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Abstract A new suite of computational procedures for stress-

constrained continuum topology optimization is presented.

In contrast to common approaches for imposing stress con-

straints, herein it is proposed to limit the maximum stress by

controlling the length scale of the optimized design. Several

procedures are formulated based on the treatment of the fil-

ter radius as a design variable. This enables to automatically

manipulate the minimum length scale such that stresses are

constrained to the allowable value, while the optimization

is driven to minimizing compliance under a volume con-

straint – without any direct constraints on stresses. Numer-

ical experiments are presented that incorporate the follow-

ing : 1) Global control over the filter radius that leads to

a uniform minimum length scale throughout the design; 2)

Spatial variation of the filter radius that leads to local manip-

ulation of the minimum length according to stress concen-

trations; and 3) Combinations of the two above. The opti-

mized designs provide high-quality trade-offs between com-

pliance, stress and volume. From a computational perspec-

tive, the proposed procedures are efficient and simple to im-

plement: essentially, stress-constrained topology optimiza-
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1 Introduction

Topology optimization of continuum structures has evolved

into a very successful computational approach for optimiz-

ing the distribution of materials in a certain design domain.

It is particularly useful for early, conceptual design stages

when the aim is find structrual layouts that posess a good

trade-off of weight, stiffness and strength. For extensive re-

views of methods and procedures the readers are referred

to the monograph by Bendsøe and Sigmund (2003) and to

review articles (Eschenauer and Olhoff 2001; Sigmund and

Maute 2013; Deaton and Grandhi 2014). Despite the ma-

turity of topology optimization, the inclusion of stress con-

straints still stands out as a relatively challenging topic that

attracts considerable research efforts. In this paper, we wish

to shed light on the relation between peak stresses and the

characteristic length scale of the optimized design. Subse-

quently, we suggest a suite of computational procedures that

aim at finding the stiffest structural layout for a given vol-

ume, while constraining the level of the maximum stress

by controlling the length scale of the design. Throughout

the article we follow the density-based approach where the

topology is defined by density variables attached to each dis-

cretization point (finite element in the current context) in

the design domain. Nevertheless, the concepts hold also for

other means of describing the topological layout, such as

level-sets.

The main difficulty in imposing stress constraints is their

local nature – the number of constraints is comparable to
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the number of design variables – both related to the resolu-

tion of the underlying finite element mesh. So far, the dom-

inating strategy for removing this obstacle has been con-

straint aggregation, meaning that the large set of local stress

constraints are aggregated into a small number of approxi-

mate, global constraints. Originally, Yang and Chen (1996)

examined the use of both Kreisselmeier-Steinhauser (KS)

functions and p-norm functions (Park 1995). They mini-

mized either the global stress or a weighted sum of global

stress and compliance, subject to a volume constraint. Duys-

inx and Sigmund (1998) suggested two global stress func-

tions, the p-mean and the p-norm, and showed that the max-

imum local stress is bounded from above by the p-norm and

from below by the p-mean. Later, a “block aggregation” of

the stresses was suggested (Parı́s et al 2007, 2010). Subse-

quently, Le et al (2010) proposed regional stress measures

where local stress constraints are grouped in interlacing re-

gions according to their stress level. Using also a normaliza-

tion with respect to the actual maximum stress, promising

results were obtained, in particular for the benchmark case

of the L-bracket: a layout that avoids the re-entrant corner by

creating a smooth boundary with low curvature was gener-

ated. Several additional positive results based on aggregated

or approximate stress measures have been published over

the last few years, presenting various appealing extensions,

improvements and refinements to this approach, for exam-

ple (Holmberg et al 2013; De Leon et al 2015; Kiyono et al

2016; Verbart et al 2017; Lian et al 2017; Thore et al 2017;

Sharma and Maute 2017; Zhang et al 2017; Oest and Lund

2017; Picelli et al 2018).

A more accurate yet also more costly approach is to

consider an active set of local stress constraints, suggested

by Duysinx and Bendsøe (1998) and later by (Bruggi and

Venini 2008; Bruggi and Duysinx 2012). Interestingly, the

design of the L-bracket with mixed FEM and local con-

straints (Bruggi and Venini 2008) differs from the typical

result with a p-norm approximation. The deviation from the

boundary near the re-entrant corner is smaller and hence

the overall stiffness is higher. Local constraints were con-

sidered also by Pereira et al (2004) and by Fancello (2006)

who solved the optimization problem using an augmented

Lagrangian approach. In the context of level-set topology

optimization, Allaire and Jouve (2008) minimized an inte-

gral measure of a power-law penalty of stress while Amstutz

and Novotny (2010) replaced the large number of stress con-

straints with an external penalty functional, both achieving

layouts that avoid stress concentrations at re-entrant corners.

Other approaches for achieving stress-constrained designs

are based on mimicking the damage that occurs in over-

stressed material (Verbart et al 2016); and on considering

the actual damage or plasticity that evolve when the yield

stress is exceeded (James and Waisman 2014; Amir 2017;

Zelickman and Amir 2018).

The current contribution offers a different view on stress

constraints. In traditional structural design, a candidate de-

sign is examined for stresses and if the maximum stress ex-

ceeds the allowable value then two remedies are common: 1)

Sizing modifications that increase the cross-section of a cer-

tain member or branch; 2) Shape modifications that increase

the radius of curvature at the vicinity of sharp corners. In the

context of topology optimization, these two actions can be

seen as a manipulation of the design’s characteristic mini-

mum length scale – either of its solid phase (namely, thick-

ening of a member) or of its void phase (namely, increasing

the radius of curvature on the boundary). Hence we wish to

examine the influence of the imposed length scale, which

is typically an input parameter to a topology optimization

procedure, on the maximum stress of the optimized design.

Based on this investigation, we formulate several computa-

tional procedures for automatically manipulating the mini-

mum length scale such that stresses are constrained to the

allowable value, while the optimization is driven to mini-

mizing compliance under a volume constraint – without any

direct constraints on stresses.

Before introducing more details about the proposed al-

gorithms, it is necessary to provide a definition of the length

scale in topology optimization. The definition utilized herein

is based on the theory presented in Wang et al (2011), which

states that the sub-domains of an optimized design that are

occupied with solid and void phases with strictly enforced

length scale, are defined as unions of disks in 2-D and balls

in 3-D with a finite radius. The radius represents the imposed

length scale and can be different for the two phases. An im-

portant conclusion arising from previous studies on stress-

based topology optimization (De Leon et al 2015) and on

optimization with physical processes that locally affect ma-

terial properties (Madsen et al 2016), is that they do not im-

pose global length scale on the optimized design. The effect

of the additional restrictions is observed only locally around

points and regions with active constraints, i.e., points with

stress concentration and critically loaded structural mem-

bers. On the other hand, the set of black-and-white designs,

with length scale larger than the one obtained with local con-

straints, can be seen as a set of design envelopes satisfying

the required bounds on the stress with the additional require-

ment for manufacturability.

