
Achieving stable human stem cell engraftment and survival in

the CNS: is the future of regenerative medicine

immunodeficient?

Aileen J Anderson1,2,3,4,†, Daniel L Haus1,3,*, Mitra J Hooshmand1,2,3,*, Harvey Perez1,5,*,

Christopher J Sontag1,2,3,*, and Brian J Cummings1,2,3,4

1Sue & Bill Gross Stem Cell Center, 845 Health Science Road, UC Irvine, Irvine, CA 92697-1705,

USA

2Institute for Memory Impairments & Neurological Disorders, 2642 Biological Sciences III, UC

Irvine, Irvine, CA 92697-4545, USA

3Department of Anatomy & Neurobiology, 364 Med Surge II, UC Irvine, Irvine, CA 92697-1275,

USA

4Physical Medicine & Rehabilitation, UCI Medical Center, 101 The City Drive, Bldg 53, Orange,

CA 9286, USA

5CIRM Stem Cell Research Biotechnology Training Program, California State University Long

Beach, 1250 Bellflower Blvd, Long Beach, CA 90840, USA

Abstract

There is potential for a variety of stem cell populations to mediate repair in the diseased or injured

CNS; in some cases, this theoretical possibility has already transitioned to clinical safety testing.

However, careful consideration of preclinical animal models is essential to provide an appropriate

assessment of stem cell safety and efficacy, as well as the basic biological mechanisms of stem

cell action. This article examines the lessons learned from early tissue, organ and hematopoietic

grafting, the early assumptions of the stem cell and CNS fields with regard to immunoprivilege,

and the history of success in stem cell transplantation into the CNS. Finally, we discuss strategies

in the selection of animal models to maximize the predictive validity of preclinical safety and

efficacy studies.
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Stem cell treatments for neurological disease and injury: animal models

The loss of cells of the CNS is a hallmark of neurological disorders and traumatic neural

injury, such as Parkinson’s disease, Huntington’s disease, Alzheimer’s disease, multiple

sclerosis, amyotropic lateral sclerosis, spinal cord injury (SCI), traumatic brain injury and

stroke. Currently, there are very few therapeutic interventions to ameliorate these conditions

in the human patient population. However, stem cell therapy has potential to provide

methods of repairing, regenerating or protecting the damaged CNS. Successful efficacy

using human stem cells in animal models has already led to multiple human clinical trials

[1–3], which have been sponsored by several sources (Geron, StemCells, Inc., and

Advanced Cell Technology).

A stem cell is a cell that possesses the ability to both self-renew and differentiate into

multiple cell types. Embryonic stem cells are pluripotent, capable of differentiating into all

cell types of the body [4]. Recent advances in the stem cell field have resulted in the

development of induced pluripotent stem cells reprogrammed from somatic cells, which

have been shown to have a remarkably similar fate potential to embryonic stem cells [5].

Proceeding down the lineage tree of development, later stem cell populations become more

restricted to the tissue from which the cells were derived. For example, neural stem cells of

the CNS have a restricted fate potential and are capable of only differentiating into neurons

and glia [6]. For the purposes of our review of the neurological disease and injury literature

(Tables 1–11), we will focus on human embryonic, fetal and adult-derived cells, in

particular highlighting the issues associated with neurotransplantation of these populations.

Transplantation of stem cells into the diseased or injured CNS allows a unique replacement

therapy not afforded by pharmacological therapeutics. Stem cells can provide benefit by

differentiating and integrating into the host to restore functional and behavioral deficits that

result from the loss of host CNS cells [2,7,8]. However, stem cells can also provide trophic

support or deficient factors to the host tissue, reducing cell loss or potentially promoting host

regeneration/plasticity mechanisms to restore function [9,10]. In some cases, the benefits of

stem cell transplantation may derive from the short-term neurotrophic/neuroprotective

effects during the acute phase postinjury/transplantation. However, the risk: benefit ratio of

a cellular therapeutic that is neurotrophic/neuroprotective in nature in a human clinical

population may not be advantageous due to increased risk factors to the patient deriving

from this method of delivery. These may include tumorigenesis and graft rejection. This is

especially true when alternatives that offer similar mechanistic recovery are available, such

as conditioned media, neutralizing antibodies, or neuroprotective pharmacological

approaches. Thus, we focus here on mechanisms of action in which long-term stem cell

engraftment and survival are of critical importance to the regenerative medicine field.

The goal of this review is to broadly look at the role of the choice of animal models in

testing proof of concept and safety for the clinical translation of stem cell transplantation

strategies, with a particular focus on the CNS. We discuss the available animal model

systems for stem cell transplantation into the diseased or injured CNS, identify and discuss

key criteria for engraftment and cell survival that should be considered in the experimental

setting in the evaluation of efficacy and/or safety studies, and review a brief history of the

animal models selected by different arms of the regenerative medicine field. Finally, we

review the existing CNS stem cell transplantation literature in the context of cell

engraftment and survival criteria, summarizing findings in the field of regenerative medicine

and addressing the critical need for more refined criteria of success in animal models

utilizing xenotransplants.
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Transplantation paradigm & predictive preclinical models

The success of laboratory and clinical transplantation is largely defined by the

immunological compatibility between donor and host tissue/cells. Autografts are transplants

where the donor tissue comes from the recipient. A common example of an autograft is

when skin or bone is taken from one part of a patient’s body to reconstruct another [11].

Syngeneic transplants, or isografts, are those in which the donor and recipient are either

genetically identical or sufficiently identical to allow for complete immunological

compatibility. An example of syngeneic graft is a kidney transplant between identical twins

[12]. Allografts are transplants where the donor and recipient are nongenetically identical

members of the same species. Differences in MHC antigens, specifically HLA in humans,

determine the successful integration of the graft. In the clinical setting this is a complicated

issue, as HLA/androgen-binding proteins match stringency can be dependent on the organ/

tissue transplanted. However, it is known from organ transplant research that MHC matches,

or near matches, reduce the likelihood of graft rejection [13]. Regardless of the level of

histocompatibility, immunosuppression is required to overcome the immune response

against alloantigens. Finally, a xenograft is a transplant in which the donor and recipient are

from different species. Transplantation between closely related species, such as mice and

rats, is classified as a concordant xenograft. Transplantation between distantly related

species, such as humans and rodents, is classified as a discordant xenograft. The level of

immune response, and hence the risk of an immunorejection response, increases in

magnitude when moving from an autologous transplant, to a syngeneic transplant, to a

matched allograft, to a near-matched allograft, to an unmatched allograft, to a concordant

xenograft and finally to a discordant xenograft (Figure 1). Therefore, the type of

transplantation paradigm is a crucial factor in establishing a clinically relevant model system

for stem cell therapy.

