
Achieving Robustness in Distributed
Database Systems

DEREK L. EAGER AND KENNETH C. SEVCIK

University of Toronto

The problem of concurrency control in distributed database systems in which site and communication

link failures may occur is considered. The possible range of failures is not restricted; in particular,

failures may induce an arbitrary network partitioning. It is desirable to attain a high “level of

robustness” in such a system; that is, these failures should have only a small impact on system
operation.

A level of robustness termed maximal partial operability is identified. Under our models of

concurrency control and robustness, this robustness level is the highest level attainable without

significantly degrading performance.

A basis for the implementation of maximal partial operability is presented. To illustrate ita use, it

is applied to a distributed locking concurrency control method and to a method that utilizes

timestamps. When no failures are present, the robustness modifications for these methods induce no

significant additional overhead.

Categories and Subject Descriptors: H.2.2 [Database Management]: Physical Design; H.2.4 pata-

base Management]: Systems-distributed systems; H.2.7 [Database Management]:Database

Administration

General Terms: Performance, Reliability

Additional Key Words and Phrases: Concurrency control, serializability, robustness, network parti-

tioning

1. INTRODUCTION

Developments in technology have made practical the interconnection of a large
number of computer systems to form a computer network. The problem of
distributing a database among the different computer systems, or sites, to form
a distributed database system is an active research area. One topic that has
received much attention is the design of concurrency control methods which
permit multiple users to access and modify a distributed database concurrently.

A concurrency control method views a database as a collection of entities. In
a centralized database the value of each entity is recorded but once, while in a
distributed database the value of an entity may be recorded in copies at multiple
sites. The state of a distributed database is given by the values of all of its entity

copies. A distributed database is in a consistent state if (1) all of the copies of

Authors’ address: Computer Systems Research Group, University of Toronto, Toronto, Canada M5S-

lA4

Permission to copy without fee all or part of this material is granted provided that the copies are not

made or distributed for direct commercial advantage, the ACM copyright notice and the title of the

publication and its date appear, and notice is given that copying is by permission of the Association

for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific

permission.

0 1983 ACM 0730-0301/83/0900-0354 $00.75

ACM Transactions on Database Systems, Vol. 8, No. 3, September 1983, Pages 354-381.

Achieving Robustness in Distributed Database Systems 355

each entity have the same value (the entity value), and (2) the entity values
satisfy a set of assertions or consistency constraints. Thomas has called these

two requirements mutual consistency and internal consistency, respectively [ZS].
The purpose of the concurrency control component of a database system is to
ensure that user transactions against the database “see” consistent database
states.

Additional complexity is added if the distributed database system is required
to be robust. A robust system permits some query and update activity, preserving

database consistency, even when system components fail. Robustness is desirable
in a distributed system owing to the large number of components these systems
contain, and the improbability that all of these components will always be
operative. The fewer the restrictions on transaction processing that are imposed
when failures occur, the higher the level of robustness against failures is said to
be.

This paper is concerned with modifying known concurrency control methods
to attain a high level of robustness against arbitrary site and communication link
failures, without significantly impacting system operation in the absence of
failures. There are two major problems that are encountered when this modifi-
cation is attempted. The first concerns the management of updates to replicated
entities. In general, it is desirable to allow a transaction to update an entity even
though some of the entity copies may be unavailable owing to failures. However,
since transactions must see consistent states, it is necessary to place some
restrictions on when this is allowed. Also, the entity update must eventually be
applied or accounted for at those copies that do not initially receive it. The
second major problem concerns the maintenance of the concurrency control
method machinery in the presence of failures. A concurrency control method
must often impose access restrictions on entity copies to prevent the observation
of inconsistent states. Failures may prevent these restrictions from being removed,
thus impeding transaction processing.

This paper presents a methodology that can be used in solving these problems.
In Section 2, a model of concurrency control is introduced. Section 3 discusses
the two major consequences of site and communication link failures: network

partitioning and dangling precommits. On the basis of the characteristics of these
consequences, the highest attainable robustness level that does not significantly
degrade system performance in the absence of failures is identified. A basis for
the implementation of this robustness level is presented in Section 4. The paper
concludes with two applications of the basis, one to a distributed locking method
and one to a concurrency control method that utilizes timestamps.

1 .l Related Work

Numerous concurrency control methods appear in the literature (for descriptions
of many of these methods, see the surveys of Bernstein and Goodman [3] and
Hsiao and OZSU [15]). However, relatively few of these methods include a careful
treatment of failures. Even when such a treatment has been attempted, the
resulting method has attained a lower level of robustness than one would prefer.

The method proposed by Montgomery [20] uses transaction preanalysis to
develop a hierarchical locking scheme. By allowing an entity copy to have several
values, polyvalues, it can be guaranteed that an entity copy will not be made

ACM Transactions on Database Systems, Vol. 8, No. 3, September 1983.

356 l D. L. Eager and K. C. Sevcik

locally inaccessible by any site or communication link failure other than a failure

of the site that stores the copy. However, owing to their effect on the locking

hierarchy, site failures potentially have a major impact on the updating of data
at remote sites.

The majority consensus algorithm of Thomas [28] requires that each site have
a complete copy of the database. Database sites vote on the acceptability of
update transactions. An update transaction requires the acceptance of only a

majority of the sites, while queries can be processed locally. The majority
consensus algorithm attains a high level of robustness, in that only a majority of
the network sites need to be operational for an update transaction to complete.

As noted by Thomas, however, it is possible that a query may see an inconsistent
database state. In some applications this may be undesirable, and when the
method is modified so that consistent query execution is guaranteed, as in [6],
component failures significantly reduce the extent to which database activity can
continue.

The centralized locking method proposed by Menasce [19] uses local lock
controllers at each site to provide backup in the event of a central site failure.
However, unlike the situation in the majority consensus algorithm, an update

transaction must be able to access all of the copies of the entities it will update.

After the failure of a site, or the failure of the communication links to a site,
those transactions that must update entities with copies stored at the inaccessible
site cannot be executed.

There have also been several studies that focus on one or both of the two major
robustness problems mentioned previously. Gifford [12] proposes a strategy for
managing updates to replicated entities in the presence of failures. However, the
restrictions on transaction processing are unnecessarily strong, resulting in a
lower robustness level than that which is described here. Also, performance is
impacted even in the absence of failures. Badal [2] describes alternative strategies
for managing updates that place only minimal restrictions on transaction pro-
cessing. However, when failures are present, the observation of database incon-

sistencies is not always prevented, this is undesirable in many applications.
Both Hammer and Shipman [14] and Skeen [23,24] have proposed modifica-

tions to the method of transaction “commitment” that allow a high robustness
level to be achieved; with regard to some failure types these modifications provide

more protection than those proposed here. However, system performance is
significantly impacted even in the absence of failures, owing to the number of
additional messages that must be sent whenever a transaction commits.

2. A MODEL OF CONCURRENCY CONTROL

2.1 A Model of Transaction Processing

Numerous transaction processing models have appeared in the literature; the one
used here is adapted from that used by Bernstein and Goodman [3]. In this

model, a transaction is executed (initiated, terminated, etc.) by its home site. The
home site is responsible for assigning a unique identifier to each of its transactions.
The degree of control the home site has over its transactions varies among
concurrency control methods. However, it is assumed that each site has the

ACM Transactions on Database Systems, Vol. 8, No. 3, September 1983.

Achieving Robustness in Distributed Database Systems * 357

ability to be a home site; in particular, each site is assumed to have a catalog
indicating, for each entity, the set of sites at which the entity is stored. The home
site of a transaction T will be denoted by H(T).

A transaction T is modeled as a sequence of read and write operations. The
read set of T is defined as the set of entities that T reads. Similarly, the set of
entities that T writes is termed its write set. It is assumed that the write set of T
is included in its read set. When T is initiated, a private workspace, possibly
distributed among various sites, is created. Read operations of T cause database

read operations only if the required data are not in T’s workspace. Similarly,
write operations only affect the workspace of T.

Once T completes its processing, it must be determined whether or not the
updates of T can be installed in the database without violating consistency
requirements. In many concurrency control methods, including both of the
methods used as examples in this paper, this is done in two phases. In the first
phase, an intention-to-update operation initiated by H(T) is performed on each

copy of each entity in the write set of T. The concurrency control component at
each site where one or more of these operations are performed either accepts or
rejects each operation (possibly after a queuing delay), depending on whether the
update can be performed without violating the constraints of the particular
concurrency control method being used. If acceptance occurs, the site sends an

acknowledgment to H(T) and restricts access, to some degree, to the entity copy.
H(T) is also notified when an operation is rejected.

Depending in part on the replies to any intention-to-update operations that
were performed, H(T) decides to restart, abort, or commit T. Restart procedures
entail rerunning T after assigning it a new identifier. It would be necessary to
abort T if system conditions were such that it could not be successfully completed.
For example, data required by T could have been made unavailable by system
failures. If T is restarted or aborted, release-intention-to-update operations are
sent to the affected sites. If T is committed, the second phase is initiated.

