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The problem of concurrency control in distributed database systems in which site and communication 

link failures may occur is considered. The possible range of failures is not restricted; in particular, 

failures may induce an arbitrary network partitioning. It is desirable to attain a high “level of 

robustness” in such a system; that is, these failures should have only a small impact on system 
operation. 

A level of robustness termed maximal partial operability is identified. Under our models of 

concurrency control and robustness, this robustness level is the highest level attainable without 

significantly degrading performance. 

A basis for the implementation of maximal partial operability is presented. To illustrate ita use, it 

is applied to a distributed locking concurrency control method and to a method that utilizes 

timestamps. When no failures are present, the robustness modifications for these methods induce no 

significant additional overhead. 
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1. INTRODUCTION 

Developments in technology have made practical the interconnection of a large 
number of computer systems to form a computer network. The problem of 
distributing a database among the different computer systems, or sites, to form 
a distributed database system is an active research area. One topic that has 
received much attention is the design of concurrency control methods which 
permit multiple users to access and modify a distributed database concurrently. 

A concurrency control method views a database as a collection of entities. In 
a centralized database the value of each entity is recorded but once, while in a 
distributed database the value of an entity may be recorded in copies at multiple 
sites. The state of a distributed database is given by the values of all of its entity 

copies. A distributed database is in a consistent state if (1) all of the copies of 
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each entity have the same value (the entity value), and (2) the entity values 
satisfy a set of assertions or consistency constraints. Thomas has called these 

two requirements mutual consistency and internal consistency, respectively [ZS]. 
The purpose of the concurrency control component of a database system is to 
ensure that user transactions against the database “see” consistent database 
states. 

Additional complexity is added if the distributed database system is required 
to be robust. A robust system permits some query and update activity, preserving 

database consistency, even when system components fail. Robustness is desirable 
in a distributed system owing to the large number of components these systems 
contain, and the improbability that all of these components will always be 
operative. The fewer the restrictions on transaction processing that are imposed 
when failures occur, the higher the level of robustness against failures is said to 
be. 

This paper is concerned with modifying known concurrency control methods 
to attain a high level of robustness against arbitrary site and communication link 
failures, without significantly impacting system operation in the absence of 
failures. There are two major problems that are encountered when this modifi- 
cation is attempted. The first concerns the management of updates to replicated 
entities. In general, it is desirable to allow a transaction to update an entity even 
though some of the entity copies may be unavailable owing to failures. However, 
since transactions must see consistent states, it is necessary to place some 
restrictions on when this is allowed. Also, the entity update must eventually be 
applied or accounted for at those copies that do not initially receive it. The 
second major problem concerns the maintenance of the concurrency control 
method machinery in the presence of failures. A concurrency control method 
must often impose access restrictions on entity copies to prevent the observation 
of inconsistent states. Failures may prevent these restrictions from being removed, 
thus impeding transaction processing. 

This paper presents a methodology that can be used in solving these problems. 
In Section 2, a model of concurrency control is introduced. Section 3 discusses 
the two major consequences of site and communication link failures: network 

partitioning and dangling precommits. On the basis of the characteristics of these 
consequences, the highest attainable robustness level that does not significantly 
degrade system performance in the absence of failures is identified. A basis for 
the implementation of this robustness level is presented in Section 4. The paper 
concludes with two applications of the basis, one to a distributed locking method 
and one to a concurrency control method that utilizes timestamps. 

1 .l Related Work 

Numerous concurrency control methods appear in the literature (for descriptions 
of many of these methods, see the surveys of Bernstein and Goodman [3] and 
Hsiao and OZSU [15]). However, relatively few of these methods include a careful 
treatment of failures. Even when such a treatment has been attempted, the 
resulting method has attained a lower level of robustness than one would prefer. 

The method proposed by Montgomery [20] uses transaction preanalysis to 
develop a hierarchical locking scheme. By allowing an entity copy to have several 
values, polyvalues, it can be guaranteed that an entity copy will not be made 
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locally inaccessible by any site or communication link failure other than a failure 

of the site that stores the copy. However, owing to their effect on the locking 

hierarchy, site failures potentially have a major impact on the updating of data 
at remote sites. 

The majority consensus algorithm of Thomas [28] requires that each site have 
a complete copy of the database. Database sites vote on the acceptability of 
update transactions. An update transaction requires the acceptance of only a 

majority of the sites, while queries can be processed locally. The majority 
consensus algorithm attains a high level of robustness, in that only a majority of 
the network sites need to be operational for an update transaction to complete. 

As noted by Thomas, however, it is possible that a query may see an inconsistent 
database state. In some applications this may be undesirable, and when the 
method is modified so that consistent query execution is guaranteed, as in [6], 
component failures significantly reduce the extent to which database activity can 
continue. 

The centralized locking method proposed by Menasce [19] uses local lock 
controllers at each site to provide backup in the event of a central site failure. 
However, unlike the situation in the majority consensus algorithm, an update 

transaction must be able to access all of the copies of the entities it will update. 

After the failure of a site, or the failure of the communication links to a site, 
those transactions that must update entities with copies stored at the inaccessible 
site cannot be executed. 

There have also been several studies that focus on one or both of the two major 
robustness problems mentioned previously. Gifford [12] proposes a strategy for 
managing updates to replicated entities in the presence of failures. However, the 
restrictions on transaction processing are unnecessarily strong, resulting in a 
lower robustness level than that which is described here. Also, performance is 
impacted even in the absence of failures. Badal [2] describes alternative strategies 
for managing updates that place only minimal restrictions on transaction pro- 
cessing. However, when failures are present, the observation of database incon- 

sistencies is not always prevented, this is undesirable in many applications. 
Both Hammer and Shipman [14] and Skeen [23,24] have proposed modifica- 

tions to the method of transaction “commitment” that allow a high robustness 
level to be achieved; with regard to some failure types these modifications provide 

more protection than those proposed here. However, system performance is 
significantly impacted even in the absence of failures, owing to the number of 
additional messages that must be sent whenever a transaction commits. 

2. A MODEL OF CONCURRENCY CONTROL 

2.1 A Model of Transaction Processing 

Numerous transaction processing models have appeared in the literature; the one 
used here is adapted from that used by Bernstein and Goodman [3]. In this 

model, a transaction is executed (initiated, terminated, etc.) by its home site. The 
home site is responsible for assigning a unique identifier to each of its transactions. 
The degree of control the home site has over its transactions varies among 
concurrency control methods. However, it is assumed that each site has the 
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ability to be a home site; in particular, each site is assumed to have a catalog 
indicating, for each entity, the set of sites at which the entity is stored. The home 
site of a transaction T will be denoted by H(T). 

A transaction T is modeled as a sequence of read and write operations. The 
read set of T is defined as the set of entities that T reads. Similarly, the set of 
entities that T writes is termed its write set. It is assumed that the write set of T 
is included in its read set. When T is initiated, a private workspace, possibly 
distributed among various sites, is created. Read operations of T cause database 

read operations only if the required data are not in T’s workspace. Similarly, 
write operations only affect the workspace of T. 

Once T completes its processing, it must be determined whether or not the 
updates of T can be installed in the database without violating consistency 
requirements. In many concurrency control methods, including both of the 
methods used as examples in this paper, this is done in two phases. In the first 
phase, an intention-to-update operation initiated by H(T) is performed on each 

copy of each entity in the write set of T. The concurrency control component at 
each site where one or more of these operations are performed either accepts or 
rejects each operation (possibly after a queuing delay), depending on whether the 
update can be performed without violating the constraints of the particular 
concurrency control method being used. If acceptance occurs, the site sends an 

acknowledgment to H(T) and restricts access, to some degree, to the entity copy. 
H(T) is also notified when an operation is rejected. 

Depending in part on the replies to any intention-to-update operations that 
were performed, H(T) decides to restart, abort, or commit T. Restart procedures 
entail rerunning T after assigning it a new identifier. It would be necessary to 
abort T if system conditions were such that it could not be successfully completed. 
For example, data required by T could have been made unavailable by system 
failures. If T is restarted or aborted, release-intention-to-update operations are 
sent to the affected sites. If T is committed, the second phase is initiated. 