Informative model systems that have good predictive value of the human clinical

transplantation setting are necessary to increase the chances of success in translating

advances in stem cell therapy of neurological diseases from bench to bedside. From a stem

cell transplantation perspective, there are two major components of a model system: the host

species in which the neurological disease is being studied and the host species from which

the stem cells are derived. Clearly, from both an ethical and regulatory standpoint, human

subjects are not an appropriate starting point for testing stem cell therapies. However, there

are a wealth of animal models that closely mimic some of the pathological and behavioral

deficits associated with different neurological disorders and types of neurotrauma. While

some groups have performed experiments in larger animal models such as nonhuman

primates [14–16], the vast majority of preclinical research using human stem cells is

conducted in rodent models due to the lower cost, lack of nonhuman primate models of

neurological disease and injury (versus the abundance of transgenic/knockout mice), and

difficulty of achieving adequate immunosuppressive regimens in nonhuman primates. In

fact, the latter may be such a significant barrier that, in many cases, stem cell transplantation

into nonhuman primate models cannot practically be employed to inform clinical translation.

For the purposes of this article, we will focus on rodent models of neurological disease and

trauma.

If we accept rodent models as the basis for the study of neurological disease/trauma, what is

the most appropriate stem cell source: human stem cells or animal stem cells? A large

advantage to using specifically rodent stem cells for preliminary proof-of-concept studies is

that researchers can perform syngeneic or allotransplants, which can bypass many of the

immunological hurdles of xenografts and more closely mimic some aspects of the clinical

setting (i.e., matched human tissue grafted into a human patient). However, while nonhuman

cells can provide preliminary proof-of-concept data, the proposed population of human cells
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should be tested in preclinical studies for regulatory submission in optimal and appropriate

animal models. Furthermore, long-term safety data must be established using the clinical

grade of stem cells in the target tissue and in potentially both naive and disease/injury

conditions. Consequently, there is a need in the regenerative medicine field for preclinical

model systems with good predictive value; this need necessitates the use of human stem

cells.

In the case of a discordant xenograft, such as human stem cells into a mouse host, the main

hurdle is avoiding or sufficiently minimizing the rejection response by the host immune

system in order to achieve successful engraftment and survival of the transplanted human

stem cells. Moreover, the presence of an active immunorejection response itself may

significantly alter the efficacy, and critically, the safety profile of the cell therapy candidate.

In this regard, a valid assessment of the safety profile can be argued to be particularly

dependent on conditions that enable or encourage maximal theoretical engraftment and cell

survival. In the absence of maximal theoretical engraftment conditions, a valid analysis of

the tumorigenic potential of a cell therapy candidate may not be possible. An example of

this would be the failure to develop teratomas after embryonic stem cell transplantation into

immunocompetent versus immunodeficient hosts [17,18]. By employing animal models that

recapitulate the key elements of human pathogenesis, permit sensitive evaluation of disease-

modifying activity and permit successful engraftment and long-term survival of transplanted

human stem cells, researchers can improve the predictive validity of preclinical safety and

efficacy studies, and the likelihood of success of translation to clinical trials.

Lessons learned from tissue, organ & hematopoietic grafting

Recognition of the difficulty of achieving significant long-term engraftment and survival

after transplantation is not new; by contrast, it is an issue grounded in the history of skin and

organ grafting, which provided the foundations for our understanding of immunological

tolerance, as well as the trial-and-error history of hematopoietic cell transplantation [19,20].

Although now regarded as a clinically-acceptable therapy for leukemia, the evolution of

hematopoietic cell transplantation spans half a century and culminates in the conclusion that

addressing the multidimensionality of the immune response is critical in order to achieve

successful cell engraftment and survival.

Human hematopoietic cell transplantation originated from a number of preliminary animal

experiments that demonstrated the importance of histocompatibility between donor and host.

Murine studies have shown that successful engraftment of allogeneic marrow cells could

trigger an immune reaction against the host [21] (reviewed in [22]), now termed graft-

versus-host disease and known to be mediated by T cells derived from donor tissue.

Critically, the severity of the immune reaction was regulated by genetic factors [23].

Successive animal experiments revealed the importance of histocompatibility between donor

and host tissue [24–29]. These data suggested that T-lymphocyte-mediated immune

responses could be triggered as a result of MHC mismatch. Accordingly, subsequent

experiments employing methotrexate [26] and cyclophosphamide [30], both of which

attenuate T-cell responses, achieved more favorable outcomes in animal models of bone

marrow transplantation. However, the success rate in translating these advancements for the

treatment of human leukemias via hematopoietic cell transplantation remained low [31].

Conversely, hematopoietic cell transplantation in cases where patients exhibited severe

combined immunological deficiency [32–34] resulted in high levels of engraftment, and in

some cases, patient survival for more than 25 years [35]. With the discovery of a

spontaneous mutation in mice leading to a similar form of severe combined

immunodeficiency (SCID) [36], efforts were undertaken to recapitulate the human findings

in this new mouse model. Approximately 5 years later, Mosier and colleagues performed the
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first successful hematopoietic stem cell xenograft using the recently discovered

immunodeficient SCID mouse, in which the human hematopoietic stem cell engrafted

successfully and constituted long-term repopulation of the mouse immune system [37]. As a

result of this and later experiments using immunodeficient models developed to target

multiple components of immunorejection (see later), the use of immunodeficient animals in

the field of hematopoietic stem cell transplantation permitted increased engraftment, cell

survival and rapid advancement of knowledge in this area [38–40].

Mechanisms of allogeneic & xenogeneic rejection

Based in large part on work in the hematopoietic cell transplantation field, the role of T

lymphocytes in immunorejection has become much better understood over the past 50 years.