Once committed, T cannot be restarted or aborted. At this point the database
system is certain that any user output is correct and that any transaction updates
will be applied (possibly after a delay if failures have occurred). H(T) can

therefore inform the issuer of T that T has completed processing and can return

any user output. Instead of transmitting each actual database write operation
explicitly, H(T) sends a commit to each site that received an intention-to-update
operation. Upon reception of a commit, the updates of T are permanently
installed in the local database and the access restrictions imposed on the associ-
ated entity copies are removed. The updates of T are then said to be committed
at that site. Note that, because of failures, there may be arbitrarily long time
delays between the commitment of a transaction and the subsequent commitment
of some of its updates.

This two-phase structure can be integrated into the two-phase commit (2PC)
protocol [13, 171 with no significant performance cost over that when 2PC is not
used. This protocol is a well-known method of implementing atomic updates. In
this integrated procedure, precommit operations replace intention-to-update op-
erations; in addition to performing the function of an intention-to-update, a

precommit causes the new value of the entity copy to be written onto secure

ACM Transactions on Database Systems, Vol. 8, No. 3, September 1983.

358 * D. L. Eager and K. C. Sevcik

storage. It is assumed that the new value cannot be read until the transaction has
been committed. The second phase of 2PC requires commits to be sent exactly as
before (although in 2PC these commits need not contain the actual entity values,

as they have already been written onto secure storage at the receiving sites).

2.2 A Model of Concurrency Control Correctness

This section first reviews some of the standard concepts relating to concurrency
control correctness. (For more details, see the papers by Bernstein, Shipman, and
Wong [5] and Kung and Papadimitriou [16].) These concepts are then modified

as necessitated by our more complex system model in which failures may occur.
A concurrency control method is said to maintain consistency if, when a set of

transactions is processed, the same user output and the same database state
result as if the transactions were processed sequentially. A concurrency control
method is said to be correct if it maintains consistency while at the same time
ensuring that each transaction is either committed or aborted (possibly after a
number of restarts) within a finite time after being initiated.

In proving that a method maintains consistency, the “precedes” or + relation

is useful. This relation is based on the notion of conflicting operations, which are
database (read/write) operations produced by different transactions, at least one
of which is a write, that operate on the same entity copy. A transaction Tl
precedes a transaction Tz (Tl + T2) if an operation of Tl precedes and conflicts

with an operation of Tz (in which case Tl and Tz are also said to be conflicting).
If the concurrency control method executes transactions so as to ensure an acyclic
+ relation among committed transactions, consistency is maintained. Under
certain reasonable assumptions about the information available to the concur-
rency control method [161, an acyclic + relation is necessary as well as sufficient.
In this paper the maintenance of an acyclic + relation is considered equivalent
to the maintenance of consistency.

In an environment with failures it is useful to modify this standard definition
of + in two ways (neither of which changes its relationship to the consistency
maintenance property). First of all, suppose that an operation of a transaction T,
precedes and conflicts with an operation of a transaction Tz. It is technically
useful if the Tl + T2 relation is implied only if the conflict is direct; that is, there

is no operation of a committed transaction that conflicts with both of these
operations and that has occurred between them. Second, consider the situation
in which an entity copy has not been updated by one or more transactions
because the entity copy was unavailable to these transactions owing to failures.
In this case the + relation is constructed as if the updates missed had actually
been performed on the entity copy (our restrictions on transaction processing
will ensure that there is a well-defined ordering among these updates). This last
modification is necessary since it is assumed that failures may be corrected at
any time, and the updates that were missed then applied.

It is also useful to differentiate between the conflicts that lead to + relation-
ships 151. If a read operation of a transaction TI and a conflicting write operation
of a transaction TZ results in a TI + TZ relationship, then Tl+ RW Tz. “TI +WR

Tz” and “Tl +WW T2” are defined similarly.

ACM Transactions on Database Systems, Vol. 8, No. 3, September 1983.

Achieving Robustness in Distributed Database Systems 359

3. THE ROBUSTNESS PROBLEM

Our model of concurrency control has been presented independently of any
particular concurrency control method. In this section it is our aim to similarly
present the basic processing restrictions that network failures must induce,
whatever the concurrency control method in use. Section 4 discusses how these

restrictions can be implemented, again without loss of generality. In Sections 5
and 6, two specific concurrency control methods are used to illustrate these

general concepts.

3.1 The Network Partitioning Problem

A physical component of a site is defined as that set of sites with which the site
can communicate. A network partitioning has occurred if some site’s physical
component does not include all network sites owing to site or communication

link failures. It is impossible, in general, to distinguish between site failures (in
which all database activity at the site ceases until recovery from the failure) and
link failures (in which a site must assume that database activity is continuing at
one or more sites outside of its physical component) [19,26]. Because failures of

communication links, communications front-end machines, and even host com-
munications software all constitute “link failures,” as described above, it can only
be safely assumed that database activity at a site has ceased if the site has sent
positive confirmation of that fact. In this case, the surviving sites can proceed as
if they constituted the entire network. The failed site must then be integrated
back into the system as part of its recovery. This integration can be done in a
system implementing the procedures of Section 4, in a fashion similar to that in
which changes in “voting rules” are handled by Gifford 1121. An alternative
procedure has been proposed by Attar, Bernstein, and Goodman [l].

A solution to the network partitioning problem provides processing restrictions
on when a transaction can be allowed to commit, given that some of its write set
entity copies are unavailable owing to a partitioning. The purpose of these
restrictions is to ensure that consistency is maintained, while allowing as much
transaction processing as possible. The restrictions used by Garcia-Molina [lo]
and Stonebraker [26] require that a transaction have available a majority of the
copies of each read and write set entity. Gifford uses essentially the same

requirement, but generalizes the concept of a majority to that of a quorum [12].
Under this generalization a transaction requires a “read” quorum of the copies of
each read set entity and a “write” quorum of the copies of each write set entity.
The essential property of Gifford’s quorums is that every possible read quorum
on an entity must have at least one copy in common with every possible write

quorum on the entity. Our restrictions differ from those of Gifford’s in that ours
will usually allow a transaction to proceed without read quorums. For this reason,
the distinction between read and write quorums is much less useful and has not
been made here, although such a distinction could be introduced. It is sufficient
for our purposes to define a quorum of entity copies as a set of entity copies such
that any two quorums on a particular entity must intersect. In general, a weighting
can be assigned to each copy of an entity. A set of copies of a particular entity is
a quorum if the sum of the weightings of the copies in the set is more than half

ACM Transactions on Database Systems, Vol. 8, No. 3, September 1983.

360 - D. L. Eager and K. C. Sevcik

the total weighting for the entity. The quorum concept encompasses a broad
spectrum, ranging from a “primary copy” requirement to a simple majority
requirement.

A processing restriction requiring a quorum of the copies of each read and write
set entity ensures that the last committed value (version) of an entity is always
accessible. This is sufficient, since the concurrency control method can essentially
present the illusion that there is only one “logical” site at which the entities are
stored, hiding the effects of any partitioning that separates the actual sites.

However, the requirement is not necessary, as it is possible to maintain consis-
tency even when transactions are allowed to “run in the past,” without access to
newer entity values. To see why this ability is useful, consider a situation in which
a site is partitioned from all other sites. The ability to run in the past allows

queries to execute at the site, even though updating may be taking place in the
rest of the network.

Intuitively, any transaction processing restrictions that allow running in the

past must satisfy the following conditions:

(a) It must always be possible to determine which of the values of a particular
entity is most current.

(b) Any transaction running in the past (using an old entity value) must not be
directly or indirectly preceded by any transactions that have seen the future
(have seen the new entity value).

Condition (a) ensures that after failures are corrected, there is always a well-
defined order of missing update applications. This well-defined order also ensures
that our modified definition of + is unambiguous. For condition (b) consider a
transaction T, that has read an old value of entity x (copy X,4). Owing to our
modified definition of +, T, precedes the transaction Tl that created the new
value of X. Formally, condition (b) prohibits the existence of a direct or indirect

precedence between T1 and T,, (Tl + T2 + - - - + T,), preventing a cycle in the
+ relation. The detection and prevention of this precedence is the major problem
in the design of transaction processing restrictions that are necessary to satisfy
these conditions. Our solution can be intuitively described as requiring Tl to
“pass” the fact that it could not successfully update xA down the chain of +
relationships. When this information is received by T,,, T,, must be restarted or
aborted, since it has read the obsolete entity value. The necessary restrictions on

transaction processing will now be described in detail.
First of all, a transaction must precommit a quorum of the copies of each entity

in its write set. This requirement is necessary since otherwise two different
updates of an entity could be committed at the same time on disjoint sets of
copies, causing a cycle in the + relation and violating condition (b). (In some
concurrency control methods this requirement is also needed to ensure that
condition (a) can be satisfied.) The remaining restrictions are needed to allow
identification of read operations that violate condition (b). These restrictions
require the concepts of missing updates, missing update awareness and missing
update information. When a transaction Tl cannot update an entity copy because
of failures, the corresponding update is said to be missing. Tl becomes aware of
the missing update (acquiring missing update information) when its precommit
is unsuccessful (the precommit acknowledgment might be timed out as a result

ACM Transactions on Database Systems, Vol. 8, No. 3, September 1983.