Once committed, T cannot be restarted or aborted. At this point the database 
system is certain that any user output is correct and that any transaction updates 
will be applied (possibly after a delay if failures have occurred). H(T) can 

therefore inform the issuer of T that T has completed processing and can return 

any user output. Instead of transmitting each actual database write operation 
explicitly, H(T) sends a commit to each site that received an intention-to-update 
operation. Upon reception of a commit, the updates of T are permanently 
installed in the local database and the access restrictions imposed on the associ- 
ated entity copies are removed. The updates of T are then said to be committed 
at that site. Note that, because of failures, there may be arbitrarily long time 
delays between the commitment of a transaction and the subsequent commitment 
of some of its updates. 

This two-phase structure can be integrated into the two-phase commit (2PC) 
protocol [13, 171 with no significant performance cost over that when 2PC is not 
used. This protocol is a well-known method of implementing atomic updates. In 
this integrated procedure, precommit operations replace intention-to-update op- 
erations; in addition to performing the function of an intention-to-update, a 

precommit causes the new value of the entity copy to be written onto secure 
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storage. It is assumed that the new value cannot be read until the transaction has 
been committed. The second phase of 2PC requires commits to be sent exactly as 
before (although in 2PC these commits need not contain the actual entity values, 

as they have already been written onto secure storage at the receiving sites). 

2.2 A Model of Concurrency Control Correctness 

This section first reviews some of the standard concepts relating to concurrency 
control correctness. (For more details, see the papers by Bernstein, Shipman, and 
Wong [5] and Kung and Papadimitriou [16].) These concepts are then modified 

as necessitated by our more complex system model in which failures may occur. 
A concurrency control method is said to maintain consistency if, when a set of 

transactions is processed, the same user output and the same database state 
result as if the transactions were processed sequentially. A concurrency control 
method is said to be correct if it maintains consistency while at the same time 
ensuring that each transaction is either committed or aborted (possibly after a 
number of restarts) within a finite time after being initiated. 

In proving that a method maintains consistency, the “precedes” or + relation 

is useful. This relation is based on the notion of conflicting operations, which are 
database (read/write) operations produced by different transactions, at least one 
of which is a write, that operate on the same entity copy. A transaction Tl 
precedes a transaction Tz (Tl + T2) if an operation of Tl precedes and conflicts 

with an operation of Tz (in which case Tl and Tz are also said to be conflicting). 
If the concurrency control method executes transactions so as to ensure an acyclic 
+ relation among committed transactions, consistency is maintained. Under 
certain reasonable assumptions about the information available to the concur- 
rency control method [ 161, an acyclic + relation is necessary as well as sufficient. 
In this paper the maintenance of an acyclic + relation is considered equivalent 
to the maintenance of consistency. 

In an environment with failures it is useful to modify this standard definition 
of + in two ways (neither of which changes its relationship to the consistency 
maintenance property). First of all, suppose that an operation of a transaction T, 
precedes and conflicts with an operation of a transaction Tz. It is technically 
useful if the Tl + T2 relation is implied only if the conflict is direct; that is, there 

is no operation of a committed transaction that conflicts with both of these 
operations and that has occurred between them. Second, consider the situation 
in which an entity copy has not been updated by one or more transactions 
because the entity copy was unavailable to these transactions owing to failures. 
In this case the + relation is constructed as if the updates missed had actually 
been performed on the entity copy (our restrictions on transaction processing 
will ensure that there is a well-defined ordering among these updates). This last 
modification is necessary since it is assumed that failures may be corrected at 
any time, and the updates that were missed then applied. 

It is also useful to differentiate between the conflicts that lead to + relation- 
ships 151. If a read operation of a transaction TI and a conflicting write operation 
of a transaction TZ results in a TI + TZ relationship, then Tl+ RW Tz. “TI +WR 

Tz” and “Tl +WW T2” are defined similarly. 
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3. THE ROBUSTNESS PROBLEM 

Our model of concurrency control has been presented independently of any 
particular concurrency control method. In this section it is our aim to similarly 
present the basic processing restrictions that network failures must induce, 
whatever the concurrency control method in use. Section 4 discusses how these 

restrictions can be implemented, again without loss of generality. In Sections 5 
and 6, two specific concurrency control methods are used to illustrate these 

general concepts. 

3.1 The Network Partitioning Problem 

A physical component of a site is defined as that set of sites with which the site 
can communicate. A network partitioning has occurred if some site’s physical 
component does not include all network sites owing to site or communication 

link failures. It is impossible, in general, to distinguish between site failures (in 
which all database activity at the site ceases until recovery from the failure) and 
link failures (in which a site must assume that database activity is continuing at 
one or more sites outside of its physical component) [19,26]. Because failures of 

communication links, communications front-end machines, and even host com- 
munications software all constitute “link failures,” as described above, it can only 
be safely assumed that database activity at a site has ceased if the site has sent 
positive confirmation of that fact. In this case, the surviving sites can proceed as 
if they constituted the entire network. The failed site must then be integrated 
back into the system as part of its recovery. This integration can be done in a 
system implementing the procedures of Section 4, in a fashion similar to that in 
which changes in “voting rules” are handled by Gifford 1121. An alternative 
procedure has been proposed by Attar, Bernstein, and Goodman [l]. 

A solution to the network partitioning problem provides processing restrictions 
on when a transaction can be allowed to commit, given that some of its write set 
entity copies are unavailable owing to a partitioning. The purpose of these 
restrictions is to ensure that consistency is maintained, while allowing as much 
transaction processing as possible. The restrictions used by Garcia-Molina [lo] 
and Stonebraker [26] require that a transaction have available a majority of the 
copies of each read and write set entity. Gifford uses essentially the same 

requirement, but generalizes the concept of a majority to that of a quorum [12]. 
Under this generalization a transaction requires a “read” quorum of the copies of 
each read set entity and a “write” quorum of the copies of each write set entity. 
The essential property of Gifford’s quorums is that every possible read quorum 
on an entity must have at least one copy in common with every possible write 

quorum on the entity. Our restrictions differ from those of Gifford’s in that ours 
will usually allow a transaction to proceed without read quorums. For this reason, 
the distinction between read and write quorums is much less useful and has not 
been made here, although such a distinction could be introduced. It is sufficient 
for our purposes to define a quorum of entity copies as a set of entity copies such 
that any two quorums on a particular entity must intersect. In general, a weighting 
can be assigned to each copy of an entity. A set of copies of a particular entity is 
a quorum if the sum of the weightings of the copies in the set is more than half 
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the total weighting for the entity. The quorum concept encompasses a broad 
spectrum, ranging from a “primary copy” requirement to a simple majority 
requirement. 

A processing restriction requiring a quorum of the copies of each read and write 
set entity ensures that the last committed value (version) of an entity is always 
accessible. This is sufficient, since the concurrency control method can essentially 
present the illusion that there is only one “logical” site at which the entities are 
stored, hiding the effects of any partitioning that separates the actual sites. 

However, the requirement is not necessary, as it is possible to maintain consis- 
tency even when transactions are allowed to “run in the past,” without access to 
newer entity values. To see why this ability is useful, consider a situation in which 
a site is partitioned from all other sites. The ability to run in the past allows 

queries to execute at the site, even though updating may be taking place in the 
rest of the network. 

Intuitively, any transaction processing restrictions that allow running in the 

past must satisfy the following conditions: 

(a) It must always be possible to determine which of the values of a particular 
entity is most current. 

(b) Any transaction running in the past (using an old entity value) must not be 
directly or indirectly preceded by any transactions that have seen the future 
(have seen the new entity value). 