T-cell activation is dependent on the recognition of MHC class I and II antigens. MHC I is

expressed on almost all cells, while MHC II is generally expressed in association with

antigen-presenting cells (APCs), including dendritic cells, B cells and macrophages, as well

as microglia and astrocytes in the CNS. MHC class I is principally associated with CD8

cytotoxic T-cell activation, whereas MHC class II is principally associated with CD4 T-cell

activation; both lymphocyte subtypes participate in immunorejection responses. In addition

to a requirement for the recognition of an MHC/antigen complex displayed by an APC by

the T-cell receptor, T-lymphocyte activation also depends on exposure to an array of

costimulatory ligands (e.g., B7). If T-cell receptor binding to an antigen/MHC complex

takes place in the absence of a costimulatory activation signal, a T-cell can be rendered

unable to respond to that antigen (anergic), a mechanism that has been suggested as a means

of achieving tolerance [41].

Increasing evidence suggests that other aspects of the immune system contribute to both

allogeneic and xenogenic rejection, including natural killer (NK) cells, the complement

cascade and the lymphatic system [42–44]. In this regard, it is not only the expression, but

also the lack of expression, of MHC I that can invoke an immune response by NK cells

[45,46]. As the immunological barrier grows, the role of these additional mechanisms of

rejection may increase, becoming greater for xenotransplantation than in the case of

allotransplantation [47]. Immunorejection in the allograft setting is predominantly mediated

by the adaptive immune response via T cells and B cells. By contrast, xenorejection in

discordant species combinations occurs at three relatively distinct phases. Within minutes of

transplantation, the humoral immune response is activated during hyperacute rejection [48].

Within days, infiltration of inflammatory mediators, such as host mononuclear cells and

neutrophils, mediate acute rejection. Finally, in the delayed xenograft rejection response,

cellular mechanisms (both NK and T cell-mediated) modulate xenograft rejection [49].

Understanding these cellular mechanisms is critical, because while T-cell expansion can be

controlled by conventional immunosuppressant agents that target calcineurin signaling, such

as cyclosporin A [50] and FK506 (Prograf®/tacrolimus) [51], these agents do not affect NK

cells or other rejection mechanisms. In fact, transplantation of human cells into

immunosuppressed rodents often results in eventual graft failure within the first few weeks

after injection [52–57], suggesting that pharmacological immunosuppression is ineffective at

preventing the delayed xenograft rejection response. These data suggest that

immunorejection in the xenotransplantation setting is complex and requires

multidimensional intervention (i.e., the administration of immunosuppressive agents

targeting T-cell expansion combined with anti-NK cell), and/or anti-costimulation factor

agents, to sufficiently attenuate the immune response in order to obtain long-term

engraftment in immunocompetent animal models [58,59].
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Achieving transplant engraftment & survival across the xenobarrier

In accordance with the immunological barrier presented by xenotransplantation, several

approaches have been utilized in an attempt to achieve high levels of transplant engraftment

and cell survival in the organ and bone marrow transplantation fields. First, high-dose

combinatorial treatment with multiple conventional pharmacological immunosuppressant

drugs. High dose and combinatorial pharmacological immunosuppression has associated

toxicity concerns in human [60,61] and animal models [62–64]. A key question to be

considered is whether there may be exogenous, alternative and/or unanticipated effects of

conventional immunosuppressant agents on transplanted cell populations. In this regard,

multiple studies have also shown that immunosuppressive agents can interact with, and

influence, various cell populations, altering cell proliferation, fate, migration and perhaps

secretomes [65–67].

Second, humanized rodent models have been developed to lower the xenotransplantation

barrier. Humanized mice or mouse–human chimeras are immunodeficient animals that are

reconstituted with human-derived hematopoietic cells or tissues to minimize HLA

mismatches with subsequent human-derived cell populations [68]. While in many ways this

model may be considered the ultimate goal for regenerative medicine research, its use is

significantly confounded by several major constraints, including the low efficacy of immune

reconstitution, the time required for generation of animals, specialized equipment and

significant cost. Thus, humanized rodent models of cell transplantation are rarely utilized.

Third, constitutively immunodeficient animal models, in which components of adaptive and/

or innate immunity are compromised or deficient, can be utilized to improve the success of

xenotransplantation. Immunodeficient animals provide an environment in which the immune

response is suppressed endogenously, rather than via exogenous treatment, which allows for

direct hypothesis evaluation without complications that may arise from the

immunosuppressive treatments necessary to support sufficient engraftment in

immunocompetent animals. Historically, evidence for long-term (up to 6 months post-

transplant) tolerance of cellular xenografts in immunodeficient animal models is supported

by experiments demonstrating prolonged survival of human fetal tissue and blood cells

[37,69], and later, pig and human islet cells in constitutively T-cell deficient mice and rats

[70,71], suggesting that a lack of functional T cells at least partially circumvents the barriers

of chronic rejection. However, the survival of at least mouse–mouse allografts of embryonic

stem cells transplanted into heart [72] or muscle [73], and human–rat xenografts of neural

stem cells transplanted into the spinal cord [7] has also been shown to be significantly

greater in immunodeficient models compared with immunosuppressed models. While a wide

variety of immunodeficient/immunocompromised rodents are available for

xenotransplantation studies [74–76], not all constitutively immunodeficient animal models

achieve equal levels of immunodeficiency; identification of a model that is ‘sufficiently

immunodeficient’, meaning that it achieves 100% engraftment and long-term survival, is

therefore essential.

Owing to a loss-of-function mutation in the mouse PRKDC gene preventing full T- and B-

cell development [77], CB-17 SCID mice, which were used in the original hematopoetic

stem cell xenografts performed by Mosier et al. in 1988 [37], lack functional T- and B-cells

[76]. However, SCID mice retain high levels of innate (NK cell) immunity [76], which

precludes complete avoidance of immune rejection; the increase in graft failure in initial

hemopoietic stem cell transplant studies highlights this limitation [78]. To avoid the

shortcomings observed in these early SCID models, alternative immunodeficient animal

strains have been generated to further improve graft survival [79]. Nonobese diabetic

(NOD)-SCID mice, which in addition to the T- and B-cell deficiencies of CB-17 SCID
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models, also display reduced hemolytic complement levels, reduced dendritic cell function

and defective macrophage function [76], as well as reduced NK cell activity [80], have been

used extensively in a multitude of different stem cell and transplantation studies with great

success [74]. Additional SCID variants include β2 microglobulin-deficient (B2Mnull) mice,

which display limited amounts of MHC class I (classical and nonclassical) on the cell

surface and therefore prevent CD8 T-cell development [81], and recombinase activating

gene 1- and 2-deficient (Rag1null and Rag2null) mice, which, similar to PRKDC mutant

mice, do not have the ability to generate fully mature T- and B-cell lymphocytes due to

failure of DNA strand break V(D)J recombination [82,83]. Furthermore, recent development