Achieving Robustness in Distributed Database Systems * 361

of a network partitioning, for example). T1 is required to pass all of its missing

update information to any other transaction Tz such that Tl -P T2 (a successful
“pass” is required only if both Tl and Tz are committed at some point). TZ would
then be under a similar requirement to transfer all of its missing update infor-

mation (which includes that received from Tl) to each transaction that it
precedes. The result of this transfer of information, assuming that all transactions
are eventually committed, is that a transaction T,, such that Tl + Tz + . - . + T,,
becomes aware of all the unapplied missing updates of which Tl , Tz, . . . , T,,-I are
aware. (It will be seen in Section 4 that once a missing update has been applied,
the pertinent missing update information can be discarded.) The crucial final
point is that a transaction aware of an unapplied missing update for an entity
copy that it read is prohibited from being committed, satisfying condition (b).

Missing update information is transferred from transaction to transaction by
posting it, together with sufficient information to determine to which transactions
it should be transferred, at network sites. This level of indirection is necessary,
since a transaction cannot know in advance which particular transactions it will

precede. All that is known is which database operations will cause such a
precedence. Consider a transaction Tl that is aware of a missing update. To
ensure that its missing update information is passed to each transaction TZ such
that Tl +WR Tz, this information must eventually be posted at each site storing

a copy of a write set entity. However, since a transaction’s uncommitted updates
cannot be read, posting need be performed only when the update is committed.
The commitment of the transaction itself is not affected by this requirement, in
that it may commit even if some of these sites are inaccessible owing to failures.

(Recall that a transaction is committed prior to its updates being committed.) It
need only be ensured that an update is committed only when the necessary
information has been posted (perhaps as part of a missing update application
procedure if failures have occurred).

On the other hand, consider a transaction TZ such that Tl +RW TZ or TI + ww

Tz. Since T2 must precommit only a quorum of the copies of each of its write set
entites, T, must post its information at sites storing a quorum of the copies of
each of its read and write set entities. This must be done before a transaction
such as Tz performs a conflicting precommit, which, depending on the concurrency
control method involved, may be before the commitment of Tl . Tl may therefore
have to post prior to commitment, with commitment conditional on whether its
posting is performed successfully. The processing necessitated by posting prior to
commitment and the details of missing update information management are
presented in Section 4.

3.2 The Dangling Precommit Problem

The possibility of site and communication link failures during the 2PC procedure
is the source of the danglingprecommit problem. Recall that when a site accepts
a precommit, it is making a pledge to accept an update for the precommitted
entity copy. The site must then restrict access to the entity copy, in a manner
depending on the concurrency control method, until a transaction commit or a
release-precommit arrives. However, if a partitioning occurs, the site may not
receive a transaction commit or release-precommit within an acceptable time
period. For example, the transaction’s home site may fall after sending the

ACM Transactions on Database Systems, Vol. 8, No. 3, September 1983.

362 - D. L. Eager and K. C. Sevcik

precommit to the site but before sending the corresponding commit. The parti-

tioning would probably be detected by the site unsuccessfully attempting to
communicate with the home site. This communication would be attempted after
the precommit has been present for some maximum time interval.

Depending on the form of the partitioning, the site may have no way of telling
whether to commit the update (apply the precommitted update and remove the
access restrictions) or reject the update (remove the access restrictions). This is
demonstrated in the case in which the site is partitioned from all other sites. The

site cannot commit the update, since the corresponding transaction may have
been restarted or aborted. It cannot reject the update, since some other site may
have received a transaction commit. The site has no choice but to continue to
restrict access to the entity copy.

The unsolvability of the dangling precommit problem (even through some
finite length extension of 2PC), in environments where communication link
failures may occur, has been proved formally by many authors (e.g., Gray [13]
and Montgomery [20]). In this section, procedures that alleviate this problem

without significantly impacting performance in the absence of failures are consid-
ered.

Suppose that a dangling precommit of a transaction T is left at a site A owing
to a network partitioning. Consider the three possible environments of A: (1)

none of the sites in its physical component have received information on the final
status of T (committed, aborted or restarted), but all of the necessary precommits
for entity copies stored in this component have been received; (2) at least one

entity copy in its physical component must be precommitted before T can be
committed, but such a precommit has not arrived, and (3) at least one site in its
physical component knows the status of T.

In the first case, A cannot learn whether T has been committed, and has no
choice but to continue the access restrictions imposed by the precommit of T. In
the second case, A can determine that T has not been committed and can reject
the update. Site A must first ensure that any precommits for T received by the
affected sites will be rejected. In the third and final case, A can determine the
status of T and can therefore act accordingly.

Assuming that these cases can be distinguished (which is demonstrated in
Section 4), it should be possible to resolve most dangling precommits. For
example, consider the failure of a site A in an otherwise fault-free network.

Unresolvable dangling precommits would be left only by those site A transactions
for which all precommits have been transmitted, but for which no commitment
(or restart or abort) messages have been transmitted.

3.3 Maximal Partial Operability

This section characterizes the highest level of robustness that can be attained
without significantly impacting performance in the absence of failures, given our
models of concurrency control and robustness. A concurrency control method
that attains this level is said to attain maximalpartial operability.’ In Section 4,

’ This terminology is derived from the term partial operability, which is introduced by Montgomery

WI.

ACM Transactions on Database Systems, Vol. 8, No. 3, September 1983

Achieving Robustness in Distributed Database Systems 363

it is shown that maximal partial operability can be attained while preserving
concurrency control method correctness.

The restriction that performance not be impacted in the absence of failures is
reflected in the following assumption regarding the manner in which transactions
interact. Each transaction is viewed as normally interacting with its environment

only through database read operations, precommits, and commits. Only when a
transaction becomes “aware” of failures is it permitted the overhead of additional
interaction (such as special posting operations). This assumption is central to the

following assertion, which characterizes maximal partial operability based on the
previously discussed strategies for dealing with dangling precommits and network
partitioning.

ASSERTION 3.1. The following two restrictions on transaction processing
specify a limit on the robustness level that can be attained against site and
communication link failures without impacting performance in the absence of
failures.

Restriction 1. Suppose that site and/or communication link failures create a
dangling precommit of a transaction TI at a site A. In addition, suppose that A is
unable to determine the final status of T1 from the sites in the physical component
of A and that all of the necessary precommits for entity copies stored in this
component have been received. The first restriction on transaction processing
then prohibits the removal of the access restrictions imposed by the dangling
precommit.

Restriction 2. The second restriction is on transaction commitment. Each
transaction T1 is required to have chosen a quorum of the copies of each write set
entity. If TI is aware of missing updates, a quorum of the copies of each read set
entity must also have been chosen. T1 may only be committed if the following
conditions are met: (1) precommits have been acknowledged for each entity copy
in the chosen write set entity quorums; (2) it has been ensured that any missing
update information of TI will be transferred to any following transaction TZ (TI
+ Tz) that reads an update of Tl (T 1 +WR Tz) or that performs a precommit on
an entity copy in one of the chosen read or write set entity quorums (T, +RW Tz
or T1 +WW Tz); and (3) there are no unapplied missing updates for any entity
copy read by TI as far as TI is aware.

DISCUSSION. Restriction 2 warrants further comment. Condition (1) of Re-
striction 2 is necessary to prevent concurrent updates of the same entity on
disjoint sets of entity copies. Consider conditions (2) and (3). The robustness level
is maximized when only that processing resulting in a cycle in the + relation
(due to weak entity copy availability requirements) is prohibited. It is a conse-
quence of our assumptions regarding transaction interaction that + relationships
can be recognized only by posting (or an equivalent operation). It is important to
note in this regard that although some transactions may be “aware” of failures,
many others may not be and cannot, therefore, take part in any special form of
interaction. Condition (2) is necessary to ensure that posting is carried out
correctly, while condition (3) is necessary to break detected cycles.

ACM Transactions on Database Systems, Vol. 8, No. 3, September 1983.

364 l D. L. Eager and K. C. Sevcik

One useful measure of a robustness level is the effect of a failure of an arbitrary
database site on a database system implementing the robustness level. For

maximal partial operability, the entities made unavailable for updating are those
for which a quorum was lost. The entities made unavailable for reading by a

transaction that will generate missing updates are at worst the same as for
updating. This is also true for any transaction T, such that TI + TZ + . +. + T,
and missing updates of T1 remain unapplied. For any other transaction, only
thoses entities for which the last available copy was lost are made unavailable. In
the Appendix, three simple examples are presented that illustrate how the
robustness extensions suggested in this paper permit the successful completion of

transactions that would otherwise be blocked or aborted.