Condition (a) ensures that after failures are corrected, there is always a well- 
defined order of missing update applications. This well-defined order also ensures 
that our modified definition of + is unambiguous. For condition (b) consider a 
transaction T, that has read an old value of entity x (copy X,4). Owing to our 
modified definition of +, T, precedes the transaction Tl that created the new 
value of X. Formally, condition (b) prohibits the existence of a direct or indirect 

precedence between T1 and T,, (Tl + T2 + - - - + T,), preventing a cycle in the 
+ relation. The detection and prevention of this precedence is the major problem 
in the design of transaction processing restrictions that are necessary to satisfy 
these conditions. Our solution can be intuitively described as requiring Tl to 
“pass” the fact that it could not successfully update xA down the chain of + 
relationships. When this information is received by T,,, T,, must be restarted or 
aborted, since it has read the obsolete entity value. The necessary restrictions on 

transaction processing will now be described in detail. 
First of all, a transaction must precommit a quorum of the copies of each entity 

in its write set. This requirement is necessary since otherwise two different 
updates of an entity could be committed at the same time on disjoint sets of 
copies, causing a cycle in the + relation and violating condition (b). (In some 
concurrency control methods this requirement is also needed to ensure that 
condition (a) can be satisfied.) The remaining restrictions are needed to allow 
identification of read operations that violate condition (b). These restrictions 
require the concepts of missing updates, missing update awareness and missing 
update information. When a transaction Tl cannot update an entity copy because 
of failures, the corresponding update is said to be missing. Tl becomes aware of 
the missing update (acquiring missing update information) when its precommit 
is unsuccessful (the precommit acknowledgment might be timed out as a result 
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of a network partitioning, for example). T1 is required to pass all of its missing 

update information to any other transaction Tz such that Tl -P T2 (a successful 
“pass” is required only if both Tl and Tz are committed at some point). TZ would 
then be under a similar requirement to transfer all of its missing update infor- 

mation (which includes that received from Tl) to each transaction that it 
precedes. The result of this transfer of information, assuming that all transactions 
are eventually committed, is that a transaction T,, such that Tl + Tz + . - . + T,, 
becomes aware of all the unapplied missing updates of which Tl , Tz, . . . , T,,-I are 
aware. (It will be seen in Section 4 that once a missing update has been applied, 
the pertinent missing update information can be discarded.) The crucial final 
point is that a transaction aware of an unapplied missing update for an entity 
copy that it read is prohibited from being committed, satisfying condition (b). 

Missing update information is transferred from transaction to transaction by 
posting it, together with sufficient information to determine to which transactions 
it should be transferred, at network sites. This level of indirection is necessary, 
since a transaction cannot know in advance which particular transactions it will 

precede. All that is known is which database operations will cause such a 
precedence. Consider a transaction Tl that is aware of a missing update. To 
ensure that its missing update information is passed to each transaction TZ such 
that Tl +WR Tz, this information must eventually be posted at each site storing 

a copy of a write set entity. However, since a transaction’s uncommitted updates 
cannot be read, posting need be performed only when the update is committed. 
The commitment of the transaction itself is not affected by this requirement, in 
that it may commit even if some of these sites are inaccessible owing to failures. 

(Recall that a transaction is committed prior to its updates being committed.) It 
need only be ensured that an update is committed only when the necessary 
information has been posted (perhaps as part of a missing update application 
procedure if failures have occurred). 

On the other hand, consider a transaction TZ such that Tl +RW TZ or TI + ww 

Tz. Since T2 must precommit only a quorum of the copies of each of its write set 
entites, T, must post its information at sites storing a quorum of the copies of 
each of its read and write set entities. This must be done before a transaction 
such as Tz performs a conflicting precommit, which, depending on the concurrency 
control method involved, may be before the commitment of Tl . Tl may therefore 
have to post prior to commitment, with commitment conditional on whether its 
posting is performed successfully. The processing necessitated by posting prior to 
commitment and the details of missing update information management are 
presented in Section 4. 

3.2 The Dangling Precommit Problem 

The possibility of site and communication link failures during the 2PC procedure 
is the source of the danglingprecommit problem. Recall that when a site accepts 
a precommit, it is making a pledge to accept an update for the precommitted 
entity copy. The site must then restrict access to the entity copy, in a manner 
depending on the concurrency control method, until a transaction commit or a 
release-precommit arrives. However, if a partitioning occurs, the site may not 
receive a transaction commit or release-precommit within an acceptable time 
period. For example, the transaction’s home site may fall after sending the 
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precommit to the site but before sending the corresponding commit. The parti- 

tioning would probably be detected by the site unsuccessfully attempting to 
communicate with the home site. This communication would be attempted after 
the precommit has been present for some maximum time interval. 

Depending on the form of the partitioning, the site may have no way of telling 
whether to commit the update (apply the precommitted update and remove the 
access restrictions) or reject the update (remove the access restrictions). This is 
demonstrated in the case in which the site is partitioned from all other sites. The 

site cannot commit the update, since the corresponding transaction may have 
been restarted or aborted. It cannot reject the update, since some other site may 
have received a transaction commit. The site has no choice but to continue to 
restrict access to the entity copy. 

The unsolvability of the dangling precommit problem (even through some 
finite length extension of 2PC), in environments where communication link 
failures may occur, has been proved formally by many authors (e.g., Gray [13] 
and Montgomery [20]). In this section, procedures that alleviate this problem 

without significantly impacting performance in the absence of failures are consid- 
ered. 

Suppose that a dangling precommit of a transaction T is left at a site A owing 
to a network partitioning. Consider the three possible environments of A: (1) 

none of the sites in its physical component have received information on the final 
status of T (committed, aborted or restarted), but all of the necessary precommits 
for entity copies stored in this component have been received; (2) at least one 

entity copy in its physical component must be precommitted before T can be 
committed, but such a precommit has not arrived, and (3) at least one site in its 
physical component knows the status of T. 

In the first case, A cannot learn whether T has been committed, and has no 
choice but to continue the access restrictions imposed by the precommit of T. In 
the second case, A can determine that T has not been committed and can reject 
the update. Site A must first ensure that any precommits for T received by the 
affected sites will be rejected. In the third and final case, A can determine the 
status of T and can therefore act accordingly. 

Assuming that these cases can be distinguished (which is demonstrated in 
Section 4), it should be possible to resolve most dangling precommits. For 
example, consider the failure of a site A in an otherwise fault-free network. 

Unresolvable dangling precommits would be left only by those site A transactions 
for which all precommits have been transmitted, but for which no commitment 
(or restart or abort) messages have been transmitted. 

3.3 Maximal Partial Operability 

This section characterizes the highest level of robustness that can be attained 
without significantly impacting performance in the absence of failures, given our 
models of concurrency control and robustness. A concurrency control method 
that attains this level is said to attain maximalpartial operability.’ In Section 4, 

’ This terminology is derived from the term partial operability, which is introduced by Montgomery 

WI. 
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it is shown that maximal partial operability can be attained while preserving 
concurrency control method correctness. 

The restriction that performance not be impacted in the absence of failures is 
reflected in the following assumption regarding the manner in which transactions 
interact. Each transaction is viewed as normally interacting with its environment 

only through database read operations, precommits, and commits. Only when a 
transaction becomes “aware” of failures is it permitted the overhead of additional 
interaction (such as special posting operations). This assumption is central to the 

following assertion, which characterizes maximal partial operability based on the 
previously discussed strategies for dealing with dangling precommits and network 
partitioning. 

ASSERTION 3.1. The following two restrictions on transaction processing 
specify a limit on the robustness level that can be attained against site and 
communication link failures without impacting performance in the absence of 
failures. 

Restriction 1. Suppose that site and/or communication link failures create a 
dangling precommit of a transaction TI at a site A. In addition, suppose that A is 
unable to determine the final status of T1 from the sites in the physical component 
of A and that all of the necessary precommits for entity copies stored in this 
component have been received. The first restriction on transaction processing 
then prohibits the removal of the access restrictions imposed by the dangling 
precommit. 