In this paper, we propose procedures to control the length

scale directly. Consequently, we impose either uniform length

scale or local length scale, that adequately bound the max-

imum stresses, without constraining them directly. The po-

tential advantages of the proposed approach are as follows:

1) The stress-constrained optimization follows the so-called

‘robust’ formulation that results in black-and-white designs

with enforced length scale; 2) The enforcement of a length

scale provides a theoretically justified strict upper bound on

the stress; 3) The procedures utilize the simple optimality
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criteria algorithm and do not require a more complex op-

timizer; and 4) The procedures do not require to solve an

adjoint state so the cost per design iteration is lower than for

existing approaches, in particular in large-scale when itera-

tive solvers are necessary. We show that the obtained layouts

exhibit strength-to-weight trade-offs that are competitive in

comparison to existing approaches.

The remainder of the article is organized as follows. In

Section 2 we investigate the influence of the minimum length

scale on the value of the peak stresses. The relation between

the commonly used compliance functional and the stress

functional is presented in Section 3. Computational proce-

dures with adaptive length scale and spatially varying length

scale are described and demonstrated in Sections 4 and 5, re-

spectively. Section 6 is dedicated to a direct comparison to

a state-of-the-art implementation of the popular p-norm ap-

proach. Finally, a discussion of the results and concluding

remarks are given in Section 7.

2 The influence of length scale on the peak stresses

The current study has two main purposes: first, to demon-

strate the important effect of length scale on the peak stresses

that appear in the response of an optimized design; and sec-

ond, to derive numerical procedures that enable to constrain

the peak stresses by directly controlling the length scale. In

this section, we expose the significance of length scale via

numerical examples based on classical test cases.

Throughout the article, we consider the very common

minimum compliance topology optimization problem for-

mulation. We follow the density-based approach (Bendsøe

1989; Bendsøe and Sigmund 2003) meaning that the topol-

ogy is defined according to density values at discrete points

in the design domain. Consistent length scale control is a

necessary ingredient in the proposed procedures. In density-

based approaches, it is typically achieved by a sequence of

operations that transform the freely distributed design field

ρ into a certain physical material distribution on which min-

imum length scale is guaranteed.

In the first step, the design is filtered by the well-known

density filter (Bruns and Tortorelli 2001; Bourdin 2001).

The result is the filtered density field ρ̃ ,

ρ̃i =

∑
j∈Ni

w(x j)v jρ j

∑
j∈Ni

w(x j)v j

(1)

for which we use a linear weighting function

w(x j) = rmin −
∥∥x j −xi

∥∥ (2)

where rmin is the specified filter radius; v j is the volume of

the element j; xi is the position of the centroid of element

i and x j is the position of the centroid of element j which

is in the neighborhood Ni of element i. Thus it is assigned a

positive weight w(x j).

In the second step, smooth Heaviside projection func-

tions are applied. These encourage a distinct 0-1 (or void-

solid) layout (Guest et al 2004; Xu et al 2010). Furthermore,

by applying the robust topology optimization approach where

eroded and dilated layouts are added to form a worst-case

formulation, minimum length scale is guaranteed (Wang et al

2011). It was shown that for problems involving only stiff-

ness and volume one can simply use the eroded design for

quantifying the worst case for stiffness whereas the dilated

design quantifies the worst case for volume (Lazarov et al

2016). The filtered density field is therefore projected to

eroded and dilated densities respectively,

ρero
i =

tanh(βHηero)+ tanh(βH(ρ̃i −ηero))

tanh(βHηero)+ tanh(βH(1−ηero))
(3)

ρdil
i =

tanh(βHηdil)+ tanh(βH(ρ̃i −ηdil))

tanh(βHηdil)+ tanh(βH(1−ηdil))
(4)

where βH governs the curvature of the smooth projection;

ηero is the projection threshold for the eroded layout (e.g.

ηero = 0.6); and ηdil is the projection threshold for the di-

lated layout (e.g. ηdil = 0.4). The actual design that is in-

tended for manufacturing is determined by an intermedi-

ate projection, with ηint = 0.5. We note that when stiffness

and volume are used as the counteracting objective and con-

straint, the latter does not need to be evaluated during the

optimization because it does not represent the worst case for

neither of them.

Based on a standard finite element discretization, the dis-

crete form of the optimization problem is defined as

min
ρ

φ = fT u

s.t.: g =
∑

NE
e=1 ρdil

e ve

∑
NE
e=1 ve

−V ⋆
dil ≤ 0

0 ≤ ρe ≤ 1, e = 1, ...,NE

with: Kerou = f (5)

where ρ is the vector of density design variables that govern

the material distribution; f is the vector of external forces; u

is the vector of displacements; NE is the number of contin-

uum finite elements in the design domain; ve is the volume of

the e-th finite element; V ⋆
dil is the available volume fraction

for the dilated distribution; and Kero is the stiffness matrix

corresponding to the eroded material distribution. For eval-

uating the stiffness matrix Kero, Young’s modulus of each

element in the eroded layout is determined by the Modified

SIMP interpolation rule (Sigmund and Torquato 1997),

E(ρero
i ) = Emin +(Emax −Emin)(ρ

ero
i )p

(6)

where Emin is a relatively small positive number in order

to avoid singularity of the stiffness matrix; Emax is Young’s
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modulus of the material to be distributed; and p is the SIMP

penalization factor. For all numerical demonstrations in this

article, p = 3 was used. When using separate projections for

stiffness and volume as we do in the current study, penaliza-

tion in the SIMP manner is not completely necessary. This

is because the two projections impose penalty on the stiff-

ness and reverse penalty (high cost) on volume in the den-

sity range between ηdil and ηero. However, adding penalty in

the SIMP interpolation speeds up the convergence towards

a distinct topological layout hence the overall number of de-

sign cycles is reasonable also for practical applications.

Based on the discussion in Wang et al (2011), it is clear

that the minimum length scale obtained in the optimized de-

sign depends on two parameters – the filter radius rmin and

the threshold value η that controls the projection. In princi-

ple, the values of ηero and ηdil can be chosen to be asym-

metrical w.r.t. the intermediate value ηint = 0.5. Then the

minimum length scale imposed on solid and void features

will be different. However, this case was not examined thor-

oughly in the current study and the discussion is based on

symmetric projections only.

Two test cases are utilized in order to demonstrate the ef-

fect length scale has on the value of peak stresses. The first is

the classical L-bracket which is frequently used to evaluate

stress-constrained topology optimization procedures. The de-

sign domain is based on a 200×200 grid of square finite el-

ements with side length of 1.0, in which the top-right square

of 120×120 elements is fixed to be void. The design domain

is further padded with a layer of 9 void elements so that min-

imum length scale is controlled consistently also on the free

boundaries of the design domain, as discussed by Poulsen

(2003), Lazarov et al (2016) and Clausen and Andreassen

(2017). The size of the extended domain was determined

such that also large values of rmin can be accommodated.