4. A BASIS FOR IMPLEMENTING MAXIMAL PARTIAL OPERABILITY

The previous section presented two restrictions to be enforced by the concurrency

control method. In this section, a basis for the implementation of these restrictions

is developed and shown to preserve concurrency control method correctness.
This basis is not unique, in that we make a number of low-level design choices
which reflect a trade-off between transaction processing ability (although the

basic restrictions remain the same) and performance in the presence of failures.
With our design choices each site must maintain information of several types.

(The quantity of information depends on the number of failures that have

occurred and the rate of system activity.) The files that must be kept at each site

are the following:

(a) a missing-update-postings file that contains posted missing update informa-
tion;

(b) a missing-update-value file that contains values of missing updates (needed

after failure recoveries);
(c) a transaction-status file that indicates the transaction restarts, aborts, or

commits of which the site has knowledge;

(d) a missing-update-applications file that provides a record of the missing
updates that have been applied at the site.

The following sections describe the contents of these files in more detail, and the
manner in which file entries are created, deleted, and transferred from one site to

another. This description is organized around the basic processing tasks that
require these files.

4.1 Transaction Commitment

Transaction commitment is necessarily more complex in the presence of failures
than in the basic transaction processing model. This complexity is incurred when
a transaction is aware of missing updates. Otherwise, commitment is exactly as
in the basic model.

The case in which a transaction Tl becomes aware of missing updates for an
entity copy that it read is illustrated in Figure 1. Consider the case in which TI is
aware of missing updates, but none apply to any of the entity copies that it read.
If the concurrency control method under consideration permits the conflicting
precommit of a transaction TZ where Tl 3RW Tz, to be performed before Tl

ACM Transactions on Database Systems, Vol. 8, No. 3, September 1983.

Achieving Robustness in Distributed Database Systems - 365

Context:
A transaction T1 becomes aware of missing updates for
an entity copy that it’kead. The site A storing the
entity copy is required to determine if the missing
updates have been applied (how this is done will be
specified in section 4.3).

Case I - The missing updates have been applied:

TI can continue processing. As will be seen, the
properties of the missing update application procedure
ensure that 7’, must have read the current value.

Case II - The missing updates have not been applied, and cannot be obtained:

T, must be aborted.

Case III - The missing updates have not been applied, but can be obtained:

T, must be restarted after A has applied the most recent
of the received updates.

Fig. 1. The processing necessitated by missing update information for a read

entity copy.

For each missing update, the following information is required:

(1) The entity copy identifier (this identifier is assumed to also
specify the site at which the copy is stored).

(2) The identifier of the transaction that produced the missing update.

(3) A specification of conflicting operations that should cause a
transfer of (1) and (2) above. Many of these operations can
be specified implicitly, such as read or precommit operations
on entity copies that are currently precommitted by the trans-
action. Each operation is specified by the appropriate entity
identifier and by a tlag indicating whether only precommits or
both reads and precommits should cause the information transfer

Fig. 2. The contents of supplemented missing update information.

commits, then the missing update information of Tl must be posted at sites
storing a quorum of the copies of each read set entity before T1 is committed.
Correspondingly, if the concurrency control method allows a Tl + w TP conflict
to develop prior to the commitment of Tl, the missing update information must
be posted at sites storing a quorum of each of the write set entities before Tl is
committed. In order to minimize the total amount of information transferred,
each site might record all knowledge it gains of the information posted at other
sites.

A missing-update-data message is sent to each site at which posting must be
performed prior to commitment. This message contains supplemented missing
update information, as shown in Figure 2. In all the cases where posting is not

ACM Transactions on Database Systems, Vol. 8, No. 3, September 1983.

366 * D. L. Eager and K. C. Sevcik

required until commitment (for example, posting needed to pass information to
+WR conflicting transactions), any appropriate supplemented missing update
information may be included in the messages that indicate the commitment of

7’1.
Missing-update-data messages require acknowledgment. A site receiving a

missing-update-data message of T, must ensure that each entity copy on which
a conflicting precommit is possible has not been precommitted or updated by
some other transaction that T1 precedes. The procedure for checking this is one
of the two procedures in the basis that can be specified only within the context
of a particular concurrency control method. If such a precommit or update has
been performed, the site includes a copy-lost flag for this entity copy in its
missing-update-data message acknowledgment (either explicitly or implicitly
indicated by other information returned). The reception of a copy-lost flag for an
entity copy or the time-out of an acknowledgment from the site storing the copy
requires that an alternate copy be selected for quorum membership. If Tl ever

loses the ability to obtain a quorum for an entity, Tl must be aborted (or restarted
if it is believed that the failures are transient). Otherwise, Tl is committed when
it receives the necessary missing-update-data message acknowledgments.

4.2 Transferring Missing Update Information

A site stores posted missing update information in its missing-update-postings

file. This file is organized on the basis of the conflicting operation specifications
in supplemented missing update information. When a site processes a read or
precommit operation of a transaction TI, it checks for the presence of missing
update information that should be transferred to any transaction performing such
an operation. If present, the site sends back the corresponding missing update
information with its response to the operation request. It should be noted that

the missing-update-postings file need be checked only if it is not empty. Also, the
“granularity” of this file implies, for example, that network failures directly
affecting only one database application will not impact any other application that
operates on a disjoint set of entities.

A site may receive missing update information for an entity copy stored at the

site. In such a case the site should try to retrieve the appropriate updates using
the procedures in the next section (if these updates are indeed unapplied). A
special case occurs when a transaction T is aware of missing updates for an entity
copy on which a precommit of T has been acknowledged. When t,he site storing
the entity copy commits the update of T, the missing update information of T
will have been posted at the site. In this case, even though the site does not have

the missing update values, it can consider the missing updates as being applied
just prior to its application of T's precommitted update, since the effect on the
database is the same. However, in this case the update of T can be applied only
when it would be permissible to apply a missing update (see the following section).

4.3 Missing Update Application

As noted in Section 3.1, it must be ensured that a missing update is applied at a
site only after the missing update information of the transaction involved has
been posted at the site. It is the responsibility of the sites at which the entity

ACM Transactions on Database Systems, Vol. 8, No. 3, September 1983.

Achieving Robustness in Distributed Database Systems l 367

update has been applied to retain the missing update information, aa well as the
missing update values, for any sites at which the update may not have been
applied owing to failures.

In the commit message sent to a site A by a transaction Z’, H(T) includes the
identifiers of those sites that failed to acknowledge precommits for the entities
that will be committed at A. Any missing update information that would normally
have been sent to these sites is also included. This information is used by A to
maintain its missing-update-value file. This file stores the entity copy identifiers

and values of the missing updates, the identifier of T, and the missing update
information for the sites involved. This information is also stored in the corre-
sponding file at H(T). Note that the value of a missing update is stored at a site
only if the site stores another copy of the entity involved or if it, is the home site

of the transaction that produced the update. A missing-update-value file may
have more than one value (for different transactions) for a particular entity copy
identifier. In such a case these values are maintained in the order of reception.

Suppose that the updates and the missing update information corresponding
to a particular entity are retrieved from a missing-update-value file at a site B

and sent to a site A. Assume that some of these missing updates apply to a copy
of the entity that is stored at A. The missing-update-applications file at A records
the entity identifier and the transaction identifier of each missing update that

has been applied at the site. Using this file, A checks to see if the most recent of
the received updates for the entity copy stored at A has been applied. If it has, A
instructs B to remove the appropriate entries from its missing-update-value file.

Otherwise, A should apply the most recent applicable update. Before doing so
it must ensure either that no uncommitted active transaction has read the old
entity copy value or that applying the update when such a transaction exists
cannot cause a cycle in the + relation. The implementation of this last. step is the
second (and last) basis procedure that can only be specified in the context of a
particular concurrency control method. Also, if there is any uncertainty about
the order of application with respect to any precommits held on the entity copy,
A must. determine the status of the owning transactions. If a transaction with a
precommit has not yet committed, then its precommit does not affect missing

update application. If A finds that a transaction with a precommit is committed,
it will obtain the transaction’s missing update information (see Section 4.4). In
conjunction with the completeness property of missing-update-value files illus-
trated in Figure 3, and a corresponding property for the missing update infor-
mation of a committed transaction, this implies that the order of application of
the committed precommit can be determined.

When these steps are completed, A processes the missing update information
(by adding any necessary entries to its missing-update-postings file), applies the

most current, update, and adds all those previously unapplied received missing
updates to its missing-update-applications file. Also, appropriate entries in the
missing-update-value file at A are created for any sites that have still not applied
all or some of the received updates for the entity. Site A can then inform B that

the appropriate entries may be removed from its missing-update-value file. This

processing is correct in that updates are never applied out of order, because of
the completeness property shown in Figure 3.

ACM Transactions on Database Systems, Vol. 8, No. 3, September 1983.

368 ’ D. L. Eager and K. C. Sevcik

The Completeness Property:

A missing-update-value file contains a missing update of some
entity copy only if all earlier unapplied missing updates for
the entity copy are also present.

This property is due to the following four facts:

(1) Missing update information must be posted at sites storing a quorum
of copies of a write set entity prior to acceptance by these sites
of any later precommits for the entity.

(2) Precommit acknowledgments contain all applicable missing update information.