Restriction 2. The second restriction is on transaction commitment. Each 
transaction T1 is required to have chosen a quorum of the copies of each write set 
entity. If TI is aware of missing updates, a quorum of the copies of each read set 
entity must also have been chosen. T1 may only be committed if the following 
conditions are met: (1) precommits have been acknowledged for each entity copy 
in the chosen write set entity quorums; (2) it has been ensured that any missing 
update information of TI will be transferred to any following transaction TZ (TI 
+ Tz) that reads an update of Tl (T 1 +WR Tz) or that performs a precommit on 
an entity copy in one of the chosen read or write set entity quorums (T, +RW Tz 
or T1 +WW Tz); and (3) there are no unapplied missing updates for any entity 
copy read by TI as far as TI is aware. 

DISCUSSION. Restriction 2 warrants further comment. Condition (1) of Re- 
striction 2 is necessary to prevent concurrent updates of the same entity on 
disjoint sets of entity copies. Consider conditions (2) and (3). The robustness level 
is maximized when only that processing resulting in a cycle in the + relation 
(due to weak entity copy availability requirements) is prohibited. It is a conse- 
quence of our assumptions regarding transaction interaction that + relationships 
can be recognized only by posting (or an equivalent operation). It is important to 
note in this regard that although some transactions may be “aware” of failures, 
many others may not be and cannot, therefore, take part in any special form of 
interaction. Condition (2) is necessary to ensure that posting is carried out 
correctly, while condition (3) is necessary to break detected cycles. 
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One useful measure of a robustness level is the effect of a failure of an arbitrary 
database site on a database system implementing the robustness level. For 

maximal partial operability, the entities made unavailable for updating are those 
for which a quorum was lost. The entities made unavailable for reading by a 

transaction that will generate missing updates are at worst the same as for 
updating. This is also true for any transaction T, such that TI + TZ + . +. + T, 
and missing updates of T1 remain unapplied. For any other transaction, only 
thoses entities for which the last available copy was lost are made unavailable. In 
the Appendix, three simple examples are presented that illustrate how the 
robustness extensions suggested in this paper permit the successful completion of 

transactions that would otherwise be blocked or aborted. 

4. A BASIS FOR IMPLEMENTING MAXIMAL PARTIAL OPERABILITY 

The previous section presented two restrictions to be enforced by the concurrency 

control method. In this section, a basis for the implementation of these restrictions 

is developed and shown to preserve concurrency control method correctness. 
This basis is not unique, in that we make a number of low-level design choices 
which reflect a trade-off between transaction processing ability (although the 

basic restrictions remain the same) and performance in the presence of failures. 
With our design choices each site must maintain information of several types. 

(The quantity of information depends on the number of failures that have 

occurred and the rate of system activity.) The files that must be kept at each site 

are the following: 

(a) a missing-update-postings file that contains posted missing update informa- 
tion; 

(b) a missing-update-value file that contains values of missing updates (needed 

after failure recoveries); 
(c) a transaction-status file that indicates the transaction restarts, aborts, or 

commits of which the site has knowledge; 

(d) a missing-update-applications file that provides a record of the missing 
updates that have been applied at the site. 

The following sections describe the contents of these files in more detail, and the 
manner in which file entries are created, deleted, and transferred from one site to 

another. This description is organized around the basic processing tasks that 
require these files. 

4.1 Transaction Commitment 

Transaction commitment is necessarily more complex in the presence of failures 
than in the basic transaction processing model. This complexity is incurred when 
a transaction is aware of missing updates. Otherwise, commitment is exactly as 
in the basic model. 

The case in which a transaction Tl becomes aware of missing updates for an 
entity copy that it read is illustrated in Figure 1. Consider the case in which TI is 
aware of missing updates, but none apply to any of the entity copies that it read. 
If the concurrency control method under consideration permits the conflicting 
precommit of a transaction TZ where Tl 3RW Tz, to be performed before Tl 
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Context: 
A transaction T1 becomes aware of missing updates for 
an entity copy that it’kead. The site A storing the 
entity copy is required to determine if the missing 
updates have been applied (how this is done will be 
specified in section 4.3). 

Case I - The missing updates have been applied: 

TI can continue processing. As will be seen, the 
properties of the missing update application procedure 
ensure that 7’, must have read the current value. 

Case II - The missing updates have not been applied, and cannot be obtained: 

T, must be aborted. 

Case III - The missing updates have not been applied, but can be obtained: 

T, must be restarted after A has applied the most recent 
of the received updates. 

Fig. 1. The processing necessitated by missing update information for a read 

entity copy. 

For each missing update, the following information is required: 

(1) The entity copy identifier (this identifier is assumed to also 
specify the site at which the copy is stored). 

(2) The identifier of the transaction that produced the missing update. 

(3) A specification of conflicting operations that should cause a 
transfer of (1) and (2) above. Many of these operations can 
be specified implicitly, such as read or precommit operations 
on entity copies that are currently precommitted by the trans- 
action. Each operation is specified by the appropriate entity 
identifier and by a tlag indicating whether only precommits or 
both reads and precommits should cause the information transfer 

Fig. 2. The contents of supplemented missing update information. 

commits, then the missing update information of Tl must be posted at sites 
storing a quorum of the copies of each read set entity before T1 is committed. 
Correspondingly, if the concurrency control method allows a Tl + w TP conflict 
to develop prior to the commitment of Tl, the missing update information must 
be posted at sites storing a quorum of each of the write set entities before Tl is 
committed. In order to minimize the total amount of information transferred, 
each site might record all knowledge it gains of the information posted at other 
sites. 

A missing-update-data message is sent to each site at which posting must be 
performed prior to commitment. This message contains supplemented missing 
update information, as shown in Figure 2. In all the cases where posting is not 
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required until commitment (for example, posting needed to pass information to 
+WR conflicting transactions), any appropriate supplemented missing update 
information may be included in the messages that indicate the commitment of 

7’1. 
Missing-update-data messages require acknowledgment. A site receiving a 

missing-update-data message of T, must ensure that each entity copy on which 
a conflicting precommit is possible has not been precommitted or updated by 
some other transaction that T1 precedes. The procedure for checking this is one 
of the two procedures in the basis that can be specified only within the context 
of a particular concurrency control method. If such a precommit or update has 
been performed, the site includes a copy-lost flag for this entity copy in its 
missing-update-data message acknowledgment (either explicitly or implicitly 
indicated by other information returned). The reception of a copy-lost flag for an 
entity copy or the time-out of an acknowledgment from the site storing the copy 
requires that an alternate copy be selected for quorum membership. If Tl ever 

loses the ability to obtain a quorum for an entity, Tl must be aborted (or restarted 
if it is believed that the failures are transient). Otherwise, Tl is committed when 
it receives the necessary missing-update-data message acknowledgments. 

4.2 Transferring Missing Update Information 

A site stores posted missing update information in its missing-update-postings 

file. This file is organized on the basis of the conflicting operation specifications 
in supplemented missing update information. When a site processes a read or 
precommit operation of a transaction TI, it checks for the presence of missing 
update information that should be transferred to any transaction performing such 
an operation. If present, the site sends back the corresponding missing update 
information with its response to the operation request. It should be noted that 

the missing-update-postings file need be checked only if it is not empty. Also, the 
“granularity” of this file implies, for example, that network failures directly 
affecting only one database application will not impact any other application that 
operates on a disjoint set of entities. 

A site may receive missing update information for an entity copy stored at the 

site. In such a case the site should try to retrieve the appropriate updates using 
the procedures in the next section (if these updates are indeed unapplied). A 
special case occurs when a transaction T is aware of missing updates for an entity 
copy on which a precommit of T has been acknowledged. When t,he site storing 
the entity copy commits the update of T, the missing update information of T 
will have been posted at the site. In this case, even though the site does not have 

the missing update values, it can consider the missing updates as being applied 
just prior to its application of T's precommitted update, since the effect on the 
database is the same. However, in this case the update of T can be applied only 
when it would be permissible to apply a missing update (see the following section). 

4.3 Missing Update Application 

As noted in Section 3.1, it must be ensured that a missing update is applied at a 
site only after the missing update information of the transaction involved has 
been posted at the site. It is the responsibility of the sites at which the entity 
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update has been applied to retain the missing update information, aa well as the 
missing update values, for any sites at which the update may not have been 
applied owing to failures. 