In order to avoid stress concentrations at the loading point,

we distribute the load over 9 adjacent nodes at the corner,

and pad the design domain locally with 3 layers of solid el-

ements. This ensures that the load is connected to material

also after the Heaviside projections. For large filter radii, the

padded solid region is extended to 5 layers. The problem

setup is presented in Figure 1.

In all optimization runs, a fixed number of 150 design

iterations is used. The initial value of βH is 1.0 and it is

multiplied by 1.25 every 10 iterations, up to a maximum

value of 16. The desired volume fraction of the intermedi-

ate design is V ⋆ = 35% of the volume of the L-shape only.

The volume constraint is adapted every 10 iterations as fol-

lows: first the ratio between the desired volume V ⋆ (to be im-

posed on ρ int ) and the volume computed with ρ int is found;

then, the volume limit for the dilated design V ⋆
dil is multi-

plied by the square root of this ratio. This drives the vol-

ume of the intermediate density towards the desired value

V ⋆, while controlling the dilated density by an actual con-

Fig. 1 Design domain and boundary conditions of an L-bracket. For

consistent length scale on the boundary of the domain, the L×L square

is padded with a void layer whose thickness is rp.

straint. Throughout this section, the reported value of the

maximum von Mises stress is computed as the true maxi-

mum on the intermediate design, meaning ρ int replaces ρero

in Eq. (6). The final value of βH = 16 and p = 3 are used.

Finally, all optimization problems are solved with a classi-

cal Optimality Criteria approach, as implemented in popu-

lar codes for density-based topology optimization (Sigmund

2001; Andreassen et al 2011).

2.1 The effect of filter radius

The results of minimum compliance optimization of the L-

bracket, with various filter radii and projection thresholds

ηdil = 0.4 and ηero = 0.6 are presented in Table 1. The ac-

tual minimum length scale imposed on solid and void fea-

tures is presented alongside each optimized design using a

circle whose diameter represents the length scale. It can be

seen clearly that increasing the length scale equally for both

solid and void phases by increasing the filter radius, has a

dramatic effect on peak stresses. When varying the filter size

from rmin = 3 up to rmin = 17, the optimized compliance in-

creases monotonically w.r.t. the filter size. At the same time,

the peak stress decreases monotonically as long as rmin ≤ 13,

then it begins increasing – presumably because of the signif-

icantly larger displacements that lead to larger strains. From

a visual perspective, the increase in length scale is reflected

in the number of bars and holes, in their minimum thick-

nesses, and in the curvatures of the boundaries. A small

filter radius (e.g. rmin = 3) leads to a layout consisting of

thinner bars and infinite curvature in the re-entrant corner

– leading to the best performance in terms of compliance.

A larger filter radius (e.g. rmin = 9) leads to a layout with
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fewer, thicker bars and smaller curvatures in both external

and internal boundaries – leading to better performance in

terms of stresses.

The same trends can be observed also when asymmetric

projection thresholds are utilized. These imply that the im-

posed length scale is different for solid and void. As men-

tioned above, the asymmetric case is not investigated thor-

oughly in this contribution and limited results are presented

herein for the sake of completeness. Tables 2 and 3 show

the results of minimum compliance optimization of the L-

bracket, with filter radii ranging from rmin = 6 up to rmin = 9.

The projection thresholds are ηdil = 0.1 and ηero = 0.6 in

Table 2 and ηdil = 0.4 and ηero = 0.9 in Table 3. The for-

mer imposes a larger length scale on the void phase whereas

the latter imposes a larger length scale on the solid phase. It

can be seen that for the chosen range of filter radii, the same

trends of monotonic increase in compliance and decrease in

peak stresses are observed. Therefore, it can be concluded

that these trends are not a unique property of symmetric pro-

jections. Quantitatively, the results show that the symmetric

projection provided slightly better trade-offs of compliance

and stress, hence the focus from here onwards is on sym-

metric projections only.

2.2 The effect of projection thresholds

It was shown in the previous section that increasing the length

scale by increasing the filter radius has a dramatic effect on

the trade-off between compliance and stress. Therefore it is

interesting to examine whether increasing the length scale

by expanding the projection thresholds will have the same

outcome. In Table 4 we present several results obtained with

the same rmin = 7 and various symmetric projection thresh-

olds. It can be seen that controlling length scale by projec-

tion thresholds does not have a strong effect on the stresses

– in fact, increasing the length scale leads to monotonic

increase both in compliance and peak stress. The reason

for this behavior is the delayed influence of the projection

thresholds. Due to the gradual increase in βH , the increase

in length scale is introduced in advanced stages of the op-

timization when significant (primarily topological) design

changes are not possible. Therefore the role of the projec-

tion functions in imposing length scale is minor compared

to that of the filter radius.

2.3 Design scenarios without inherent stress concentrations

The discussion so far was based on the case of an L-bracket,

which has an inherent stress concentration due to the def-

inition of the design domain. In the following we present

results of minimum compliance optimization of an MBB-

beam which does not have such re-entrant corners in the de-

sign domain. Therefore, stress concentrations appear only at

local regions due to external loads or supports. A symmetric

half of the beam is modeled with a grid of 60× 180 finite

elements, and a padding layer of 9 elements is added as be-

fore. The point load and the point support are distributed

over 10 adjacent nodes in order to avoid stress singularities

at these regions. Furthermore, solid padding is added again

to ensure that the loads and supports are well-connected to

the design.

The results in Table 5 show that in such cases, modifying

the length scale has only a minor, if any, effect on reducing

the peak stresses. The compliance increases monotonically

with the length scale as expected, however the maximum

stresses decrease only slightly when increasing the filter size

from rmin = 3 to rmin = 5 and rmin = 7, and then increase

again for rmin = 9. The length scale does not affect the peak

stresses in this example because they appear in the vicinity

of the point support and the maximum value is essentially

unavoidable. The beam is a statically determinate structure

hence the reaction force does not depend upon the design.

Once point loads and supports are excluded from the stress

criteria, the design domain has no singularities and then the

minimum compliance design will also be the one that min-

imizes stresses – this claim will be further established in

the next section. This does not imply that the procedures

proposed hereafter are not applicable for cases as the MBB

beam that do not have inherent stress singularities. However,

for such domains, if a given stress criteria cannot be satisfied

by the minimum compliance design after excluding load and

support regions, then the whole problem is infeasible and the

material volume should be increased.

3 The relation between compliance and stress

Minimizing compliance for a structure with fixed Dirichlet

boundary conditions, prescribed body forces and tractions is

equivalent to reducing the total strain energy. A relation be-

tween the strain energy at equilibrium and the stress distri-

bution can be established using the laws of linear elasticity.