(3) A quorum of the copies of a write set entity must be precommitted before
the entity can be updated.

(4) Any two quorums of the copies of an entity must intersect.

Fig. 3. The completeness property of missing-update-value files.

Missing updates may be retrieved and applied in two situations. First of all, an
explicit request may be made for a particular missing update. Such a request
would be made by a site that has received missing update information that
pertains to an entity copy that it stores, for which it has no record in its missing-

update-applications file. This request would be sent to one or more of the other
sites that store the entity and/or to the home site of the transaction that created
the missing update. Note that if the home site has no knowledge of the missing
update, the missing update information was generated by a transaction that was
restarted or aborted and is invalid. Although this situation is the only one in

which it is really necessary to apply missing updates, data are kept more current
by attempting to apply missing updates at other times as well. For this purpose
each site that has a nonempty missing-update-value file periodically attempts
communication with the relevant sites. This periodic communication also ensures
that these files are eventually emptied. Entries must also be periodically removed
from missing-update-postings and missing-update-applications files. Procedures

to accomplish this are based on network traversals but are straightforward and
can be made robust; examples are given in [6].

4.4 Dangling Precommit Processing

The transaction-status file at each site allows the site to answer requests for
transaction status information. This file records transaction restarts, aborts, and

commits of which the site has knowledge. For example, if a site received a release-
precommit message, it would create an entry in its transaction-status file to
record the fact that the corresponding transaction had been restarted or aborted.

A transaction commit entry also contains any missing update information
intended for sites that acknowledge precommits, but that may not have received
this information (e.g., if the information was sent with a commit message, there

ACM Transactions on Database Systems, Vol. 8, No. 3, September 1983.

Achieving Robustness in Distributed Database Systems - 369

A site A receives from a site B a query on the status of
a transaction T that has left a dangling precommit at B.
The required processing depends on the status of T at A.
Site A follows the first applicable case below:

Case I - There is a commit entry for T in the transaction-status file at A :

Site A informs B that T is committed. In addition, all of the missing
update information stored with (or referenced by) the file entry is trans-
ferred to 8. If this information comes from the missing-update-value
file (indicating that the precommit acknowledgment was not received by
H(T)), B must process the dangling precommit as if it were a missing
update (which it essentially is). Otherwise, B processes any information
intended for itself and stores the remaining information in its transaction-
status file when it commits its precommit. This ensures that the precommit
is committed only after the missing update information of T is posted at B.

Case II - An entry for T indicates that T was aborted or restarted:

B is notified of this fact.

Case III - Each write set entity copy stored at A (of which there is
at least one) has been precommitted at A:

B is notified of this fact.

Case IV - A precommit for a write set entity copy stored at A has
not been received:

Site A makes a pledge to B that it will reject any
precommits for T that it receives in the future.

Fig. 4. Status query processing.

may be no guarantee that this message was received). This information is
contained in the messages that create these entries (such as commit messages
and responses to requests for missing updates). Since a precommit could be
received but not acknowledged, transaction commit entries also reference any
relevant entries in the missing-update-value file.

When a site has a dangling precommit, it queries the other sites that may be
aware of the status of the owning transaction. For this purpose, a list of the
identifiers of these sites is present (either explicitly or implicitly) in each precom-
mit message. This list would certainly include the identifier of each site storing a
copy of a write set entity. The processing necessary when a site receives a status
query is shown in Figure 4.

On the basis of the received replies to its status queries, a site may or may not
be able to determine whether its dangling precommit can be committed. If the
site cannot determine whether the precommit should be committed, it periodically
attempts additional status queries. It should be clear that this processing imple-
ments the previously discussed strategies for dealing with dangling precommits.

ACM Transactions on Database Systems, Vol. 8, No. 3, September 1983.

370 * D. L. Eager and K. C. Sevcik

4.5 Correctness of the Basis

In this section it is shown that a concurrency control method that maintains
consistency under the requirement that all write set entity copies ‘be precommit-
ted (in other words, a requirement prohibiting missing updates) will continue to

maintain consistency after implementing the presented basis for maximal partial
operability. The following proposition is required for this result.

PROPOSITION 4.1. Suppose that there exists a set of committed transactions
{Ti} , 15 i I n, such that Ti + Ti+l(l I i 5 n - 1). If Tl was aware of a missing
update at the time of its commitment, then either T,, was also aware of this
missing update when T,, was committed, or the update had been applied by this
time.

ARGUMENT. The argument proceeds by induction on n. For n = 1, the propo-
sition is trivially true. Assume that the proposition holds for n, and consider the
proposition for n + 1.

By the inductive hypothesis, either T, was aware of the missing update when

T, was committed, or the update had been applied by this time. If T,, +RwT~+~
or Tn +wT~+I, the proposition holds owing to the rule requiring T,, to post ita
missing update information at sites storing a quorum of the copies of each read

and write set entity before any later conflicting precommits are accepted at these
sites. If T,, -+wRT~+~, the proposition holds, since the commitment, dangling
precommit processing, and missing update application procedures ensure that an
update at a site is committed only after the missing update information of the

corresponding transaction is posted at that site. By induction the proposition is
now established. Cl

From this proposition the main result can be derived:

ASSERTION 4.2. Any concurrency control method that maintains consistency
when no missing updates are allowed will continue to maintain consistency
after implementing the presented basis for maximal partial operability.

ARGUMENT. Suppose, on the contrary, that there exists a set of committed
transactions {Ti}, 1 I i I n, such that Ti + Ti+l (1 5 i I n - 1) and T,, + TI.

Since the concurrency control method maintains consistency when no missing
updates are allowed, one of these conflicts must have arisen owing to a missing
update. Without loss of generality, assume that T1 read an entity copy that
missed an update of Tz.

Since the basis prohibits the application of a missing update while any trans-
action that read the old value is active (if this application could cause a cycle in
the + relation), the missing update must have been unapplied up to the time Tl
was committed. By Proposition 4.1, this implies that Tl was aware of the missing
update when it was committed. As this is a contradiction to the rules of Figure 4,
the assertion is shown. Cl

5. AN APPLICATION TO A DISTRIBUTED LOCKING METHOD

This section illustrates the application of the presented basis for maximal partial
operability to a distributed locking method. In Section 6, application to a
concurrency control method that utilizes timestamps is considered. It should be

ACM Transactions on Database Systems, Vol. 8, No. 3, September 1983.

Achieving Robustness in Distributed Database Systems l 371

realized that the basis can be applied to a wide variety of other methods, as is
further illustrated elsewhere [6].

5.1 The Basic Method

Distributed two-phase locking (distributed 2PL) is based on the wound-wait
concurrency control method of Rosenkrantz, Stearns, and Lewis [22], and on the
distributed 2PL method as described by Bernstein and Goodman [3]. More
complex enhancements of this method are possible [6, 25, 271; our particular
choice is based on the suitability of the method as an example.

In this method, a transaction wishing to perform a read operation on an entity
must obtain a read lock on a copy of the entity granting permission. A transaction
wishing to perform a write operation must obtain write locks on all of the entity’s
copies. Write locks are said to conflict with read and write locks in the sense that
two conflicting locks of different transactions are not allowed on the same entity

COPY.
A transaction is well formed if it obeys these locking rules and if it eventually

releases all of its locks. It is two phase if no lock requests occur after the first lock
release [7]. In our transaction processing model, write lock requests may be
carried implicitly by precommit operations. Similarly, read lock requests may be

carried implicitly by database read operations. Commit operations serve to release
all of a transaction’s locks at the receiving sites. For those sites at which a
transaction read, but did not write, explicit read-lock-release messages are
required. As shown by Eswaran et al. [7], a concurrency control method that
requires all committed transactions to be well formed and two phase maintains
consistency.

To complete our description of distributed 2PL, the problem of deadlock must
be considered. To prevent deadlock, each transaction has an associated priority.
As the age of a transaction increases, its priority increases relative to that of other
currently executing transactions. Distributed 2PL prevents deadlock by ensuring

that transactions essentially only wait for transactions of higher priority. When
a lock request of a transaction conflicts with existing locks held on the entity
copy, the transaction waits only if its priority is lower than that of one of the lock

holders. Otherwise, a wound message is sent to the home site of each of the lock
holding transactions. If a transaction that is not already committed is “wounded,”
it is restarted, and messages are sent to release all of the transaction’s locks. If
the transaction is already committed, it does not require any additional locks,
and its locks are, in fact, in the process of being released. A proof that this priority
system guarantees that each transaction is eventually either committed or
aborted (possibly after a number of restarts) is given by Rosenkrantz, Stearns,
and Lewis [22].

5.2 The Robustness Level of the Basic Method

Before attempting any modification of distributed 2PL, the robustness level of
the basic method should be considered. This robustness level is illustrated by the
effect of a site failure in a system using basic distributed 2PL. Such a failure
makes unavailable for updating all of the entities with copies at the site, as well
as all of the entities for which copies were precommitted or read-locked by
transactions executing at the site at the time of the site failure. Any entities

ACM Transactions on Database Systems, Vol. 8, No. 3, September 1983.