In the commit message sent to a site A by a transaction Z’, H(T) includes the 
identifiers of those sites that failed to acknowledge precommits for the entities 
that will be committed at A. Any missing update information that would normally 
have been sent to these sites is also included. This information is used by A to 
maintain its missing-update-value file. This file stores the entity copy identifiers 

and values of the missing updates, the identifier of T, and the missing update 
information for the sites involved. This information is also stored in the corre- 
sponding file at H(T). Note that the value of a missing update is stored at a site 
only if the site stores another copy of the entity involved or if it, is the home site 

of the transaction that produced the update. A missing-update-value file may 
have more than one value (for different transactions) for a particular entity copy 
identifier. In such a case these values are maintained in the order of reception. 

Suppose that the updates and the missing update information corresponding 
to a particular entity are retrieved from a missing-update-value file at a site B 

and sent to a site A. Assume that some of these missing updates apply to a copy 
of the entity that is stored at A. The missing-update-applications file at A records 
the entity identifier and the transaction identifier of each missing update that 

has been applied at the site. Using this file, A checks to see if the most recent of 
the received updates for the entity copy stored at A has been applied. If it has, A 
instructs B to remove the appropriate entries from its missing-update-value file. 

Otherwise, A should apply the most recent applicable update. Before doing so 
it must ensure either that no uncommitted active transaction has read the old 
entity copy value or that applying the update when such a transaction exists 
cannot cause a cycle in the + relation. The implementation of this last. step is the 
second (and last) basis procedure that can only be specified in the context of a 
particular concurrency control method. Also, if there is any uncertainty about 
the order of application with respect to any precommits held on the entity copy, 
A must. determine the status of the owning transactions. If a transaction with a 
precommit has not yet committed, then its precommit does not affect missing 

update application. If A finds that a transaction with a precommit is committed, 
it will obtain the transaction’s missing update information (see Section 4.4). In 
conjunction with the completeness property of missing-update-value files illus- 
trated in Figure 3, and a corresponding property for the missing update infor- 
mation of a committed transaction, this implies that the order of application of 
the committed precommit can be determined. 

When these steps are completed, A processes the missing update information 
(by adding any necessary entries to its missing-update-postings file), applies the 

most current, update, and adds all those previously unapplied received missing 
updates to its missing-update-applications file. Also, appropriate entries in the 
missing-update-value file at A are created for any sites that have still not applied 
all or some of the received updates for the entity. Site A can then inform B that 

the appropriate entries may be removed from its missing-update-value file. This 

processing is correct in that updates are never applied out of order, because of 
the completeness property shown in Figure 3. 
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The Completeness Property: 

A missing-update-value file contains a missing update of some 
entity copy only if all earlier unapplied missing updates for 
the entity copy are also present. 

This property is due to the following four facts: 

(1) Missing update information must be posted at sites storing a quorum 
of copies of a write set entity prior to acceptance by these sites 
of any later precommits for the entity. 

(2) Precommit acknowledgments contain all applicable missing update information. 

(3) A quorum of the copies of a write set entity must be precommitted before 
the entity can be updated. 

(4) Any two quorums of the copies of an entity must intersect. 

Fig. 3. The completeness property of missing-update-value files. 

Missing updates may be retrieved and applied in two situations. First of all, an 
explicit request may be made for a particular missing update. Such a request 
would be made by a site that has received missing update information that 
pertains to an entity copy that it stores, for which it has no record in its missing- 

update-applications file. This request would be sent to one or more of the other 
sites that store the entity and/or to the home site of the transaction that created 
the missing update. Note that if the home site has no knowledge of the missing 
update, the missing update information was generated by a transaction that was 
restarted or aborted and is invalid. Although this situation is the only one in 

which it is really necessary to apply missing updates, data are kept more current 
by attempting to apply missing updates at other times as well. For this purpose 
each site that has a nonempty missing-update-value file periodically attempts 
communication with the relevant sites. This periodic communication also ensures 
that these files are eventually emptied. Entries must also be periodically removed 
from missing-update-postings and missing-update-applications files. Procedures 

to accomplish this are based on network traversals but are straightforward and 
can be made robust; examples are given in [6]. 

4.4 Dangling Precommit Processing 

The transaction-status file at each site allows the site to answer requests for 
transaction status information. This file records transaction restarts, aborts, and 

commits of which the site has knowledge. For example, if a site received a release- 
precommit message, it would create an entry in its transaction-status file to 
record the fact that the corresponding transaction had been restarted or aborted. 

A transaction commit entry also contains any missing update information 
intended for sites that acknowledge precommits, but that may not have received 
this information (e.g., if the information was sent with a commit message, there 
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A site A receives from a site B a query on the status of 
a transaction T that has left a dangling precommit at B. 
The required processing depends on the status of T at A. 
Site A follows the first applicable case below: 

Case I - There is a commit entry for T in the transaction-status file at A : 

Site A informs B that T is committed. In addition, all of the missing 
update information stored with (or referenced by) the file entry is trans- 
ferred to 8. If this information comes from the missing-update-value 
file (indicating that the precommit acknowledgment was not received by 
H(T)), B must process the dangling precommit as if it were a missing 
update (which it essentially is). Otherwise, B processes any information 
intended for itself and stores the remaining information in its transaction- 
status file when it commits its precommit. This ensures that the precommit 
is committed only after the missing update information of T is posted at B. 

Case II - An entry for T indicates that T was aborted or restarted: 

B is notified of this fact. 

Case III - Each write set entity copy stored at A (of which there is 
at least one) has been precommitted at A: 

B is notified of this fact. 

Case IV - A precommit for a write set entity copy stored at A has 
not been received: 

Site A makes a pledge to B that it will reject any 
precommits for T that it receives in the future. 

Fig. 4. Status query processing. 

may be no guarantee that this message was received). This information is 
contained in the messages that create these entries (such as commit messages 
and responses to requests for missing updates). Since a precommit could be 
received but not acknowledged, transaction commit entries also reference any 
relevant entries in the missing-update-value file. 

When a site has a dangling precommit, it queries the other sites that may be 
aware of the status of the owning transaction. For this purpose, a list of the 
identifiers of these sites is present (either explicitly or implicitly) in each precom- 
mit message. This list would certainly include the identifier of each site storing a 
copy of a write set entity. The processing necessary when a site receives a status 
query is shown in Figure 4. 

On the basis of the received replies to its status queries, a site may or may not 
be able to determine whether its dangling precommit can be committed. If the 
site cannot determine whether the precommit should be committed, it periodically 
attempts additional status queries. It should be clear that this processing imple- 
ments the previously discussed strategies for dealing with dangling precommits. 
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4.5 Correctness of the Basis 

In this section it is shown that a concurrency control method that maintains 
consistency under the requirement that all write set entity copies ‘be precommit- 
ted (in other words, a requirement prohibiting missing updates) will continue to 

maintain consistency after implementing the presented basis for maximal partial 
operability. The following proposition is required for this result. 

PROPOSITION 4.1. Suppose that there exists a set of committed transactions 
{Ti} , 15 i I n, such that Ti + Ti+l(l I i 5 n - 1). If Tl was aware of a missing 
update at the time of its commitment, then either T,, was also aware of this 
missing update when T,, was committed, or the update had been applied by this 
time. 

ARGUMENT. The argument proceeds by induction on n. For n = 1, the propo- 
sition is trivially true. Assume that the proposition holds for n, and consider the 
proposition for n + 1. 

By the inductive hypothesis, either T, was aware of the missing update when 

T, was committed, or the update had been applied by this time. If T,, +RwT~+~ 
or Tn +wT~+I, the proposition holds owing to the rule requiring T,, to post ita 
missing update information at sites storing a quorum of the copies of each read 

and write set entity before any later conflicting precommits are accepted at these 
sites. If T,, -+wRT~+~, the proposition holds, since the commitment, dangling 
precommit processing, and missing update application procedures ensure that an 
update at a site is committed only after the missing update information of the 

corresponding transaction is posted at that site. By induction the proposition is 
now established. Cl 

From this proposition the main result can be derived: 

ASSERTION 4.2. Any concurrency control method that maintains consistency 
when no missing updates are allowed will continue to maintain consistency 
after implementing the presented basis for maximal partial operability. 