Based on this relatively simple link, Bendsøe et al (1993)

demonstrate that minimization of compliance is equivalent

to minimization of an integral of the squared von Mises

stress field over the design domain. Such an integral inequal-

ity cannot account for the local nature of stress concentra-

tions that appear in singular points – such as re-entrant cor-

ners and locations of point loads or supports. Therefore, the

stress in such regions cannot be controlled directly by com-

pliance minimization. On the other hand, as discussed in the

introduction, the enforcement of strict length scale on both

phases removes geometric singularities because it constrains

the geometry to consist of a union of disks or balls. Thus,

the length scale provides the minimal required smoothness

for which there are no stress singularities, while at the same
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Table 1 The effect of filter radius in minimum compliance optimization of an L-bracket, ηdil = 0.4, ηero = 0.6.

Filter radius 3 5 7 9

Compliance 2.235 ·102 2.322 ·102 2.363 ·102 2.445 ·102

Max. σV M 6.040 ·10−1 5.449 ·10−1 4.742 ·10−1 4.393 ·10−1

Volume 8.983 ·103 8.968 ·103 8.964 ·103 8.961 ·103

Layout

Filter radius 11 13 15 17

Compliance 2.578 ·102 2.764 ·102 3.052 ·102 3.319 ·102

Max. σV M 4.303 ·10−1 4.273 ·10−1 4.274 ·10−1 4.408 ·10−1

Volume 8.961 ·103 8.964 ·103 8.971 ·103 8.972 ·103

Layout

Table 2 The effect of filter radius in minimum compliance optimization of an L-bracket, ηdil = 0.1, ηero = 0.6.

Filter radius 6 7 8 9

Compliance 2.384 ·102 2.400 ·102 2.454 ·102 2.515 ·102

Max. σV M 5.320 ·10−1 4.923 ·10−1 4.778 ·10−1 4.551 ·10−1

Volume 8.957 ·103 8.960 ·103 8.963 ·103 8.964 ·103

Layout

time compliance minimization decreases the overall inten-

sity of the von Mises stress field. We note that stress con-

centrations due to point loads or supports may need to be

treated also by adequately distributing the forces – as re-

quired in practical design anyway.

The theory for the above discussion in continuous set-

tings is presented in Bendsøe et al (1993). Due to its im-

portance for justifying the proposed algorithms we briefly

repeat it here. The weak formulation of the linear elasticity

problem is given as

a(u,v) = l (v) for all v ∈V0 (7)

where u is the displacement field, v is the virtual displace-

ment field and V0 is the admissible set of displacement fields.
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Table 3 The effect of filter radius in minimum compliance optimization of an L-bracket, ηdil = 0.4, ηero = 0.9.

Filter radius 6 7 8 9

Compliance 2.415 ·102 2.501 ·102 2.599 ·102 2.717 ·102

Max. σV M 5.103 ·10−1 4.872 ·10−1 4.869 ·10−1 4.810 ·10−1

Volume 8.964 ·103 8.962 ·103 8.963 ·103 8.965 ·103

Layout

Table 4 The effect of varying symmetric projection thresholds in minimum compliance optimization of an L-bracket, rmin = 7.

Thresholds ηdil = 0.4, ηero = 0.6 ηdil = 0.3, ηero = 0.7 ηdil = 0.2, ηero = 0.8 ηdil = 0.1, ηero = 0.9

Compliance 2.363 ·102 2.403 ·102 2.454 ·102 2.531 ·102

Max. σV M 4.742 ·10−1 4.765 ·10−1 4.879 ·10−1 5.055 ·10−1

Volume 8.964 ·103 8.968 ·103 8.965 ·103 8.959 ·103

Layout

The bilinear form a and the linear functional l are defined as

a(u,v) =
∫

Ω
(D : ε (u)) : ε (v)dx (8)

l (v) =
∫

Ω
f ·vdx+

∫

ΓN

t ·vdx (9)

with ε denoting the linearized strain tensor, D the linear

elastic stiffness tensor, f are body forces and t are traction

forces on the boundary. Ω is the design domain with bound-

ary Γ = ΓDi
∪ΓNi

decomposed into two disjoint subsets for

each component ui, i = 1,2,3. ΓDi
is the part of the bound-

ary where ui = 0 and ΓNi
denotes the part with prescribed

traction ti. The goal is to find a solution u ∈V0 where

V0 =
{

v ∈
[
H1 (Ω)

]3
: vi = 0 on ΓDi

, i = 1,2,3
}
. (10)

The compliance functional is computed as

l (u) =
∫

Ω
(D : ε (u)) : ε (u)dx =

∫

Ω
(C : σ (u)) : σ (u)dx

(11)

where u satisfies Equation 7, and in addition the fourth-

order stiffness tensor D by definition is invertable, i.e., the

compliance tensor is given by C = D−1. Given that the von

Mises stress σ is defined at each point by the expression

σ2 = (M : σ (u)) : σ (u) where M is constant, the following

inequality is established (Bendsøe et al 1993)
∫

Ω
σ2dx ≤Cσ

∫

Ω
(C : σ) : σdx =Cσ l (u) . (12)

In other words, the integral of the squared von Mises stresses

is bounded by the compliance, while the constant Cσ > 0 de-

pends on the specific stiffness tensor and the area or volume

of the computational domain. Thus, minimizing the compli-

ance also minimizes the upper bound of the integral of the

squared von Mises stress.

When the stress distribution is uniform – i.e. a fully stressed

design is optimal – then it is possible to define a compli-

ance target value that corresponds to a desired allowable

stress. This is rarely the case (Zhou and Sigmund 2017),

however the inequality holds also for non-uniform stress dis-

tributions, as long as there is sufficient regularity of the de-
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Table 5 The effect of filter radius in minimum compliance optimization of an MBB-beam, ηdil = 0.4, ηero = 0.6.

Filter radius 3 5

Compliance 1.437 ·102 1.494 ·102

Max. σV M 8.399 ·10−1 7.921 ·10−1

Volume 5.410 ·103 5.404 ·103

Layout

Filter radius 7 9

Compliance 1.520 ·102 1.576 ·102

Max. σV M 7.907 ·10−1 8.262 ·10−1

Volume 5.400 ·103 5.399 ·103

Layout

sign boundary. Because both the void and the solid parts of

the design domain, with length scale control, can be consid-

ered to be unions of disks in 2-D and balls in 3-D (Wang et al

2011; Lazarov et al 2016), the boundary is always smooth

and the stress is finite. It is essential to ensure that the ap-

plied loads do not violate the desired upper bound of the von

Mises stress. Thus, concentrated forces and supports should

be either avoided, or a sufficient region around them should

be considered to be a non-design domain (Bendsøe et al

1993). Under these conditions, it will be shown that mini-

mizing compliance can also minimize the maximum stress.