372 * D. L. Eager and K. C. Sevcik

Execution Sequence
(with a missing update)

T, and T2 both read x,., and yB
A partitioning separates H(T,) from A
T, writes x, missing copy at A
T, commits, releases locks
T, writes y, commits

(a)

Execution Sequence

Fig. 5. The limitations of basic distributed 2PL.
(with a release of a dangling read lock)

T, and Tz both read x, and yB
A partitioning separates H (TJ from A
The read lock of T2 on x,., is released by

A due to the partitioning
T, writes x
T, commits, releases locks
T, writes y, commits

(b)

In both (a) and (b)
T,- T, due to a conflict on y
TpT, due to a conflict on x

whose only available copies were either stored at the site or weie precommitted
by transactions executing at the site are made unavailable for reading.

Basic distributed 2PL does not attain maximal partial operability for three
reasons: (1) missing updates cannot be allowed (see Figure 5a); (2) there are no
procedures to resolve dangling precommits; and (3) dangling read locks (read
locks that cannot be released by the owning transactions owing to network
partitioning) cannot be released by the affected sites (see Figure 5b).

5.3 Robustness Modifications

Before describing the details of our robustness modifications, a few general
remarks will be made here about the application of the concepts of the previous
section to distributed 2PL. Perhaps the most significant point is that most of the
material presented (e.g., dangling precommit processing), is truly independent of
the concurrency control method involved. For this reason the majority of our
robustness modifications entail a straightforward application of the basis for
maximal partial operability and are not described further. Our modifications to
transaction commitment, on the other hand, depend in part on when conflicting
operations can be performed and therefore need further specification once a
context has been fixed. In addition, there were two procedures left unspecified in
the basis: (1) a procedure to check for later precommits or updates upon reception
of a missing-update-data message (see Section 4.1), and (2) a procedure required
in missing update application to check for the presence of an active transaction

ACM Transactions on Database Systems, Vol. 8, No. 3, September 1983.

Achieving Robustness in Distributed Database Systems * 373

that read an entity copy (see Section 4.3). Finally, procedures to allow the release
of dangling read locks also need to be discussed, as these must be present if
distributed 2PL is to attain maximal partial operability. These procedures are
not considered in the basis, since read operations do not impose access restrictions

in a significant number of proposed concurrency control methods.
Consider the processing required when a transaction T wishes to commit. If T

is unaware of any missing updates, it is committed exactly as before. The

robustness modifications to distributed 2PL do not significantly degrade method
performance in the absence of failures. Consider the case in which T is aware of
missing updates. In robust distributed 2PL, dangling read locks may be released,
but write locks cannot be released before transaction status is known. Only
precommits that conflict with a read operation (as opposed to a precommit) of T
can be performed before T commits. Due to this fact, H(T) must transmit a
missing-update-data message to a site A only if A stores a quorum copy of an

entity that was read but not written. The additional required posting can occur
when the updates of T are committed.

Each site A that receives a missing-update-data message must ensure that each
read set entity copy has not been precommitted or updated by some other

transaction that T precedes. In robust distributed 2PL, A returns sufficient
information in its missing-update-data message acknowledgment to enable H(T)
to make this check itself. This information consists of any entries for the read set
entity copies that are found in A’s missing-update-postings file, as well as the
identities of any precommits that exist on these entity copies. This information
is utilized as shown in Figure 6. In this figure it is assumed that acknowledgments

have been received from a sufficient set of sites to form the necessary quorums.
The last basis feature that will be considered is the missing update application

procedure. In this procedure, a missing update can be applied only after it is

ensured either that no uncommitted active transaction has read the old entity
copy value, or that applying the update when such a transaction exists cannot
cause a cycle in the + relation. In robust distributed 2PL it is first necessary to

check whether the entity copy is read locked. If it is, application of the update is
postponed until the read lock is released by the transaction or by the site. If the

entity copy is not read locked, a check must be made for any “recent” (since the
last update of the entity copy) releases of dangling read locks held on the entity
copy. If such releases exist, the update cannot be applied until the site learns that
the owning transactions have been committed (or restarted or aborted). If such
releases do not exist, either no uncommitted active transactions have read the
entity copy, or applying the update when such a transaction exists cannot cause
a cycle in the + relation. This last method characteristic is due to the procedures
for releasing dangling read locks.

Dangling read locks have different properties than do dangling precommits. In
the case of a dangling read lock it is not necessary to know whether the owning
transaction is committed or whether it had to be restarted or aborted. It is only
necessary to know whether a cycle in the + relation would arise by releasing the
lock.

Consider the situation in which a site A decides to time out a read lock of a
transaction T due to suspected failures. Presumably A has unsuccessfully tried to
communicate with H(T) to determine the status of T. The read lock at A is

ACM Transactions on Database Systems, Vol. 8, No. 3, September 1983.

374 * D. L. Eager and K. C. Sevcik

Precommit Checking (for a transaction T):

If a precommit exists on a read set entity copy of T, three cases
can be distinguished:

(1) The precommit corresponds to missing update information that
T received through missing-update-data message acknowledgments.

(2) The precommit is a dangling precommit left by the transaction
that created the entity version read by T.

(3) The precommit belongs to a transaction that 7’ precedes.

In the first case, the application procedures of section 4.3 may be
followed. The processing of T is not impacted. H(T) may query
the necessary sites to distinguish between the last two cases, or
may assume the worst case, namely that the precommit belongs to
a transaction that T precedes.

Update checking:

One of the read set entity copies of 7’ has been updated to a later
version if and only if T received a missing-update-data message
acknowledgment that contained one of the following:

(1) Missing update information for an entity copy read by 7’

(2) Information indicating that one of T’s read locks
has been released (due to the dangling read lock
release procedure).

Fig. 6. Checking for a later update or precommit in robust distributed 2PL.

removed and an entry is placed in the missing-update-postings file at A. This
transaction entry, to be transferred to transactions that precommit the entity
copy that was read locked, contains the identifier of T instead of a missing update
identification. A transaction entry is passed from transaction to transaction as is
missing update information. If a transaction becomes aware of an entry for itself,

it must be restarted. Dangling read lock processing is illustrated in Example 3 in
the Appendix.

5.4 The Correctness of Robust Distributed 2PL

Robust distributed 2PL attains maximal partial operability, since (1) dangling
precommits are resolved to the extent possible under maximal partial operability,
(2) transactions may be executed and committed as long as the entity copy
availability requirements under maximal partial operability are satisfied, and (3)
no other restrictions on transaction processing are induced by site or communi-
cation link failures (e.g., dangling read locks may be released). As it is clear that
each transaction is eventually either committed or aborted, as in basic distributed
2PL, only the following assertion is required to demonstrate correctness:

ACM Transactions on Database Systems, Vol. 8, No. 3, September 1983.

Achieving Robustness in Distributed Database Systems * 375

ASSERTION 5.1. Robust distributed 2PL maintains consistency.

ARGUMENT. Suppose, on the contrary, that the use of robust distributed 2PL
resulted in a set of committed transactions (Ti} , 1 I i I n, such that Ti + Ti+l
(1 5 i 5 n - 1) and T,+ Tl.

By Assertion 4.2, the basis implementation cannot be responsible for the
inconsistent execution history. Since the only other modification is the dangling
read lock release procedure, this procedure must be responsible. Assume, without
loss of generality, that the Tl + TZ conflict arose owing to the updating by T2 of

an entity copy after the release of a dangling read lock held by Tl.
If this updating had been performed by the missing update application proce-

dure, Tz would have been aware of a missing update for an entity copy read by

T1. Also, note that the read lock release would have been “recent” when the
missing update was applied. By the properties of the missing update application
procedure, T, must have been committed before this updating was performed. By
Proposition 4.1, Tl would have been aware of the missing update. This is a
contradiction.

Now consider the alternative possiblity, in which T2 obtained a precommit
acknowledgment for the entity copy. Our dangling read lock release procedures
then ensure that TZ was made aware of a transaction entry for T1. Since

transaction entry information is passed from transaction to transaction, in much
the same way as missing update information is passed, a result analogous to
Proposition 4.1 holds. This result implies that 7’1 was aware of the transaction
entry for itself when it was committed. As this is a contradiction, the assertion is

shown. Cl

6. AN APPLICATION TO A TIMESTAMP ORDERING METHOD

6.1 The Basic Method

Basic Timestamp Ordering (basic Tf 0) is based on a similarly named method
of Bernstein and Goodman [3]. In this method each home site assigns each of its
transactions a unique timestamp. Timestamps need have no relation to physical
time, although it is assumed that they are generated at each site in increasing

order. The timestamp of a transaction T is denoted by TS(T).
Basic T/O also requires a read and a write timestamp to be present on each

database entity copy. After a “sufficiently long” period without access, an entity
copy’s explicit timestamp may be discarded and replaced by an implicit timestamp
with value greater than or equal to its former explicit value. By comparing
transaction timestamps and entity copy timestamps before performing operations,
the concurrency control method can verify that conflicting operations are being
performed in timestamp order. If such a comparison reveals that an operation
cannot be processed so as to preserve timestamp order, the operation is rejected.
The corresponding transaction must then be assigned a new timestamp and
restarted. Basic T/O rarely delays operations, unlike many other timestamp-
based concurrency control methods, but instead relies on transaction restarts.