ARGUMENT. Suppose, on the contrary, that there exists a set of committed 
transactions {Ti}, 1 I i I n, such that Ti + Ti+l (1 5 i I n - 1) and T,, + TI. 

Since the concurrency control method maintains consistency when no missing 
updates are allowed, one of these conflicts must have arisen owing to a missing 
update. Without loss of generality, assume that T1 read an entity copy that 
missed an update of Tz. 

Since the basis prohibits the application of a missing update while any trans- 
action that read the old value is active (if this application could cause a cycle in 
the + relation), the missing update must have been unapplied up to the time Tl 
was committed. By Proposition 4.1, this implies that Tl was aware of the missing 
update when it was committed. As this is a contradiction to the rules of Figure 4, 
the assertion is shown. Cl 

5. AN APPLICATION TO A DISTRIBUTED LOCKING METHOD 

This section illustrates the application of the presented basis for maximal partial 
operability to a distributed locking method. In Section 6, application to a 
concurrency control method that utilizes timestamps is considered. It should be 
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realized that the basis can be applied to a wide variety of other methods, as is 
further illustrated elsewhere [6]. 

5.1 The Basic Method 

Distributed two-phase locking (distributed 2PL) is based on the wound-wait 
concurrency control method of Rosenkrantz, Stearns, and Lewis [22], and on the 
distributed 2PL method as described by Bernstein and Goodman [3]. More 
complex enhancements of this method are possible [6, 25, 271; our particular 
choice is based on the suitability of the method as an example. 

In this method, a transaction wishing to perform a read operation on an entity 
must obtain a read lock on a copy of the entity granting permission. A transaction 
wishing to perform a write operation must obtain write locks on all of the entity’s 
copies. Write locks are said to conflict with read and write locks in the sense that 
two conflicting locks of different transactions are not allowed on the same entity 

COPY. 
A transaction is well formed if it obeys these locking rules and if it eventually 

releases all of its locks. It is two phase if no lock requests occur after the first lock 
release [7]. In our transaction processing model, write lock requests may be 
carried implicitly by precommit operations. Similarly, read lock requests may be 

carried implicitly by database read operations. Commit operations serve to release 
all of a transaction’s locks at the receiving sites. For those sites at which a 
transaction read, but did not write, explicit read-lock-release messages are 
required. As shown by Eswaran et al. [7], a concurrency control method that 
requires all committed transactions to be well formed and two phase maintains 
consistency. 

To complete our description of distributed 2PL, the problem of deadlock must 
be considered. To prevent deadlock, each transaction has an associated priority. 
As the age of a transaction increases, its priority increases relative to that of other 
currently executing transactions. Distributed 2PL prevents deadlock by ensuring 

that transactions essentially only wait for transactions of higher priority. When 
a lock request of a transaction conflicts with existing locks held on the entity 
copy, the transaction waits only if its priority is lower than that of one of the lock 

holders. Otherwise, a wound message is sent to the home site of each of the lock 
holding transactions. If a transaction that is not already committed is “wounded,” 
it is restarted, and messages are sent to release all of the transaction’s locks. If 
the transaction is already committed, it does not require any additional locks, 
and its locks are, in fact, in the process of being released. A proof that this priority 
system guarantees that each transaction is eventually either committed or 
aborted (possibly after a number of restarts) is given by Rosenkrantz, Stearns, 
and Lewis [22]. 

5.2 The Robustness Level of the Basic Method 

Before attempting any modification of distributed 2PL, the robustness level of 
the basic method should be considered. This robustness level is illustrated by the 
effect of a site failure in a system using basic distributed 2PL. Such a failure 
makes unavailable for updating all of the entities with copies at the site, as well 
as all of the entities for which copies were precommitted or read-locked by 
transactions executing at the site at the time of the site failure. Any entities 
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Execution Sequence 
(with a missing update) 

T, and T2 both read x,., and yB 
A partitioning separates H(T,) from A 
T, writes x, missing copy at A 
T, commits, releases locks 
T, writes y, commits 

(a) 

Execution Sequence 

Fig. 5. The limitations of basic distributed 2PL. 
(with a release of a dangling read lock) 

T, and Tz both read x, and yB 
A partitioning separates H (TJ from A 
The read lock of T2 on x,., is released by 

A due to the partitioning 
T, writes x 
T, commits, releases locks 
T, writes y, commits 

(b) 

In both (a) and (b) 
T,- T, due to a conflict on y 
TpT, due to a conflict on x 

whose only available copies were either stored at the site or weie precommitted 
by transactions executing at the site are made unavailable for reading. 

Basic distributed 2PL does not attain maximal partial operability for three 
reasons: (1) missing updates cannot be allowed (see Figure 5a); (2) there are no 
procedures to resolve dangling precommits; and (3) dangling read locks (read 
locks that cannot be released by the owning transactions owing to network 
partitioning) cannot be released by the affected sites (see Figure 5b). 

5.3 Robustness Modifications 

Before describing the details of our robustness modifications, a few general 
remarks will be made here about the application of the concepts of the previous 
section to distributed 2PL. Perhaps the most significant point is that most of the 
material presented (e.g., dangling precommit processing), is truly independent of 
the concurrency control method involved. For this reason the majority of our 
robustness modifications entail a straightforward application of the basis for 
maximal partial operability and are not described further. Our modifications to 
transaction commitment, on the other hand, depend in part on when conflicting 
operations can be performed and therefore need further specification once a 
context has been fixed. In addition, there were two procedures left unspecified in 
the basis: (1) a procedure to check for later precommits or updates upon reception 
of a missing-update-data message (see Section 4.1), and (2) a procedure required 
in missing update application to check for the presence of an active transaction 
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that read an entity copy (see Section 4.3). Finally, procedures to allow the release 
of dangling read locks also need to be discussed, as these must be present if 
distributed 2PL is to attain maximal partial operability. These procedures are 
not considered in the basis, since read operations do not impose access restrictions 

in a significant number of proposed concurrency control methods. 
Consider the processing required when a transaction T wishes to commit. If T 

is unaware of any missing updates, it is committed exactly as before. The 

robustness modifications to distributed 2PL do not significantly degrade method 
performance in the absence of failures. Consider the case in which T is aware of 
missing updates. In robust distributed 2PL, dangling read locks may be released, 
but write locks cannot be released before transaction status is known. Only 
precommits that conflict with a read operation (as opposed to a precommit) of T 
can be performed before T commits. Due to this fact, H(T) must transmit a 
missing-update-data message to a site A only if A stores a quorum copy of an 

entity that was read but not written. The additional required posting can occur 
when the updates of T are committed. 

Each site A that receives a missing-update-data message must ensure that each 
read set entity copy has not been precommitted or updated by some other 

transaction that T precedes. In robust distributed 2PL, A returns sufficient 
information in its missing-update-data message acknowledgment to enable H(T) 
to make this check itself. This information consists of any entries for the read set 
entity copies that are found in A’s missing-update-postings file, as well as the 
identities of any precommits that exist on these entity copies. This information 
is utilized as shown in Figure 6. In this figure it is assumed that acknowledgments 

have been received from a sufficient set of sites to form the necessary quorums. 
The last basis feature that will be considered is the missing update application 

procedure. In this procedure, a missing update can be applied only after it is 

ensured either that no uncommitted active transaction has read the old entity 
copy value, or that applying the update when such a transaction exists cannot 
cause a cycle in the + relation. In robust distributed 2PL it is first necessary to 

check whether the entity copy is read locked. If it is, application of the update is 
postponed until the read lock is released by the transaction or by the site. If the 

entity copy is not read locked, a check must be made for any “recent” (since the 
last update of the entity copy) releases of dangling read locks held on the entity 
copy. If such releases exist, the update cannot be applied until the site learns that 
the owning transactions have been committed (or restarted or aborted). If such 
releases do not exist, either no uncommitted active transactions have read the 
entity copy, or applying the update when such a transaction exists cannot cause 
a cycle in the + relation. This last method characteristic is due to the procedures 
for releasing dangling read locks. 