4 A procedure with adaptive filter radius

In this section we present a simple algorithmic addition to

the standard minimum compliance formulation (5) that en-

ables to limit the peak stresses to a specified value, by con-

trolling the length scale of the design in a global (or uniform)

manner. Prior to the formal presentation of the procedure,

the motivation for deriving it will be clarified based on a

simple demonstrative example.

4.1 Applying continuation on filter radius

As shown in the previous section, in the L-bracket case one

could observe a reduction in peak stresses when increasing

the length scale. Another supporting example is presented

herein, where we solve the L-bracket case again, this time

with a continuation on the filter radius. All parameters are

the same as in the previous section. Every 10th iteration,

when βH is increased, we also measure the maximum stress

on the physical density field ρ int obtained with a sharp pro-

jection, βH = 16. This stress is measured on a nearly solid-

void design so issues with quantifying the stress in inter-

mediate density points are circumvented. If the maximum

stress exceeds the allowable value, then the filter radius is

increased by 1. This rule is of course a simplification and is

rather arbitrary – a more general approach will be presented

in the next section. Compared to the results in Table 1, the

total number of iterations remains the same (150) however

the trade-off between compliance and stress is different.

Two results obtained for different stress limits are pre-

sented in Table 6. When increasing the radius gradually from

rmin = 5 to rmin = 9 and comparing to results in Table 1,

we see that the compliance lies between the results obtained

with rmin = 7 and rmin = 9 while the stress is lower. Simi-

larly, when increasing the radius gradually from rmin = 7 to

rmin = 12 and comparing to results in Table 1, we see that
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the compliance resembles the result obtained with rmin = 13

while the stress is lower. This demonstrates how by control-

ling the length scale and adapting it according to the stress

violations, one can find better trade-offs between compli-

ance and stress, or in other words lower stresses for a given

compliance. Therefore it makes sense to derive a procedure

that adaptively controls the length scale according to the

peak stresses and their desired value.

4.2 An inner-outer optimization procedure

Using the simplistic continuation scheme as proposed above,

it is not possible to guarantee that the actual stress constraint

is satisfied or that the stress level is not too low, i.e. there is

a large slack in the constraint. In this section, we present a

more general problem formulation where the filter radius is

treated as a design variable. The optimization problem con-

sists of two levels or ‘loops’: an outer one which determines

the length scale (parametrized by the filter radius) accord-

ing to the peak stresses; and an inner one which minimizes

compliance for the length scale given by the outer loop. For-

mally, the outer loop is defined as

min
rmin

φouter =
∣∣σV M

max(ρ
int)−σ⋆

max

∣∣

(13)

where σ⋆
max is the allowable stress and σV M

max(ρ
int) is the max-

imum von Mises stress measured on the intermediate projec-

tion of the design ρ that minimizes (5). The overall compu-

tational strategy for obtaining stress-constrained designs via

a minimum compliance formulation and length scale control

is comprised of the following steps:

1. Set allowable stress σ⋆
max.

2. Initialize outer loop: i = 0, set initial filter radius ri.

3. Inner loop: perform a predefined number of iterations

towards solving (5) with the current ri.

4. Compute the derivative of the maximum stress w.r.t. the

filter radius using a forward difference:

dσV M
max

dr
≈

σV M
max(ri +∆r)−σV M

max(ri)

∆r
(14)

5. Update the filter radius towards solving (13):

ri+1 = ri + sgn

(
σ⋆

max −σV M
max(ri)

dσV M
max

dr

)∣∣∣∣∣
σ⋆

max −σV M
max(ri)

dσV M
max

dr

∣∣∣∣∣

0.5

(15)

6. i = i+1, repeat steps 3-6.

In our numerical experiments, the procedure outlined

above worked well with the filter function defined as in Eq. (1)

and with the maximum stress σV M
max(ri) evaluated with the

true (non-differentiable) max function. Nevertheless, in prin-

ciple it is preferable to derive these building blocks with

differentiable functions, so that the expression (14) approxi-

mates an existing, continuous derivative. The cone-shape fil-

ter represented by Eq. (1) is replaced by the Gaussian-shape

filter,

w(x j) = exp(−

∣∣∣∣
d(xi,x j)

r
2

∣∣∣∣
2

) (16)

where d(xi,x j) is the distance between the two points xi and

x j, the former representing the center of the filter and the lat-

ter representing any point in the domain; and r is the equiva-

lent of the filter radius (Bruns and Tortorelli 2003; Wang and

Wang 2005; Sigmund 2007). The Gaussian filter behaves

similarly to the standard cone-shape filter but it is continu-

ously differentiable. Furthermore, the maximum von Mises

stress σV M
max(ri) within the domain is approximated using a

standard p-norm function so that a differentiable evaluation

is obtained.

The results of minimum compliance optimization of the

L-bracket, using an adaptive filter radius according to the

strategy outlined above, are presented in Table 7. For the

forward difference computation in Eq. (14), we use a p-

norm approximation of the maximum stress with an expo-

nent equal to 8 and ∆r = ri/100. Higher values of p have

been used successfully, but we do not find them necessary

as the only purpose is to find the directional change in the

maximum stress due to a change in length scale. In order

to avoid very large design changes when rmin is updated, a

move limit of 1.0 is imposed on the difference between ri+1

and ri. Applying such a move limit is a standard safeguard-

ing technique in many non-linear optimization procedures.

In all the examples presented from this point onwards, an

inner loop consists of 10 design iterations and the total num-

ber of design iterations is 150. Therefore, the total number

of function evaluations is 150, plus two evaluations for com-

puting the finite difference on the intermediate design, every

time the filter is updated. The filter size is updated at the end

of an inner loop only if the (true) maximum stress differs

from the allowable stress by more than 5%.

The three cases presented in Table 7 differ in the values

of the initial filter radius and of the allowable stress. Looking

closely at the results, it can be observed that the procedure

finds trade-offs of compliance and stress that outperform the

naive results of Table 1. For example, the result in the first

column shows a compliance of 2.284 · 102 which is in be-

tween the compliance values obtained with fixed filter radii

of 3 and 5 in Table 1. At the same time, the maximum stress

is 4.957 · 10−1 which is lower than the stress level of the

layout obtained with a fixed radius of 5 – hence the attained

trade-off is superior. Furthermore, the procedure is capable

of finding the required filter radius so the user does not nec-

essarily need to predict an appropriate value – though choos-
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Table 6 Minimum compliance of an L-bracket with a simple continuation on filter radius, ηd = 0.4 and ηe = 0.6.

Initial radius 5.00 7.00

Final radius 9.00 12.00

σ⋆
max 4.500 ·10−1 4.100 ·10−1

Max. σV M 4.162 ·10−1 3.958 ·10−1

Compliance 2.404 ·102 2.802 ·102

Volume 8.961 ·103 8.960 ·103

Layout

Table 7 Minimum compliance optimization of an L-bracket, with an adaptive filter radius in an outer optimization loop, ηd = 0.4 and ηe = 0.6.

