price is determined using the algorithm proposed in Section II. Other settings as in
Table III.

A possible direction for future research is to consider Ser-
vice Level Objectives (SLOs) expressed in terms of “percentile
of requests served below a given response time”, as opposed to
SLOs expressed in terms of averages over a certain interval.
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