[84,85] of genetic variants with nearly complete ablation of T-, B-, and NK cell activity

offer even more effective options in a xenograft transplantation setting [75]. These include

NOD-SCID IL2RG, and Rag2null IL2RG mice, which include a null mutation in the gene

encoding the IL-2 receptor γ chain (IL2Rγ), which prevents cell surface signaling to several

interleukins as well as NK cell differentiation [86]. Additionally, larger rodent models

lacking certain components of the immune response also exist and may be utilized in

experiments where smaller laboratory mice are not an appropriate choice; the principle

example is the athymic nude rat, which lacks a normal thymus and functionally mature T

cells [87]. However, caution should be exercised when considering nude rodent models, as

evidence suggests normal to increased levels of NK cell activity [88], which may be

sufficient to induce graft rejection [87,89]. Accordingly, selection of an immunodeficient

mouse (or rat) model should be considered based on the known combination of deficits in

the immune response and resulting engraftment characteristics.

Stem cells & neurotransplantation: the inordinate influence of

‘immunoprivilege’

In contrast to the hematopoietic transplantation field, in which constitutively

immunodeficient animal models rapidly gained widespread use because they enabled the

study of both normal and malignant hematopoietic repopulation [90], the

neurotransplantation field has not followed this path. In fact, neurotransplantation research

was heavily directed in its early foundations by a small body of data suggesting that the

CNS is immunoprivileged, which led to the widespread belief that achieving engraftment in

the CNS was a relatively easy task. Billingham and Boswell first suggested the term

‘immunologically privileged’ in 1953 [91], in a paper in which they described evidence of

longer tissue graft survival in some sites (e.g., the cornea) in comparison to others (e.g.,

skin). The concept of the CNS as an ‘immunoprivileged’ site was extended later based on

similar tissue grafting studies using brain tissue [92]. Several mechanisms explaining the

relative immunoprivilege of the CNS were hypothesized, including the tight nature of the

blood–brain barrier, the absence of professional APCs (which are required to mount a T-

cell-mediated adaptive immune rejection response) in the CNS, the lack of MHC expression

in the CNS, reports of high levels of factors with immunomodulatory properties in the CNS

(e.g., TGF-β), and the absence of traditional lymphatic drainage in the brain as an organ

[41,93]. Combined, these factors were thought to render the immune system incapable of

mounting an effective rejection response within the CNS.

More recent data has made it clear that, while the CNS may be ‘immunologically quiescent’

[93], it is not at all immunologically incompetent. In fact, the ability of T cells to conduct

surveillance via migration across even an intact blood–brain barrier is now recognized as a

normal part of immune system function [94]. Similarly, we now know that there is

breakdown of the blood–brain barrier and evidence for MHC I/II upregulation in CNS

injury/disease, the capacity for microglia, infiltrating macrophages/monocytes, and

astrocytes to express MHC II and function as APCs [95], and lymphatic drainage from the
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CNS to the cervical lymph nodes, which may serve as sites for antigen-mediated activation

of the adaptive immune response [96].

It is not only the CNS itself that has been assumed to possess an immunoprivileged status.

Like mesenchymal cells, embryonic stem cells and their derivatives, as well as neural stem

cells, have been ascribed a mix of immunoprivilege, immunosuppressive and

immunomodulatory properties [97], and have even been reported to fail to induce an

immune response in immunocompetent animals [98,99]. Initial reports from work with

embryonic stem cells suggested that these cells express very low levels of MHC I and II

[100,101], which were not sufficient to stimulate T-cell proliferation in vitro, and that their

inherent immunoprivileged state could contribute instead to the induction of host tolerance

to embryonic stem cell-derived tissues [102]. Similarly, neural stem cells have been reported

to express low levels of MHC [103,104], and to lack the expression of co-stimulatory

molecules required for T-cell activation [105]. The combination of CNS and stem cell

immunoprivilege led to the assumption, in some cases, that immunosuppression would be

unnecessary for clinical stem cell allograft transplantation, or even for proof-of-concept

xenograft studies in animal models.

However, as in the case of the immunoprivileged status of the CNS, there is a wealth of

more recent data contradicting the existence of immunoprivilege in stem cell populations

[41,106–109], from which several common themes emerge. First, embryonic stem cells,

their differentiated progeny and fetal neural precursor populations can all upregulate MHC

expression in vitro and upon in vivo transplantation [108,110], and thus, permit

immunorejection [111]. Second, MHC I expression in both embryonic and neural stem cells

is dramatically upregulated following cytokine exposure, notably exposure to IFN-γ
[101,112]. IFN-γ is expressed at high levels in many CNS disease and injury states, a point

that should be noted in combination with the potential role of disease and/or trauma-induced

inflammatory responses to augment immunorejection [113]. Third, NK cells exhibit the

capacity to target both embryonic and neural stem cells in vivo and/or in vitro [45,112].

Taken together, the current literature for human embryonic and neural stem cells does not

support the capacity to transplant these cell populations with immunological impunity.

Engraftment & cell survival for xenogeneic transplantation of stem cells in

animal models of neurological disease and injury

Up to this point, we have discussed the necessity of starting with an animal model that

mimics the clinical pathology for the neurological disease of interest and supports

engraftment as well as long-term survival, explored lessons learned from the hematopoietic

transplantation field and mechanisms of allogenic and xenogeneic rejection, and reviewed

early classifications of the CNS, as well as embryonic and neural stem cells, as

‘immunoprivileged’. We now present a comprehensive review of the literature regarding

achieving engraftment and cell survival with xenografts in the CNS. We focused our

literature review on studies xenotransplanting human cells into rodent models of

neurological diseases/trauma or into the normal brain. For purposes of this review, we define

‘engraftment’ as the percentage of animals that demonstrate surviving cells (total number of

animals at sacrifice with human cells still present divided by the total number of initially

transplanted animals × 100). In parallel, we define ‘cell survival’ as the total number of cells

present at sacrifice. The total number of cells must have been assessed either via unbiased

stereology (typically via optical fractionator) or bioluminescence for the percentage cell

survival report to be included in our tables. Unbiased stereological techniques permit

rigorous quantitative analysis of tissue, including accurate volume-corrected estimates of

cell number; because changes in tissue and structure volume due to disease/injury

pathogenesis can be a significant experimental confound, stereological analysis is the gold
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standard for determining cell number, lesion volume and other variables vulnerable to these

artifacts (see [114,115] for a review of the use of stereology in neuroscience). A limitation to

the cell survival data generated by stereological analysis in the CNS is how the region of

interest is defined. If the analysis is confined to an anatomically defined region (e.g., the

striatum) [116], but the transplanted cell population has migrated beyond this artificial

boundary, the determination of estimated cell number will only be accurate within the

striatum, and the total number of surviving cells will be underestimated. Because of this

limitation, papers that have this constraint in stereological data collection have been

included in the overall tables, indicated by a symbol, and in the calculation of percentage

engraftment, but have not been included in the calculation of percentage cell survival.