Initial radius 3.00 5.00 7.00

Final radius 5.41 8.47 12.48

σ⋆
max 5.000 ·10−1 4.500 ·10−1 4.000 ·10−1

σV M
max(ρ

int) 4.957 ·10−1 4.577 ·10−1 3.998 ·10−1

Compliance 2.284 ·102 2.367 ·102 2.489 ·102

Volume 8.971 ·103 8.962 ·103 8.961 ·103

Layout

Stresses
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Fig. 2 The evolution of rmin (top) and σV M
max(ρ

int) (bottom, dashed line

shows σ⋆
max), in minimum compliance optimization of an L-bracket

corresponding to the second column of Table 7.

ing a closer initial value will speed up the convergence to the

required filter size.

The convergence of rmin and σV M
max(ρ

int) throughout the

150 design iterations is presented in Figure 2, that corre-

sponds to the central column of Table 7. There is a clear gen-

eral trend – the filter radius increases and maximum stress

decreases during the optimization process, because the start-

ing point is deliberately chosen such that the filter radius is

too small to satisfy the stress requirement. Once the max-

imum stress approaches the allowable limit up to a speci-

fied tolerance, the updates of the filter radius are suppressed

(from iteration 50 onwards). A moderate reduction in stresses

is still observed over the next 100 iterations, however this is

attributed to the overall improvement of the design, in terms

of compliance, stress and the volume constraint.

An example with multiple load cases. As the proposed ap-

proach relies on an underlying minimum compliance for-

mulation, the extension to multiple loadcases involves the

minimization of a weighted compliance. For such cases, the

strategy for adapting the filter radius can be extended in two

levels. First, the update of the filter radius in steps (4) and

(5) above needs to be determined according to the particu-

lar loadcase that represents the worst violation of its corre-

sponding stress constraint. Once the filter radius is updated,

it will subsequently affect all loadcases and may reduce the

maximum stress also in loadcases that do not have any viola-

tion of the stress constraint – hence some conservativeness

is introduced. Therefore in the second level, one can ma-

nipulate the weights in the weighted compliance objective

such that priority is given to loadcases that are more critical

w.r.t. maximum stresses. However, according to our exper-

iments this leads to a serious compromise on compliance

and does not necessarily contribute to less conservative de-

signs w.r.t. the loadcases with an inactive stress constraint.

A more promising approach for reducing conservativeness

will be discussed in the next section. The following results

are therefore restricted to an update of the filter radius only.

Results with a double L-bracket and two separate load-

cases are presented in Figure 3. The load on the left hand

side of the structure is 0.5 and the load on the right hand side

is 1.0, while the allowable stress is σ⋆
max = 4.0 · 10−1 in the

whole domain. As the optimization minimizes a weighted

compliance with equal weights (0.5 in this case), the re-

sult is expected to have more material on the right hand

side. But the adaptation of the filter radius is determined ac-

cording to the derivatives of the maximum stress violation,

and then the length scale is altered uniformly so both load-

cases will be affected by a certain reduction in maximum

stresses. All parameters are the same as for the standard L-

bracket, except that the allowable volume fraction is 40%

and the FE grid is increased to 320× 200 so that each side

is the same as a standard L-bracket. The initial filter radius

is set to rmin = 5.0 and when keeping it constant, the maxi-

mum stresses are 4.638 ·10−1 and 2.559 ·10−1 for the loads

on the right hand side and left hand side, respectively. The

weighted compliance is 2.504 · 102. With the given limit of

σ⋆
max = 0.4, the filter radius is gradually adapted up to the

value of rmin = 8.8310. The maximum stresses are 3.916 ·

10−1 and 2.129 · 10−1 for the loads on the right hand side

and left hand side, respectively. The weighted compliance

is naturally higher than before, 2.578 · 102. It can be seen

that because of the uniform increase in length scale, the

slack in the inactive stress constraint (for the load on the

left) becomes even larger, as stresses are reduced through-

out the domain even if this particular stress constraint is not

active. We note that if the loads were chosen to be of the

same magnitude and the allowable stresses would be differ-

ent for each loadcase, while the weights were kept equal,

then the weighted minimum compliance would yield a sym-

metric design – hence some conservativeness with respect to

the inactive loadcase will again be introduced.
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Fig. 3 Minimum weighted compliance optimization of a double L-

bracket with two separate loadcases. Top: rmin = 5.0, σV M
max(ρ

int) =
4.638 · 10−1; bottom: adaptive filter radius in an outer optimization

loop with σ⋆
max = 4.0 · 10−1 , initial rmin = 5.0, final rmin = 8.8310,

σV M
max(ρ

int) = 3.916 ·10−1.

5 A procedure with spatially varying filter radius

The results so far reveal the significant influence that the

length scale has on the stress performance of the optimized

design. In the vast majority of cases, a reduction in maxi-

mum stress can be achieved by increasing the length scale.

However this typically comes with a price – the designs are

not as stiff as those that are generated with a small length

scale. Looking back at the results in Table 1, it can be seen

that low compliance is achieved when the layout consists

of a larger number of thin bars; whereas low stresses are

achieved when the layout consists of a small number of thick

bars, and more importantly – large radius of curvature at the

re-entrant corner. In other words, it is beneficial to have a

large length scale near the re-entrant corner so that stresses

are reduced, while in the remainder of the domain it is better

to have a small length scale that leads to lower compliance.

In this section, we propose a procedure that enables to cap-

ture the best of both worlds, by using a spatially varying

filter radius.

By introducing a spatial variation, the filter radius pa-

rameter is treated as a function of the position in space rather

than as a constant value. The idea of spatially varying filter

radius can and will be combined with the procedure out-

lined in Section 4 where the filter radius was treated as a

design variable that is constant in space. But first we wish

to demonstrate the effect of a spatially varying filter using a

constant configuration – meaning the filter radius through-

out the domain is determined once before the optimization.

The distribution of filter radii is based on a basic assump-

tion, that stress concentrations are expected in the vicinity

of re-entrant corners and therefore it is necessary to increase

the length scale in these regions.

More generally, a re-entrant corner can be seen as a “stress

attractor” point. Within a certain influence distance from the

stress attractor point, the radius is increased according to a

super-Gaussian function. In a 2-D setting, denoting the dis-

tance from a certain point (x,y) to the stress attractor point

as d(x,y), we define an auxiliary function ψ(x,y) that mea-

sures the influence of the attractor as a value between zero

and one,

ψ(x,y) = exp(−

∣∣∣∣
d(x,y)

D

∣∣∣∣
θ

) (17)

where D is the characteristic influenced distance and θ de-

termines the sharpness of the function. The spatial filter ra-

dius r̂(x,y) is subsequently computed at each point accord-

ing to the native radius rmin and the auxiliary function,

r̂(x,y) = (1+ γψ(x,y))rmin (18)

where γ is a parameter that determines the increase in filter

radius at the attractor point. For example, γ = 1 means that

the filter radius at the attractor point will be twice the native

filter radius, and it will reduce smoothly as the distance from

the attractor is increased, according to the function ψ(x,y).