The processing of read, precommit, and commit operations are now specified
in greater detail. First of all, consider a precommit of a transaction T for an entity
copy xA . If the read timestamp of XA is greater than TS(T), the precommit is

ACM Transactions on Database Systems, Vol. 8, No. 3, September 1983.

376 * D. L. Eager and K. C. Sevcik

rejected, since conflicting operations should not be processed in nontimestamp

order. Otherwise, the precommit is accepted. Note that in basic T/O, unlike the
situation in distributed 2PL, an entity copy may have several outstanding

precommits.
When a read operation of T for an entity copy XA is received, the write

timestamp of XA is compared to TS(T). If the former is greater, the read is
rejected. Otherwise, the timestamps of any outstanding precommits on xA are

checked. If there is an outstanding precommit with timestamp less than TS(T),
the read request is queued. This action is necessary, since the precommitted

update must be applied in timestamp order with respect to any conflicting read
operations. If no such precommit exists, the read is processed and the read
timestamp of xA is updated to the maximum of its current value and TS(T).

Finally, consider the reception of a commit of T at a site A. Assume that a
precommit of T exists on an entity copy XA. If the write timestamp of xA is greater
than TS(T), the value of xA is not updated. Note that this action processes the
update so as to preserve a timestamp ordering of conflicting operations. If the
write timestamp of %A is less than TS(T), any precommits with timestamp less
than TS(T) are essentially discarded. This processing is correct owing to the fact
that the corresponding updates will never be applied. The value of xA is then
updated, and the write timestamp of xA updated to TS(T). Finally, any read

requests queued for XA are reevaluated, using the same rules as those applying to

arriving reads.
Basic T/O always processes conflicting operations so as to preserve timestamp

order. Therefore, the result of processing a set of transactions is the same as if

they were processed sequentially in timestamp order. Basic T/O maintains
consistency. To guarantee that each transaction is eventually either committed
or aborted, a randomized increment may be applied to the timestamp of a

restarted transaction.

6.2 The Robustness Level of the Basic Method

The robustness level of basic T/O is illustrated by the effect of a site failure in a
system using basic T/O. Consider only those transactions that have a larger
timestamp than that of any transaction that was executing at the site at the time

of the failure. The entities made unavailable for updating are then all of the
entities with copies at the site, as well as all of the entities that are made

unavailable for reading. The entities made unavilable for reading are those
entities whose only available copies were either stored at the site or were
precommitted by transactions executing at the site.

Note that the dangling precommit problem is partly “solved” in basic T/O, in
that many dangling precommits can essentially be discarded (in the sense that
their imposed access restrictions become redundant). This is illustrated in Figure
7a. However, basic T/O cannot resolve all theoretically resolvable dangling
precommits, since there is no mechanism to link the absence of a precommit on
one entity copy to a resolution of a precommit on a copy of a different entity.

Basic T/O does not achieve maximal partial 0perabilit.y. This is due to the fact
that missing updates cannot be allowed (see Figure 7b), and due to the limitations

on dangling precommit resolution.

ACM Transactions on Database Systems, Vol. 8, No. 3, September 1983.

Achieving Robustness in Distributed Database Systems * 377

Execution Sequence
(discarding a dangling precommit)

(TS(T,) = nl

T, leaves a dangling precommit on xA ,
but successfully updates xB

T2 reads xB, obtains precommits on
all copies of x

When T2 commits its update of x, , the
precommit of T, will be effectively
discarded

(a)

Fig. 7. The limitations of basic T/O.

Execution Sequence
(with a missing update)

(TS(T,) = n]

T, and T2 both read x, and yB
A partitioning separates H (TI) from A
T1 writes x, missing copy at A
T1 commits
T, writes y, commits

T,+ Tz due to a conflict on y
T2+ T, due to a conflict on x

(b)

6.3 Robustness Modifications

Only those basis features that need further specification in the context of basic
T/O are discussed. First of all, note that commitment is performed exactly as
before for those transactions that are not aware of any missing updates. In a
failure-free environment the robustness modifications to basic T/O induce no
significant performance overhead. Consider the commitment of a transaction T
that is aware of missing updates. Unfortunately, owing to the absence of locking
in basic T/O, T must post its missing update information prior to commitment at
sites storing a quorum of the copies of each of its read and write set entities.

Each site A that receives a missing-update-data message must ensure that each
relevant entity copy has not been precommitted or updated by a transaction that
T precedes. For a write set entity this is quite simple. It is only necessary to
compare the timestamp of T to the write timestamp of the entity copy and the
timestamps of any other outstanding precommits.

Consider the detection of a conflicting operation on a read set entity that was
not updated. To facilitate this detection, each missing-update-data message
includes the write timestamps of the read set entity copies read by T. Due to the
fact that updates are always processed to preserve timestamp order, it is only
necessary to compare the timestamps in the missing-update-data message with

ACM Transactions on Database Systems, Vol. 8, No. 3, September 1983.

378 l D. L. Eager and K. C. Sevcik

the entity copy write timestamps and the timestamps of any outstanding precom-

mits. This action is sufficient to detect a precommit or update of a transaction

that T precedes.
The last basis feature that is discussed is the missing update application

procedure. In this procedure, a missing update can be applied only after it is
ensured either that no uncommitted active transaction has read the old entity

copy value or that applying the update when such a transaction exists cannot
cause a cycle in the + relation. Unfortunately, in basic T/O there is no simple
way to recognize the existence of such a transaction.

One possible solution will be described here. Each commit message from a site

A includes the minimum timestamp value of any uncommitted transactions
executing at A (or the current “time” if there are no such transactions). This
information is added to the receiving site’s transaction-status file. In conjunction
with entity copy read time&s (or a log of database operations), the extended
transaction-status file enables each site to recognize the possible existence of
active transactions that read some entity at the site. When missing update
application is blocked by such a possibility, the site should query the relevant
sites and postpone applying the missing update until learning that any applicable

transactions have been committed (or restarted or aborted).
An additional aspect of the missing update application procedure should also

be noted. Recall that in our basis a site checks its missing-update-applications
file to determine if a missing update has already been applied. Since updates are

always processed so as to preserve timestamp order, and since each entity copy
has a write timestamp, this file is not required in robust basic T/O. It is only
necessary to check the write timestamp of the entity copy to be updated.

6.4 The Correctness of Robust Basic T/O

Since no modifications other than the basis implementation were made to basic
T/O, robust basic T/O maintains consistency by Assertion 4.2. Also, the robust-
ness modifications do not impair the ability of basic T/O to ensure that each

transaction is eventually either committed or aborted. However, it should be
noted that a missing update is not, in general, processed in timestamp order with
respect to the read operations performed on the entity copy. The result of
processing a set of transactions may be the same as a sequential ordering different
from timestamp order.

7. CONCLUSIONS

It has been demonstrated that a high level of robustness ag‘ainst site and
communication link failures can be attained by a concurrency control method
without significantly impacting performance when failures are infrequent. When
failures do occur, each site must accumulate information in several files in order
to safely proceed in the presence of missing updates. In an active distributed

database system partitioned by failures, these files could grow quite rapidly.
However, this must be accepted as the price of a high robustness level.

Our results also have implications for concurrency control method performance
analysis. Performance evaluations for environments in which failures are rela-
tively rare need only consider basic methods, even if the methods would actually
be enhanced when implemented to provide a high robustness level. The separa-

ACM Transactions on Database Systems, Vol. 8, No. 3, September 1983.

Achieving Robustness in Distributed Database Systems l 379

tion of robustness considerations from performance evaluation adds further
credibility to the previous and ongoing performance studies (e.g., [8,9, 11, 18, 211
that have for the most part considered concurrency control methods that lack
robustness. However, it should be noted that the relative performance of a set of
concurrency control methods that attain maximal partial operability may differ
according to the frequency of failures. Performance evaluations for environments

in which failures are relatively frequent should therefore consider concurrency
control methods that have been enhanced to provide a high robustness level.

Distributed database concurrency control methods that attain a high robust-
ness level are likely to be of significant practical benefit. Although one is usually
safe in assuming that failures will be rare in a centralized database system, in a
large distributed system an inoperative site would likely be commonplace. In

many applications it is essential that processing continue in the presence of such
failures.

APPENDIX

Three examples that illustrate the operation of concurrency control methods
modified to achieve maximal partial operability are presented. In these examples
a nonrobust method (such as nonrobust distributed 2PL or basic T/O) could not
successfully execute any of the transactions treated. The distributed database
shown in Figure 8 is a common context.