Bioluminescence also permits quantitative analysis of cell survival within tissue, however,

there are two critical limits for cell detection. First, sensitivity; while stereology permits an

estimate of total cell number based on the detection of every cell visualized by

immunoperoxidate, immunofluorescence, or promotor driven fluorescence in a transplanted

tissue, bioluminescence has a clear threshold for detection that is affected by many factors,

including transplantation site/depth. In the neural stem cell transplantation field, at least one

study has demonstrated that the number of luciferase-expressing cells necessary to generate

a detectable bioluminescence signal is in the order of 1000 [117]. Coupled with this

detection threshold limit, the propensity of transplanted cell populations for migration will

significantly affect the accuracy of total cell survival quantification by this method. Finally,

the long-term stability of luciferase expression has not been established, and decrements in

signal may, in some cases, result from promoter downregulation [117]. Owing to the

limitations of bioluminescence in providing accurate total cell survival quantification, papers

using this method of quantification have been included in the overall tables, indicated by a

symbol, and in the calculation of percentage engraftment, but have not been included in the

calculation of percentage cell survival.

Literature searches for this analysis of xenotransplantation in the CNS were performed in

January 2011 with the keywords ‘human stem cell’ in combination with other keywords in

series: ‘transplantation’, ‘brain’, ‘CNS’, ‘spinal cord’, ‘spinal cord injury’, ‘stroke’, ‘middle

cerebral artery occlusion’, ‘ischemia’, ‘brain injury’, ‘brain trauma’, ‘multiple sclerosis’,

‘Parkinson disease’ and ‘Huntington disease’. Additional references were added when found

cited in the initial round of papers retrieved via MedLine. No papers were excluded from our

analysis, a priori. Using these criteria, we found 133 unique, relevant papers. It should be

noted that the primary focus of any given paper need not have been the key variables

discussed in this article (i.e., engraftment and cell survival). Rather, many papers compared

a cell line with and without an experimental treatment or other component in an injured

environment, or the effects of a cell line on functional outcome, and did claim to assess

either engraftment or quantify total surviving cells. We grouped these papers into three

primary categories based on common features of the model: models of normal neonatal or

adult brain; models of acute/traumatic injury (SCI, traumatic brain injury or stroke); and

models of chronic/atraumatic injury (Parkinson’s disease, Alzheimer’s disease, Huntington’s

disease, amyotropic lateral sclerosis, allodynia or demyelination). Within each primary

category, references were subdivided into those using immunocompetent animals with

immunosuppression, those using immunocompetent animals without immunosuppression

and those using immunodeficient animals. A summary of the primary categories and the

number of papers using immunocompetent versus immunodeficient animals is shown in

Table 1.

We recorded 25 variables for each paper: citation, URL, model, primary category of model,

paradigm or method, cell type, host species/sex, immunocompetent or immunodeficient

host, location of injury, transplant time (time post-injury), final dose of cells, volume of

injection, route/location of transplant, immunosuppressant, dose and duration, detection
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method for human cells, quantification method (stereology or number of sections), treatment

groups, survival time (post-transplant), total number of transplanted animals in a group,

numbers of animals with cells at sacrifice, percentage engraftment, and behavioral outcome.

Factors that were not applicable for a given model or not reported were noted as well. In

order to accurately assess the influence of immunocompetent (with or without

immunosuppression) or immunodeficient models on successful engraftment and cell

survival, we included only those studies using cell suspensions and excluded studies using

solid grafts where total cell number (dose) or surviving cell number could not be

determined. Individual tables are provided for each of the three primary categories (models

of normal neonatal or adult brain, models of acute/traumatic injury and models of chronic/

atraumatic injury, as defined previously); these primary categories are further subdivided by

whether cells in the identified studies were transplanted into immunocompetent animals

without immunosuppression, immunocompetent animals with immunosuppression, and

immunodeficient animals (Tables 3–11).

Table 1 shows that of the 133 unique papers, six papers examined xenotransplantation in

normal brain (5%), 95 papers examined xenotransplantation in acute/traumatic models

(71%), and 32 papers examined xenotransplantation in chronic/atraumatic models (24%). A

total of 79 papers (59%) reported neither engraftment nor survival, while only 11 papers

(8%) reported both engraftment and survival. For example, in the primary category ‘acute/

traumatic’, 37 out of 95 papers (40%) used no immunosuppression in immunocompetent

animals. Seven of these 37 papers reported the percentage of animals engrafted, only one

reported the percentage of cell survival based on stereology, no papers reported both

engraftment and percentage of cell survival, and 30 reported neither variable. In this

category (acute/traumatic), the one paper to report cell survival (based on stereology) in a

stroke model without the use of immunosuppression reported that only 35% of the initial

cell dose survived 8 weeks post-transplant across four treatment groups [118] (see Table 7

for additional details).