The result of minimum compliance optimization of the

L-bracket with a spatially varying filter radius is presented

in Figure 4. The native radius is rmin = 5, the influence dis-

tance is D = 50 , the sharpness parameter is θ = 5 and

the increase in filter size is γ = 2. The compliance of the

optimized design is 2.460 · 102 and the maximum stress is

3.133 ·10−1. These values are quite remarkable, as the com-

pliance is similar to that obtained with a constant filter ra-

dius of 9, while the stress is reduced by nearly 30%. It can

be seen that the length scale is very large near the re-entrant

corner. The solid members are very thick and the radius of

curvature at the corner is very large – these two attributes

lead to reduced stresses. In the periphery of the design one

can observe much thinner features and small holes, comply-

ing with the relatively small native filter size.
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Fig. 4 Minimum compliance optimization of an L-bracket with a spatially varying filter radius. Left: optimized layout; Right: the distribution of

filter radii r̂(x,y). The native and increased length scales are plotted as circles alongside the layout.

5.1 Spatially varying filter radius with inner-outer

optimization

In this section we combine the concept of a spatially varying

filter radius, with the adaptive approach presented in Section

4. This can give improved results in comparison to each of

the two approaches separately. Three optimization runs of

the L-bracket are presented in Table 8, all have the same ini-

tial native filter radius. The input parameters that control the

influenced distance from the re-entrant corner and the mag-

nitude of the additional radius are chosen according to the

required stress level. Namely, for satisfying a lower allow-

able stress limit, it is expected that a larger influence dis-

tance and a bigger increase in filter radius will be necessary.

During the optimization, only the native radius is changed

according to the procedure in Section 4. The sharpness of

the super-Gaussian function is set to θ = 2 in order to ob-

tain a relatively smooth transition. As can be inferred from

the results, the combination of spatial variation with adap-

tivity of the native radius provides superior results compared

to each procedure separately. For example, the result in the

third column of Table 8 shows lower compliance and lower

stress than the result with spatial variation only. The same

holds also for the result in the first column of Table 8 when

compared to the result in the third column of Table 7 which

targeted the same allowable stress.

5.2 Determining the spatial variation on-the-fly

The results in this section so far were based on prior knowl-

edge of the problem at hand – the singularity of the design

domain of the L-bracket dictates a potential stress attractor

point around which the function ψ is defined. In practical

cases, it may not be that easy to suggest potential stress at-

tractor points. One possibility is to determine such points

based on an initial stiffness optimization without any stress

constraints. Another, more general approach is to identify

the stress concentrations as the optimization progresses, and

to construct a limited number of appropriate ψ functions on-

the-fly.

On-the-fly spatial variation is demonstrated using the prob-

lem of a U-bracket, that has multiple stress concentrations,

see Figure 5 for the setup. The procedure for constructing ψ

functions is as follows:

1. Begin minimum compliance optimization with no spa-

tial variation, i.e. a filter radius that is constant in space.

2. If there are violations of the stress constraint:

(a) Find the geometric locations of all points where the

stress exceeds the allowable value.

(b) Sort the values by their magnitude for prioritizing the

sequence in which ψ functions will be generated.

(c) Remove duplicates – i.e. adjacent points which be-

long to the same physical stress concentration.

(d) Generate a set of ψ functions that correspond to the

attained locations of stress concentrations and up-

date r̂(x,y).

3. Perform a predefined number of iterations towards solv-

ing (5) with the current r̂(x,y).
4. Repeat from step 2.

The design domain is based on a 200×100 grid of square

finite elements with side length of 1.0, from which a square

of 50× 50 elements is fixed to be void. The design domain

is padded with a layer of 9 void elements on the free bound-

aries of the design domain. In order to avoid stress concen-

trations at the loading point, we distribute the load over 9

adjacent nodes at the corner, and pad the design domain lo-

cally with 3 layers of solid elements. This ensures that the

load is connected to material also after the Heaviside pro-

jections. The desired volume fraction of the intermediate de-

sign is V ⋆ = 35% of the U-shape only. As explained above,

the optimization begins with 10 design iterations of stan-
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Table 8 Minimum compliance optimization of an L-bracket, with a spatially varying filter radius and adaptivity in an outer optimization loop,

ηd = 0.4 and ηe = 0.6. The native and enlarged filter sizes are plotted alongside the optimized layout.

Initial native radius 3.00 3.00 3.00

Final native radius 3.54 4.20 5.93

Influence distance D 20 30 30

Increase factor γ 2 2 3

σ⋆
max 4.000 ·10−1 3.500 ·10−1 3.000 ·10−1

σV M
max(ρ

int) 3.859 ·10−1 3.573 ·10−1 3.028 ·10−1

Compliance 2.209 ·102 2.237 ·102 2.343 ·102

Volume 8.981 ·103 8.970 ·103 8.951 ·103

Layout

Spatial radii

Stresses

dard minimum compliance with rmin = 3. Then, every 10 it-

erations the stresses are checked and sorted for determining

the spatial variation r̂(x,y). If there are no stress violations,

then the current spatial variation is kept until the next update

instance. In implementing step (2c) above, a stress violation

point is disregarded if its distance from an existing point (for

which a function ψ was already generated, because it has a

more acute stress level) is shorter than the influence distance

D. Finally, the various ψ functions are merged based on the

maximum value at each spatial position. In this example, the

parameters for generating ψ were set to θ = 2, γ = 2 and

D = 20.

Results with on-the-fly spatial variation, applied to the

problem of the U-bracket, are presented in Table 9. For com-

parison, we present the results also with standard constant

filtering and with an adaptive filter radius which is constant

in space, as in Section 4. In the latter case, the radius adapted

gradually to rmin = 8.5651. The quantitative results indicate
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Fig. 5 Design domain and boundary conditions of a U-bracket. For consistent length scale on the boundary of the domain, the L× 2L region is

padded with a void layer whose thickness is rp.

that a stress reduction to the vicinity of the allowable value

σ⋆
max = 0.4 is possible, either by adapting the filter radius

during the optimization or by using a spatial variation based

on a mapping of the stress violations. The latter procedure

holds the advantage of maintaining high quality in terms

of compliance – in fact, it does not yield a higher compli-

ance than the baseline design (note there is a slight differ-

ence in the final volume). Looking qualitatively at the opti-

mized layouts, both procedures suggested herein lead to an

increased length scale near the re-entrant corners – hence the

thicker members and the larger curvature radii. The spatially

variable filter yields good stiffness because the length scale

away from the re-entrant corners is small, whereas with an

adaptive filter radius it is increased uniformly throughout the

design domain. This demonstrates the benefit of spatial vari-

ation of the length scale, that can be utilized also if there is

no prior knowledge regarding the stress concentrations. It

is interesting to see that in the U-bracket example, the de-

tection of stress violations was performed only once, after

10 design iterations. Then, based on the generated spatial

radii r̂(x,y), the maximum stress decreased to an accept-

able level which was specified as within 5% from the al-

lowable stress. As the optimization progressed, no updates

of the spatial variation were necessary because the maxi-

mum stress remained within the acceptable range. Therefore

in this case the suggested procedure was essentially a stan-

dard minimum compliance optimization, with a single step

of mapping the stresses and determining the spatial length

scale accordingly.