Dangling read locks have different properties than do dangling precommits. In 
the case of a dangling read lock it is not necessary to know whether the owning 
transaction is committed or whether it had to be restarted or aborted. It is only 
necessary to know whether a cycle in the + relation would arise by releasing the 
lock. 

Consider the situation in which a site A decides to time out a read lock of a 
transaction T due to suspected failures. Presumably A has unsuccessfully tried to 
communicate with H(T) to determine the status of T. The read lock at A is 
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Precommit Checking (for a transaction T): 

If a precommit exists on a read set entity copy of T, three cases 
can be distinguished: 

(1) The precommit corresponds to missing update information that 
T received through missing-update-data message acknowledgments. 

(2) The precommit is a dangling precommit left by the transaction 
that created the entity version read by T. 

(3) The precommit belongs to a transaction that 7’ precedes. 

In the first case, the application procedures of section 4.3 may be 
followed. The processing of T is not impacted. H(T) may query 
the necessary sites to distinguish between the last two cases, or 
may assume the worst case, namely that the precommit belongs to 
a transaction that T precedes. 

Update checking: 

One of the read set entity copies of 7’ has been updated to a later 
version if and only if T received a missing-update-data message 
acknowledgment that contained one of the following: 

(1) Missing update information for an entity copy read by 7’ 

(2) Information indicating that one of T’s read locks 
has been released (due to the dangling read lock 
release procedure). 

Fig. 6. Checking for a later update or precommit in robust distributed 2PL. 

removed and an entry is placed in the missing-update-postings file at A. This 
transaction entry, to be transferred to transactions that precommit the entity 
copy that was read locked, contains the identifier of T instead of a missing update 
identification. A transaction entry is passed from transaction to transaction as is 
missing update information. If a transaction becomes aware of an entry for itself, 

it must be restarted. Dangling read lock processing is illustrated in Example 3 in 
the Appendix. 

5.4 The Correctness of Robust Distributed 2PL 

Robust distributed 2PL attains maximal partial operability, since (1) dangling 
precommits are resolved to the extent possible under maximal partial operability, 
(2) transactions may be executed and committed as long as the entity copy 
availability requirements under maximal partial operability are satisfied, and (3) 
no other restrictions on transaction processing are induced by site or communi- 
cation link failures (e.g., dangling read locks may be released). As it is clear that 
each transaction is eventually either committed or aborted, as in basic distributed 
2PL, only the following assertion is required to demonstrate correctness: 

ACM Transactions on Database Systems, Vol. 8, No. 3, September 1983. 



Achieving Robustness in Distributed Database Systems * 375 

ASSERTION 5.1. Robust distributed 2PL maintains consistency. 

ARGUMENT. Suppose, on the contrary, that the use of robust distributed 2PL 
resulted in a set of committed transactions (Ti} , 1 I i I n, such that Ti + Ti+l 
(1 5 i 5 n - 1) and T,+ Tl. 

By Assertion 4.2, the basis implementation cannot be responsible for the 
inconsistent execution history. Since the only other modification is the dangling 
read lock release procedure, this procedure must be responsible. Assume, without 
loss of generality, that the Tl + TZ conflict arose owing to the updating by T2 of 

an entity copy after the release of a dangling read lock held by Tl. 
If this updating had been performed by the missing update application proce- 

dure, Tz would have been aware of a missing update for an entity copy read by 

T1. Also, note that the read lock release would have been “recent” when the 
missing update was applied. By the properties of the missing update application 
procedure, T, must have been committed before this updating was performed. By 
Proposition 4.1, Tl would have been aware of the missing update. This is a 
contradiction. 

Now consider the alternative possiblity, in which T2 obtained a precommit 
acknowledgment for the entity copy. Our dangling read lock release procedures 
then ensure that TZ was made aware of a transaction entry for T1. Since 

transaction entry information is passed from transaction to transaction, in much 
the same way as missing update information is passed, a result analogous to 
Proposition 4.1 holds. This result implies that 7’1 was aware of the transaction 
entry for itself when it was committed. As this is a contradiction, the assertion is 

shown. Cl 

6. AN APPLICATION TO A TIMESTAMP ORDERING METHOD 

6.1 The Basic Method 

Basic Timestamp Ordering (basic Tf 0) is based on a similarly named method 
of Bernstein and Goodman [3]. In this method each home site assigns each of its 
transactions a unique timestamp. Timestamps need have no relation to physical 
time, although it is assumed that they are generated at each site in increasing 

order. The timestamp of a transaction T is denoted by TS(T). 
Basic T/O also requires a read and a write timestamp to be present on each 

database entity copy. After a “sufficiently long” period without access, an entity 
copy’s explicit timestamp may be discarded and replaced by an implicit timestamp 
with value greater than or equal to its former explicit value. By comparing 
transaction timestamps and entity copy timestamps before performing operations, 
the concurrency control method can verify that conflicting operations are being 
performed in timestamp order. If such a comparison reveals that an operation 
cannot be processed so as to preserve timestamp order, the operation is rejected. 
The corresponding transaction must then be assigned a new timestamp and 
restarted. Basic T/O rarely delays operations, unlike many other timestamp- 
based concurrency control methods, but instead relies on transaction restarts. 

The processing of read, precommit, and commit operations are now specified 
in greater detail. First of all, consider a precommit of a transaction T for an entity 
copy xA . If the read timestamp of XA is greater than TS( T ), the precommit is 
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rejected, since conflicting operations should not be processed in nontimestamp 

order. Otherwise, the precommit is accepted. Note that in basic T/O, unlike the 
situation in distributed 2PL, an entity copy may have several outstanding 

precommits. 
When a read operation of T for an entity copy XA is received, the write 

timestamp of XA is compared to TS(T). If the former is greater, the read is 
rejected. Otherwise, the timestamps of any outstanding precommits on xA are 

checked. If there is an outstanding precommit with timestamp less than TS(T), 
the read request is queued. This action is necessary, since the precommitted 

update must be applied in timestamp order with respect to any conflicting read 
operations. If no such precommit exists, the read is processed and the read 
timestamp of xA is updated to the maximum of its current value and TS(T). 

Finally, consider the reception of a commit of T at a site A. Assume that a 
precommit of T exists on an entity copy XA. If the write timestamp of xA is greater 
than TS(T), the value of xA is not updated. Note that this action processes the 
update so as to preserve a timestamp ordering of conflicting operations. If the 
write timestamp of %A is less than TS( T), any precommits with timestamp less 
than TS( T) are essentially discarded. This processing is correct owing to the fact 
that the corresponding updates will never be applied. The value of xA is then 
updated, and the write timestamp of xA updated to TS(T). Finally, any read 

requests queued for XA are reevaluated, using the same rules as those applying to 

arriving reads. 
Basic T/O always processes conflicting operations so as to preserve timestamp 

order. Therefore, the result of processing a set of transactions is the same as if 

they were processed sequentially in timestamp order. Basic T/O maintains 
consistency. To guarantee that each transaction is eventually either committed 
or aborted, a randomized increment may be applied to the timestamp of a 

restarted transaction. 

6.2 The Robustness Level of the Basic Method 

The robustness level of basic T/O is illustrated by the effect of a site failure in a 
system using basic T/O. Consider only those transactions that have a larger 
timestamp than that of any transaction that was executing at the site at the time 

of the failure. The entities made unavailable for updating are then all of the 
entities with copies at the site, as well as all of the entities that are made 

unavailable for reading. The entities made unavilable for reading are those 
entities whose only available copies were either stored at the site or were 
precommitted by transactions executing at the site. 

Note that the dangling precommit problem is partly “solved” in basic T/O, in 
that many dangling precommits can essentially be discarded (in the sense that 
their imposed access restrictions become redundant). This is illustrated in Figure 
7a. However, basic T/O cannot resolve all theoretically resolvable dangling 
precommits, since there is no mechanism to link the absence of a precommit on 
one entity copy to a resolution of a precommit on a copy of a different entity. 