Several key conclusions can be drawn from Tables 1 & 2. First, the majority of CNS

xenografts have used immunocompetent animals coupled with immunosuppression (n = 69

or 52%). The next most common paradigm is to use immunocompetent animals and no

immunosuppression (n = 47 or 35%). Only 19 papers (or 14%) used immunodeficient

animals in CNS xenograft studies using human cells. Second, the percentage of animals

engrafted (when reported) is usually highest in immunodeficient animals. Third, the paucity

of studies in the normal CNS and chronic/atraumatic cohorts that have employed

immunodeficient models and quantitatively assessed engraftment/cell survival makes acute/

traumatic models the only category in which these variables can be compared between

immunocompetent and immunodeficient animals, and makes this the most robust category

from which to draw relative conclusions for xenotransplantation success. In the acute/

traumatic/cohort, the highest percentage of cell survival is in immunodeficient animal

models (263%, n = 4). Fourth, although the studies available for comparison are limited, the

data suggest that an uninjured niche (normal brain) may be no better than an injured niche in

terms of engraftment or cell survival. Finally, caution should be exercised in interpreting

papers that report surviving cell numbers. Many papers extrapolate total cell number from a

limited number of histological sections. Moreover, even when systematic random sampling

and stereological assessment of total cell number is performed, the number of animals

assessed can be insufficient to yield interpretable numbers. For example, Suzuki et al. report

the stereological assessment of total cell number in an amyotropic lateral sclerosis model

where 114% of the initial dose of cells was detected 6 weeks post-transplant; but

quantification was performed in only one animal [119].
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Looking at those papers that reported either human cell engraftment or survival numbers,

several interesting issues are evident. First, in immunocompetent animals given

immunosuppression, cell survival decreases over time. Yashuhara et al. transplanted green

fluorescent protein (GFP)-expressing human HB1.F3 fetal-derived neural stem cells in a 6-

OHDA toxicity model of Parkinson’s disease and quantified GFP+/human nuclear antibody

(hNuc)+ cells in every fifth section through the entire striatum [57]. Animals received

200,000 cells in 3 μl phosphate-buffered saline into the ipsilateral striatum immediately

following the 6-OHDA lesion. Sets of animals (n=8 per time point) were sacrificed 3, 7, 14

or 28 days post-transplant. All animals received daily intraperitoneal injections of

cyclosporin A (10 mg/kg). Cell survival within the striatum was 11.2, 4.7, 1.7 and 1.1%

across the four time points, respectively. Although quantification was not a true

stereological assessment (neither random counting frames nor stereological dissectors were

used), these cell survival numbers are directly comparable within the study and demonstrate

that a host rejection response was likely active and involved in rapidly killing the human

cells over time. Notably, it is possible that GFP expression may have also been

downregulated over time in conjunction with a rejection response, resulting in the observed

reduction in total cell numbers over time; however, antibodies to a human nuclear antigen

were also used to detect the transplanted cells [57].

Second, while direct comparisons within a single study between groups of

immunocompetent animals receiving either immunosuppression or no immunosuppression

are rare, not using immunosuppression in immunocompetent animals significantly reduces

successful engraftment. Wennersten et al. transplanted 210,000 human fetal-derived neural

stem cells into a contusion model of SCI immediately postinjury [120]. Animals received

cyclosporin A for 3 or 6 weeks post-transplant (4 mg/kg Monday and Wednesday, and 8 mg/

kg on Friday), while a third group received no cyclosporin A post-transplant. The three

groups were sacrificed 6 weeks post-transplant and the presence or absence of humans cells

was confirmed using hNuc immunohistochemistry. All animals receiving cyclosporin A,

regardless of length of administration, were successfully engrafted, but only one of six

animals (16.7%) contained human cells in the no cyclosporin A group. A fourth group of

animals (n = 8) received cyclosporin A for 3 weeks but was allowed to survive 6 months

instead of 6 weeks; five out of eight (62.5%) exhibited successful engraftment at 6 months.

Quantification of cell numbers was not performed [120]. While this study suggests that

transient immunosuppression may suffice to achieve long-term engraftment, it also

demonstrates that using no immunosuppression in immunocompetent animals significantly

reduces the rate of successful engraftment. Unfortunately, without quantification of total cell

numbers in such a study, it is impossible to ascertain the effect of short versus long-term

immunosuppression on cell survival.

Third, in the few studies that conducted direct comparisons, human cell engraftment was

shown to be higher in immunodeficient animals than immunocompetent ones. Deng et al.

transplanted human olfactory ensheathing cells into a hemisection model of SCI using either

athymic nude (immunodeficient) or Sprague–Dawley (immunocompetent) rats [121]. Their

data demonstrate that survival of human olfactory ensheathing cells transplanted into

immunocompetent animals was minimal at 24 h post-transplant and no surviving cells were

identified by 7 days post-transplant; robust macrophage infiltration was found at the

injection site by 7 days and engraftment was 0%. Conversely, human olfactory ensheathing

cells transplanted into athymic nude rats survived and migrated away from the site of

injection at 24 h and 7 days post-transplant. Engraftment was observed in 40% of the

athymic nude rats, while no engraftment was observed in Sprague–Dawley rats [121].

Although this study transplanted olfactory ensheathing cells rather than a strictly defined

stem cell population, the proliferative properties of olfactory ensheathing cells in vitro are
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well known, suggesting that activation of the host immune system initiates a rejection

response.

The goal of this comprehensive literature review was to assess the status of the field in

achieving adequate engraftment and survival in xenotransplantation models to predict

clinical translation. As noted earlier, it should be acknowledged that the principal end point

of a given study may not have been the assessment of cell survival per se, and such studies

can still contribute meaningful data to the literature. This review of 133 xenotransplantation

papers shows that the field of regenerative medicine has focused heavily on the

administration of cyclosporin A alone in immunocompetent animals as a strategy for proof-

of-concept experiments, resulting in both poor engraftment and low to very low cell survival

(when reported). Furthermore, this summary shows that xenografted stem cells retain

proliferative capacity in immunodeficient versus immunosuppressed models within the

acute/traumatic category. While other differences in the acute/traumatic CNS niche could

contribute to differences in the retention of proliferative capacity, it is likely that these

differences provide insight into the capacity to initiate immunorejection mechanisms in

these conditions. Again, given that acute/traumatic models represent the only category in

which multiple studies have quantified engraftment and survival in immunodeficient

animals, these data represent the most robust category from which to draw relative

conclusions for xenotransplantation success. Combined with our historical survey of the

broader xenotransplantation field, this analysis clearly suggests that it will be necessary to

administer a multimodal course of pharmacological immunosuppression to achieve

meaningful engraftment of a transplanted human cell population when using

immunocompetent animals. Alternatively, immunodeficient animals yield much higher

engraftment and cell survival numbers than using immunocompetent animals (with or

without immunosuppression).

Future perspective

It seems evident that, ideally, preclinical testing of safety and efficacy should have the goal

of achieving a human–mouse xenograft that is as comparable as possible to the human

clinical setting (i.e., a human–human allograft). In this regard, we begin by considering what

features one can reasonably predict to be associated with human–human allografts in the

CNS.