Example 1. Posting Missing Update Information. After the partitioning oc-
curs, a transaction T1 is initiated at site 3. T1 wishes to read entities u and z and
update entity z. In a method achieving maximal partial operability, it may do so,
even though the update for entity copy z1 cannot be initially performed. Missing
update information for entity copy z1 is posted at site 3 (to be transferred on a
read or precommit of 23 or a precommit of us) and at site 2 (to be transferred on
a read or precommit of ~2). Entries in the missing-update-value files at sites 2 and
3 are created for 21.

Example 2. Dangling Precommit Processing. Suppose that before the parti-
tioning occurred, a transaction initiated at site 1 precommitted all the copies of
entities x and y. However, the commit for site 2 was received before the
partitioning, while that for site 3 was not. After the partitioning, a transaction TZ
initiated at site 3 wishes to read ~3. However, suppose that it is blocked by the

dangling precommit (this will always occur in distributed 2PL; in basic T/O it
would occur if the timestamp of TZ is larger than the timestamp of the transaction
that produced the dangling precommit). Precommits are required to specify
(either explicitly or implicitly) the sites that will learn the final transaction status.
Therefore, site 3 has sufficient information to recognize that site 2 should be
queried. When site 2 informs site 3 that the transaction in question has been
committed, site 3 can safely commit its precommitted update, allowing T2 to

proceed.

Example 3. Dangling Read Lock Processing. (This example is relevant only to
distributed 2PL.) Suppose that when the partitioning occurred, a read lock of a
transaction initiated at site 1 was still outstanding on entity copy VP. A transaction
T3 initiated at site 2 wishes to read and update ~2, but is blocked by the dangling

ACM Transactions on Database Systems, Vol. 8, No. 3, September 1983.

380 * D. L. Eager and K. C. Sevcik

partitioning

entity copies

x’.
YI
Zl

copies
l

X2

v2
22

Site 3

(in the case of two entity copies, a ‘*’ denotes that copy necessary and
sufficient for a quorum; otherwise, a quorum is a simple majority)

Fig. 8. A distributed database partitioned by a failure.

read lock. After site 2 has timed out the read lock, it is discarded, and a transaction
entry is created in the missing-update-postings file at site 2 (to be transferred on
a precommit of v2). T3 can now proceed successfully. The transaction entry is
passed to T3, which posts it at site 3 again (to be transferred on a read or

precommit of ~2).

ACKNOWLEDGMENTS

We wish to thank P. Bernstein, B. Galler, and B. Lindsay along with several
anonymous referees for their constructive comments on this work and its presen-

tation.

REFERENCES

1. ATTAR, R., BERNSTEIN, P. A., AND GOODMAN, N. Site initialization, recovery, and back-up in a

distributed database system. Tech. Rep. TR-13-81, Aiken Computation Lab., Harvard Univ.,
Cambridge, Mass., Aug. 1981.

2. BADAL, D. Z., AND POPEK, G. J. A proposal for distributed concurrency control for partially

redundant distributed database systems. In Proc. 3rd. Berkeley Conf Distributed Data Manage-

ment and Computer Networks (Berkeley, Calif., Aug. 1978) Lawrence Berkeley Lab., Univ. of
California, pp. 273-285.

3. BERNSTEIN, P. A., AND GOODMAN, N. Concurrency control in distributed database systems.

ACM Comput. Suru. 13,2 (June 1981), 185-221.

4. BERNSTEIN, P. A., SHIPMAN, D. W., AND ROTHNIE, J. Concurrency control in a system for

distributed databases (SDD-1). ACM Trans. Database Syst. 5, 1 (Mar. 1980), 18-51.
5. BERNSTEIN, P. A., SHIPMAN, D. W., AND WONG W. S. Formal aspects of serializability in

database concurrency control. IEEE Trans. Softw. Eng. SE-5,3 (May 1979), 203-216.

6. EAGER, D. L. Robust concurrency control in distributed databases. M.Sc. thesis, Tech. Rep.

CSRG 135, Computer Systems Research Group, Univ. of Toronto, Toronto, Ont., Oct. 1981.
7. ESWARAN, K. R., GRAY, J. N., LORIE, R. A., AND TRAIGER, I. L. The notions of consistency and

predicate locks in a database system. Commun. ACM 19, 11 (Nov. 1976), 624-633.

8. GALLER, B. I. Concurrency control performance issues. Ph.D. dissertation, 1Jniv. of Toronto,

Toronto, Ont., Sept. 1982.

9. GARCIA-M• LINA, H. Performance comparison of two update algorithms for distributed data-

bases. In Proc. 3rd. Berkeley Conf Distributed Data Management and Computer Networks,
(Berkeley, &Iii., Aug. 1978) Lawrence Berkeley Lab., Univ. of California, pp. 108-119.

ACM Transactions on Database Systems, Vol. 8, No. 3, September 1983.

Achieving Robustness in Distributed Database Systems l 381

10. GARCIA-M• LINA, H. A concurrency control mechanism for distributed databases which uses
centralized locking controllers. In Proc. 4th Berkeley Conf Distributed Data Management and

Computer Networks, (Berkeley, Calif., Aug. 1979) Lawrence Berkeley Lab., Univ. of California,
pp. 113-125.

11. GELENBE, E., AND SEVCIK, K. Analysis of update synchronization for multiple copy databases.
IEEE Trans. Comput. C-28,10 (Oct. 1979), 737-747.

12. GIFFORD, D. K. Weighted voting for replicated data. In Proc. 7th ACM Symp. Operating

Systems PrincipZes (Pacific Grove, Calif., Dec. 10-12, 1979) ACM, New York, pp. 150-159.
13. GRAY, J. Notes on database operating systems. Tech. Rep. RJ2188, IBM, New York, Feb. 1978.
14. HAMMER, M., AND SHIPMAN, D. W. Reliability mechanisms for SDD-1: a system for distributed

databases. ACM Trans. Database Syst. 5,4 (Dec. 1980), 431-466.
15. HSIAO, D. K., AND OZSU, T. M. A survey of concurrency control mechanisms for centralized and

distributed databases. Tech. Rep. CISRC-81-1, Ohio State Univ., Columbus, Ohio, Feb. 1981.
16. KUNG, H. T., AND PAPADIMITRIOU, C. H. An optimahty theory of concurrency control for

databases. In Proc. 1979 ACM-SIGMOD Int. Conf Management of Data (Boston, Mass., May
3OJune 1,197s) ACM, New York, pp. 116-126.

17. LAMPSON, B. W., AND STURGIS, H. E. Crash recovery in a distributed data storage system. Xerox
PARC Report, Xerox Palo Alto Research Center, Palo Alto, Calif., April 1979.

18. LIN, W. K. Performance evaluation of two concurrency control mechanisms in a distributed
database system. In Proc. 1981 ACM-SIGMOD Int. Conf Management of Data (Ann Arbor,
Mich., April 29-May 1,1981) ACM, New York, pp. 84-92.

19. MENASCE, D. A., POPEK, G. J., AND MUNTZ, R. R. A locking protocol for resource coordination
in distributed databases. ACM Trans. Database Syst. 5,2 (June 1980), 103-138.

20. MONTGOMERY, W. A. Robust concurrency control for a distributed information system. Ph.D.
dissertation, Tech. Rep. MIT/LCS/TR-207, MIT, Cambridge, Mass., Dec. 1978.

21. RIES, D. The effect of concurrency control on the performance of a distributed data management
system. In Proc. 4th Berkeley Conf. Distributed Data Management and Computer Networks,
(Berkeley, Calif., Aug. 1979) Lawrence Berkeley Lab., Univ. of California, pp. 221-234.

22. ROSENKRANTZ, D. J., STEARNS, R. E., AND LEWIS, P. M. System level concurrency control for
distributed database systems. ACM Trans. Database Syst. 3,2 (June 1978), 178-198.

23. SKEEN, D. Nonblocking commit protocols. InProc. 1981 ACM-SIGMOD Int. Conf Management

of Data (Ann Arbor, Mich., April 29-May 1, 1981) ACM, New York, pp. 133-142.
24. SKEEN, D. A quorum-based commit protocol. Tech. Rep. 82-483, Cornell Univ., Ithaca, N. Y.,

Feb. 1982.
25. STEARNS, R. E., AND ROSENKRANTZ, D. J. Distributed database concurrency controls using

before-values. In Proc. 1981 ACMSIGMOD Int. Conf Management ojData (Ann Arbor, Mich.,
April 29-May 1, 1981) ACM, New York, pp. 74-83.

26. STONEBRAKER, M. Concurrency control and consistency of multiple copies of data in distributed
INGRES. IEEE Trans. Softw. Eng. SE-5, 3 (May 1979), 188-194.

27. STUCKI, M. J., ET AL. Coordinating concurrent access in a distributed database architecture. In
Proc. 4th ACM Workshop Computer Architecture for Non-Numeric Processing (Blue Lake,
N. Y., Aug. l-4, 1978) ACM, New York, pp. 60-64.

28. THOMAS, R. H. A majority consensus approach to concurrency control for multiple copy
databases. ACM Trans. Database Syst. 4, 2 (June 1979), 180-209.

Received December 1981; revised May 1982; accepted December 1982

ACM Transactions on Database Systems, Vol. 8, No. 3, September 1983.