Basic T/O does not achieve maximal partial 0perabilit.y. This is due to the fact 
that missing updates cannot be allowed (see Figure 7b), and due to the limitations 

on dangling precommit resolution. 
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Execution Sequence 
(discarding a dangling precommit) 

(TS(T,) = nl 

T, leaves a dangling precommit on xA , 
but successfully updates xB 

T2 reads xB, obtains precommits on 
all copies of x 

When T2 commits its update of x, , the 
precommit of T, will be effectively 
discarded 

(a) 

Fig. 7. The limitations of basic T/O. 

Execution Sequence 
(with a missing update) 

(TS(T,) = n] 

T, and T2 both read x, and yB 
A partitioning separates H ( TI) from A 
T1 writes x, missing copy at A 
T1 commits 
T, writes y, commits 

T,+ Tz due to a conflict on y 
T2+ T, due to a conflict on x 

(b) 

6.3 Robustness Modifications 

Only those basis features that need further specification in the context of basic 
T/O are discussed. First of all, note that commitment is performed exactly as 
before for those transactions that are not aware of any missing updates. In a 
failure-free environment the robustness modifications to basic T/O induce no 
significant performance overhead. Consider the commitment of a transaction T 
that is aware of missing updates. Unfortunately, owing to the absence of locking 
in basic T/O, T must post its missing update information prior to commitment at 
sites storing a quorum of the copies of each of its read and write set entities. 

Each site A that receives a missing-update-data message must ensure that each 
relevant entity copy has not been precommitted or updated by a transaction that 
T precedes. For a write set entity this is quite simple. It is only necessary to 
compare the timestamp of T to the write timestamp of the entity copy and the 
timestamps of any other outstanding precommits. 

Consider the detection of a conflicting operation on a read set entity that was 
not updated. To facilitate this detection, each missing-update-data message 
includes the write timestamps of the read set entity copies read by T. Due to the 
fact that updates are always processed to preserve timestamp order, it is only 
necessary to compare the timestamps in the missing-update-data message with 
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the entity copy write timestamps and the timestamps of any outstanding precom- 

mits. This action is sufficient to detect a precommit or update of a transaction 

that T precedes. 
The last basis feature that is discussed is the missing update application 

procedure. In this procedure, a missing update can be applied only after it is 
ensured either that no uncommitted active transaction has read the old entity 

copy value or that applying the update when such a transaction exists cannot 
cause a cycle in the + relation. Unfortunately, in basic T/O there is no simple 
way to recognize the existence of such a transaction. 

One possible solution will be described here. Each commit message from a site 

A includes the minimum timestamp value of any uncommitted transactions 
executing at A (or the current “time” if there are no such transactions). This 
information is added to the receiving site’s transaction-status file. In conjunction 
with entity copy read time&amps (or a log of database operations), the extended 
transaction-status file enables each site to recognize the possible existence of 
active transactions that read some entity at the site. When missing update 
application is blocked by such a possibility, the site should query the relevant 
sites and postpone applying the missing update until learning that any applicable 

transactions have been committed (or restarted or aborted). 
An additional aspect of the missing update application procedure should also 

be noted. Recall that in our basis a site checks its missing-update-applications 
file to determine if a missing update has already been applied. Since updates are 

always processed so as to preserve timestamp order, and since each entity copy 
has a write timestamp, this file is not required in robust basic T/O. It is only 
necessary to check the write timestamp of the entity copy to be updated. 

6.4 The Correctness of Robust Basic T/O 

Since no modifications other than the basis implementation were made to basic 
T/O, robust basic T/O maintains consistency by Assertion 4.2. Also, the robust- 
ness modifications do not impair the ability of basic T/O to ensure that each 

transaction is eventually either committed or aborted. However, it should be 
noted that a missing update is not, in general, processed in timestamp order with 
respect to the read operations performed on the entity copy. The result of 
processing a set of transactions may be the same as a sequential ordering different 
from timestamp order. 

7. CONCLUSIONS 

It has been demonstrated that a high level of robustness ag‘ainst site and 
communication link failures can be attained by a concurrency control method 
without significantly impacting performance when failures are infrequent. When 
failures do occur, each site must accumulate information in several files in order 
to safely proceed in the presence of missing updates. In an active distributed 

database system partitioned by failures, these files could grow quite rapidly. 
However, this must be accepted as the price of a high robustness level. 

Our results also have implications for concurrency control method performance 
analysis. Performance evaluations for environments in which failures are rela- 
tively rare need only consider basic methods, even if the methods would actually 
be enhanced when implemented to provide a high robustness level. The separa- 
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tion of robustness considerations from performance evaluation adds further 
credibility to the previous and ongoing performance studies (e.g., [8,9, 11, 18, 211 
that have for the most part considered concurrency control methods that lack 
robustness. However, it should be noted that the relative performance of a set of 
concurrency control methods that attain maximal partial operability may differ 
according to the frequency of failures. Performance evaluations for environments 

in which failures are relatively frequent should therefore consider concurrency 
control methods that have been enhanced to provide a high robustness level. 

Distributed database concurrency control methods that attain a high robust- 
ness level are likely to be of significant practical benefit. Although one is usually 
safe in assuming that failures will be rare in a centralized database system, in a 
large distributed system an inoperative site would likely be commonplace. In 

many applications it is essential that processing continue in the presence of such 
failures. 

APPENDIX 

Three examples that illustrate the operation of concurrency control methods 
modified to achieve maximal partial operability are presented. In these examples 
a nonrobust method (such as nonrobust distributed 2PL or basic T/O) could not 
successfully execute any of the transactions treated. The distributed database 
shown in Figure 8 is a common context. 

Example 1. Posting Missing Update Information. After the partitioning oc- 
curs, a transaction T1 is initiated at site 3. T1 wishes to read entities u and z and 
update entity z. In a method achieving maximal partial operability, it may do so, 
even though the update for entity copy z1 cannot be initially performed. Missing 
update information for entity copy z1 is posted at site 3 (to be transferred on a 
read or precommit of 23 or a precommit of us) and at site 2 (to be transferred on 
a read or precommit of ~2). Entries in the missing-update-value files at sites 2 and 
3 are created for 21. 

Example 2. Dangling Precommit Processing. Suppose that before the parti- 
tioning occurred, a transaction initiated at site 1 precommitted all the copies of 
entities x and y. However, the commit for site 2 was received before the 
partitioning, while that for site 3 was not. After the partitioning, a transaction TZ 
initiated at site 3 wishes to read ~3. However, suppose that it is blocked by the 

dangling precommit (this will always occur in distributed 2PL; in basic T/O it 
would occur if the timestamp of TZ is larger than the timestamp of the transaction 
that produced the dangling precommit). Precommits are required to specify 
(either explicitly or implicitly) the sites that will learn the final transaction status. 
Therefore, site 3 has sufficient information to recognize that site 2 should be 
queried. When site 2 informs site 3 that the transaction in question has been 
committed, site 3 can safely commit its precommitted update, allowing T2 to 

proceed. 

Example 3. Dangling Read Lock Processing. (This example is relevant only to 
distributed 2PL.) Suppose that when the partitioning occurred, a read lock of a 
transaction initiated at site 1 was still outstanding on entity copy VP. A transaction 
T3 initiated at site 2 wishes to read and update ~2, but is blocked by the dangling 
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partitioning 

entity copies 

x’. 
YI 
Zl 

copies 
l 

X2 

v2 
22 

Site 3 

(in the case of two entity copies, a ‘*’ denotes that copy necessary and 
sufficient for a quorum; otherwise, a quorum is a simple majority) 

Fig. 8. A distributed database partitioned by a failure. 

read lock. After site 2 has timed out the read lock, it is discarded, and a transaction 
entry is created in the missing-update-postings file at site 2 (to be transferred on 
a precommit of v2). T3 can now proceed successfully. The transaction entry is 
passed to T3, which posts it at site 3 again (to be transferred on a read or 

precommit of ~2). 
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