First, as we have shown in this article, one would expect that the immunological barrier

associated with a human–human allograft would be less than that associated with a human–

rodent xenograft, and be principally T-lymphocyte mediated, and therefore require less in

the way of multifaceted immunosuppression protocols. Accordingly, the administration of

drugs targeting T-cell proliferation and expansion via calcineurin signaling may be sufficient

to maintain long-term cell survival in the clinical setting, especially under conditions in

which the partial restriction of access of the immune system to CNS parenchyma maintained

by the blood–brain barrier is restored over time. By contrast, we know that this is not the

case for xenotransplantation, and at least NK cells must also be suppressed (e.g., as in the

case of SCID beige mice or athymic nude rats). Second, one would expect that a more

successful pharmacological immunosuppression protocol could be achieved in human–

human allografts than in human–rodent xenografts. Human immunosuppression protocols

are understandably considerably better characterized and designed in terms of the

pharmacokinetics of drug delivery and metabolism, and achieving target circulating drug

levels in man is more precise, particularly when one considers the side effects of

subcutaneous delivery and variability in oral delivery of immunosuppressants in rodent

models. Moreover, the pharmacokinetics of immunosuppressant metabolism are almost

never monitored or accounted for in rodent models, resulting in both reduced efficacy and
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increased toxicity. In this regard, for example, there are known differences in the peak/

trough levels of immunosuppressant metabolism and effective dosing strategies [62].

Furthermore, rodent and human T cells can exhibit different levels of responsiveness to

calcineurin inhibitors such as cyclosporin A [122]. Third, one can predict that several factors

will gain momentum in the future, further reducing the immunological barrier of human

clinical allotransplantation [123]: MHC I matching by virtue of the generation of cell banks

for candidate clinical cell therapeutics [124,125]; the development of clinical strategies to

achieve allograft tolerance [126,127] and/or an eventual shift to autologous cell

transplantation, for example using induced pluripotent cells from somatic sources [5,128].

As a result, one would predict both higher levels of engraftment and a greater degree of cell

survival in human–human allografts than in human–rodent xenografts under

immunosuppressive therapy, particularly under optimal immunosuppression and MHC

matching conditions, and certainly in the event of successful immunotolerance strategies

and/or autologous transplantation.

Many candidate clinical cell therapeutics under current investigation are partly committed

stem/progenitors, rather than terminally differentiated replacement cells; accordingly,

transplanted cells retain some proliferation capacity. Taking the transplantation of human

neural stem cells into constitutively immunodeficient animals as an example, it is clear that

these cells, at least initially, retain the capacity for proliferation. At the simplest level, this is

evident because there a greater number of surviving cells at the time of sacrifice than

initially transplanted, albeit in the absence of tumorigenesis (Tables 1 & 3–11). We suggest

that preclinical animal models in which the number of surviving cells is a fraction of the

number contained in the initial transplant cannot provide informative data regarding

proliferation potential, and therefore, cannot provide adequate data for predictive validity in

the human clinical setting. The limits of such data are particularly relevant for establishing a

risk versus safety profile for a candidate clinical cell therapeutic, as tumorigenesis is known

to be dependent on both dose and cell survival, and is greatly attenuated in

immunosuppressed immunocompetent versus constitutively immunodeficient animal models

[17,18]. However, while it might be argued that efficacy data would only be enhanced by

increased cell survival, therefore supporting the use of immunosuppressed

immunocompetent animal models, we suggest that this is an assumption with little or no

supporting empirical data. Cells respond to both the microenvironment into which they are

transplanted, and the conditions of that microenvironment. The potential effects of a

microenvironment in which there is an active immune response, or conversely, an increase

in cell survival due to a lack of immune-mediated cell death, on cell fate and migration are

essentially unknown, and are likely to be different for each candidate clinical cell

therapeutic. Furthermore, the potential for an active immunorejection response to contribute

to disease modifying activity cannot be ruled out. Owing to the known effect of dose and

immune rejection on tumorigenesis, and the unknown effect of dose and immune status on

fate, migration and/or disease modifying activity, simply scaling up the initial cell dose

administered in an immunosuppressed immunocompetent animal model is not adequate to

address either tumorigenesis or efficacy. Accordingly, preclinical studies should be designed

to reduce immunorejection of transplanted cells in order to optimize cell engraftment and

survival, and preclinical transplantation models should seek to achieve maximal theoretical

engraftment in order to provide informative safety and efficacy information. We therefore

suggest that immunodeficient animal models should be the model of choice for preclinical

testing of safety and efficacy for candidate clinical cell therapeutics.

There are two principal issues in considering this approach. One key question is whether

there are exogenous, alternative and/or unanticipated effects of conventional

immunosuppressant agents on the transplanted cell population. For example, on overall cell

engraftment, or cell fate/migration that could be critical in a clinical human–human
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allotransplantation setting where these agents will have to be administered post-

transplantation, at least for a period of time. Many investigators have used this rationale to

continue with experiments in xenograft models using pharmacological immunosuppressive

therapy. However, we suggest that it is time for the field of regenerative medicine to re-

evaluate this concept. We suggest that a more informative approach would be to establish

data from two models. First, investigation of engraftment, tumorigenesis, fate and migration

in immunodeficient animal models treated with the planned clinical immunosuppressive

therapy. In this paradigm, any potential direct effects of immunosuppressant treatment on

the candidate clinical cell population would be more likely to be revealed, given the

increased overall cell survival, and reduced likelihood of the inadvertent selection against

either the primary stem cell population, or precursor/progenitor populations, providing an

improved assessment of tumorigenesis and safety. Second, the effect of immunosuppressant

withdrawal on target organ integrity, engraftment, tumorigenesis, fate and migration in an

immunocompetent animal model treated with the planned clinical immunosuppression

therapy for a transient period following cell transplantation.

A second key question is whether predictive models of neurological disease/injury for

testing cellular therapeutics can be established in immunodeficient versus

immunosuppressed models. It is increasingly clear that there is a role for both the innate and

adaptive immune responses in many types of neurological disease and injury. In the case of

autoimmune diseases of the CNS, this role can be pivotal to the development of pathology

(e.g., the generation of autoreactive T cells to myelin epitopes in multiple sclerosis); while

the specific role of adaptive immune responses and T-cell activation are less clear, it appears

certain that Alzheimer’s disease, Parkinson’s disease, stroke, traumatic brain injury and SCI

all include an inflammatory component in their pathogenesis [129–134]. Furthermore, in the

case of traumatic injury models such as SCI, access of the immune system to the CNS is

greatly enhanced by breakdown in the blood–brain barrier, and there may be profound,

prolonged and diverse effects of immune activation on pathogenesis and functional outcome

[135]. Understandably, the generation of transgenic neurological disease models

backcrossed onto constitutively immunodeficient mouse strains is a difficult process.

Furthermore, the effect of constitutive ablation or attenuation of T-cell and NK cell

responses associated with immunodeficient models, such as the NOD-SCID mouse, on

innate immune responses, inflammation and the essential characteristics of lesion

pathogenesis would have to be tested as a part of validating a predictive animal model [136].

At least in the case of traumatic SCI, the host macrophage/microglia response, neutrophil

response and evolution of the central lesion are overtly unaltered in comparison with other

mouse strains [136]. As noted earlier, however, the immune and inflammatory

microenvironment, composed of a host of complement proteins, cytokines and chemokines,

may affect transplanted cell populations in ways that have yet to be recognized, and the

potential for an immunorejection response to influence stem cell populations is equally as

great as the potential for alteration of the immune microenvironment presented by the

disease state to do so. Critically, however, in order to achieve engraftment of a candidate

therapeutic cell population at any level for the purpose of assessment of safety/efficacy in

animal models, it is necessary to impair the functional immune status of the host,

particularly with regard to activation of T-cell- and NK cell-mediated immune responses;

the difference between immunosuppressed and immunodeficient lies then in the fact that, at

least under some conditions, treatment with immunosuppressants is not sufficient to achieve

levels of xenoengraftment that may be comparable to human–human allotransplantation.

In summary, we suggest the following criteria for preclinical safety and efficacy studies for

the application of human stem cell populations in a clinical setting:
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• At a minimum, reproducible long-term engraftment and cell survival should be

quantitatively assessed no earlier than 4 weeks post-transplantation, a time at which

both the acute and delayed immunorejection phases would have been initiated.

Engraftment should be reported for the entire study cohort (i.e., animals should not

be excluded from analysis of these variables).

• We suggest that in a niche amenable to cell engraftment and survival, the number

of animals demonstrating engraftment should approach 100% of those transplanted.

At present, at least in acute/traumatic models, this percentage of xenoengraftment

can only be achieved in immunodeficient models.

• For safety/tumorogenesis studies, post-transplantation analysis should be extended

based on the disease indication planned for therapy; in the absence of clinical data

with an identical candidate cell population, the concept of maximal theoretical

engraftment should include long-term studies encompassing the lifespan of the

animal model. While some immunodeficient animal models exhibit a shortened

lifespan, others can be maintained to establish long-term safety data.

• While in actual human clinical trials, the maximal theoretical number of surviving

transplanted cells is unknown, we suggest that a microenvironment that enables

maximal theoretical survival, as well as proliferation of transplanted stem cell

populations, will be most informative, particularly for safety and tumorogenesis,

but also for disease modifying activity (efficacy) and mechanism of action. At

present, this type of survival in preclinical neurotransplantation studies, at least in

acute/traumatic models, has only been achieved in immunodeficient models.

• It should be noted that evaluation of survival is complex, and quantification of the

number of surviving cells at the end of a study is not informative about how that

number came to be; the relative contributions of cell death and cell proliferation at

different intervals post-transplantation will clearly both play a role in the end result.

Accordingly, the initial number of transplanted cells, the number of surviving cells

at an early timepoint (days) post-transplantation, and the number of surviving cells

at the termination of the experiment should all be considered. In some cases it may

also be appropriate to carefully consider the accuracy of the initial cell bolus

delivered and the degree of early loss of transplanted cells (e.g., via assays for

colocalization with apoptotic markers such as activated caspase-3).

• We suggest that studies testing the direct effects of planned clinical

immunosuppressive therapy on candidate therapeutic stem cell populations be

conducted in an immunodeficient model, to rule out possible unexpected

interactions under conditions of maximal theoretical engraftment.

• Bystander effects resulting from immune activation/diversion via activation of

immunorejection mechanisms may provide part or all of the beneficial effects

yielded from a given cell transplantation strategy. Accordingly, if

immunosuppressed immunocompetent models are used, we suggest that assessment

of host-mediated rejection mechanisms should be considered in addition to

quantification of engraftment and cell survival. However, in vivo assessment of

immunorejection responses is complex, as multiple cell types, timing and locations

(e.g., within the target tissue, adjacent lymph nodes or systemic immune effects)

can all play a role, and an established protocol to assay for immunorejection in

animal models has not as yet been developed.
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Executive summary

• The choice of animal models of neurological disease and injury, and

consideration of immunological compatibility between donor and host tissues

are critical for testing cell therapies.

– The tissue, organ and hematopoietic grafting fields can provide

historical insight into donor cell engraftment and immunological

rejection mechanisms.

– Immunological rejection mechanisms and issues are different for

xenogeneic and allogenic transplantation.

– Neither stem cells nor the CNS are truly immunoprivileged.

• Most stem cell transplantation studies in the CNS have used short-term

assessments and reported minimal or no assessments of cell engraftment/

survival.

– Assessment of the survival of transplanted cell populations should be

conducted using unbiased methods (e.g., stereology).

– Of 133 papers in which stem cells were transplanted into the naive,

acute or chronic models of CNS disease/injury, few conducted

thorough assessment of engraftment or survival of donor cells in the

host.

– The majority of these 133 papers were conducted using

pharmacological immunosuppression of otherwise immunosufficient

mice/rats, and achieved low levels of cell engraftment and poor cell

survival.

• Transplantation into immunodeficient animal models results in dramatically

greater cell engraftment and survival.

– Immunodeficient models can provide a more realistic assessment of

safety and efficacy.

– Recommendations for stem cell transplantation studies are presented

based on these data.

Anderson et al. Page 31

Regen Med. Author manuscript; available in PMC 2012 July 24.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



Figure 1. Diagram of the types of transplantation, from autografts to xenografts
As the level of donor to host increases (from transfer between littermate mice [isograft], to

mice of different strains [allograft], to rat into mice [concordant xenograft] and finally from

human into mice [discordant xenograft]), so does discordance and associated increased risk

of immunorejection.
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Table 2

Proportion of papers from Table 1 that use immunocompetent or immunodeficient models.

Total immunocompetent models with
immunsuppression (%)

Total immunocompetent models without
immunosuppression (%)

Total immunodeficient models (%)

69 (51) 46 (34) 19 (14)
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