Revisiting an example with multiple load cases. The prin-

ciple of a spatially varying filter radius is quite useful for

accommodating multiple loadcases with different stress re-

quirements. As discussed in Section 4.2, with multiple load-

cases the adaptive filter radius procedure can lead to con-

servative designs w.r.t maximum stresses because the filter

is increased uniformly according to the stress violation of

the worst loadcase. Using on-the-fly spatial variation, the

increase of filter radius can be limited to specific regions

of the design that are affected by the loadcases that actually

exhibit a stress violation. At the same time, regions with in-

active stress constraints will not be affected and therefore

their compliance can be better maintained.

We revisit the same example of a double L-bracket as in

Section 4.2, this time with two equal loads of magnitude 1.0

but different stress requirements. We use the following pa-

rameters: native radius rmin = 5.0; σ⋆
max = 0.4 for the load on

the right; σ⋆
max = 0.6 for the load on the left; sharpness pa-

rameter θ = 2; relative radius increase γ = 2; and influence

distance D = 20. The result is presented in Figure 6. As be-

fore, the detection and sorting of stress violations had to be

performed only once, after 10 design iterations, yielding the

spatial variation displayed in Figure 6. From that point on-

wards, the optimization ran without any further violations

of either stress constraint. It can be seen that the left part

of the structure did not require any increase in filter radius

because after 10 design cycles the maximum stress was al-

ready within the (relatively liberal) allowable limit. In the

optimized design, the maximum stresses were 3.110 · 10−1

for the load on the right and 5.197 ·10−1 for the load on the

left. The compliance values were 2.020 ·102 for the load on

the right and 2.121 · 102 for the load on the left. It is inter-

esting to see how more material was invested in the right

side because of the tighter stress requirements, however the

compliance due to the load on the left part is only slightly

higher – because the smaller length scale compensates for

the loss of material. Another interesting aspect is the loca-

tion of ‘stress attractor’ points – in this example, besides the

expected stress violation in the corner, two additional viola-

tions are detected which are on the peripheral bars. Conse-

quently, the length scale in these areas is increased and right

side of the design becomes thicker than the left side.
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Table 9 Minimum compliance optimization of a U-bracket, with a standard procedure (left), an adaptive filter radius (middle) and a spatially

varying filter radius based on observed stress concentrations (right).

Method standard adaptive r spatial r̂ on-the-fly

σ⋆
max

— 4.000 ·10−1 4.000 ·10−1

σV M
max(ρ

int) 5.057 ·10−1 4.128 ·10−1 3.897 ·10−1

Compliance 1.191 ·102 1.275 ·102 1.174 ·102

Volume 6.150 ·103 6.125 ·103 6.183 ·103

Layout

Spatial radii

6 Quantitative comparison to state-of-the-art p-norm

approach

This section is dedicated to a one-to-one quantitative com-

parison versus an established approach to stress-constrained

topology optimization. Looking at the literature in the con-

text of density-based procedures, it is clear that the aggre-

gated p-norm approach is the most common and therefore

we wish to compare the results of the current contribution

to an implementation based on a p-norm approximation of

the maximum stress. It is important to note that to the best

of the authors’ knowledge, stress-constrained topology opti-

mization with consistent length scale imposition and manu-

facturability – i.e., convergence to black-and-white designs

so no thresholding or post-processing is necessary – was not

considered so far. Therefore, the comparison herein is based

on our own implementation of the p-norm approach with the

same length scale and manufacturability requirements as in

the results presented in Sections 4 and 5. In the following,

we first describe the formulation and implementation of the

p-norm approach and later provide a comparison to the re-

sults in Table 8.

6.1 Formulation and implementation of a p-norm approach

In formulating the p-norm approach, we rely on knowledge

and experience that have been accumulated in the research

community in recent years, and are reflected in several suc-

cessful implementations as reviewed in the introduction. Ad-

ditionally, length scale and manufacturability are guaranteed

by utilizing robust topology optimization (Wang et al 2011;

Lazarov et al 2016). For minimizing volume subject to stress

constraints and a compliance constraint, which reflects the

same design intent as the previous formulations in this arti-

cle, the optimization problem is posed as follows,

min
ρ

NE

∑
e=1

ρdil
e ve

s.t.: g1 = fT u− c⋆ero ≤ 0

g2 = σPN −σ⋆
ero ≤ 0

0 ≤ ρe ≤ 1, e = 1, ...,NE

with: Kerou = f (19)

where c⋆ero is the allowable compliance; σPN is an approxi-

mation of the maximum stress; σ⋆
ero is the allowable stress;
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Fig. 6 Minimum weighted compliance optimization of a double L-bracket with two separate loadcases and a spatially varying filter radius. Left:

optimized layout; Right: the distribution of filter radii r̂(x,y). The native and increased length scales are plotted as circles alongside the layout.

and all other components were defined in Eq. (5). We note

that both constraints g1 and g2 are imposed on the eroded

design which is the only one that is evaluated within every

design cycle. Therefore the values c⋆ero and σ⋆
ero have the sub-

scripts ero and need to be adapted such that eventually the

compliance and stress requirements on the intermediate de-

sign will be satisfied. Furthermore, σ⋆
ero needs to be scaled

such that eventually the true maximum stress, and not the

approximate one, will be lower than the allowable stress.

Based on a series of numerical experiments, the param-

eters chosen for achieving the best results are:

– SIMP penalization: the stiffness as in Eq. (6) is penalized

with p = 2 whereas the stress at each point is evaluated

with p = 0.5 (e.g. Le et al 2010).

– Smooth Heaviside: because stresses are not evaluated

accurately on intermediate densities, the optimization be-

gins with βH = 4.0 which is multiplied by 1.12 every 10

iterations, up to a maximum value of 16. These settings

mimic the progress of βH in the results of the previous

sections, while considering the higher initial value.

– Constraint aggregation: we use a single p-norm approxi-

mation with the power of 8, kept constant throughout the

optimization process.

– Constraint values: the values of c⋆ero and σ⋆
ero are mod-

ified every 10 design iterations according to the value

of the true constraints. These are gint
1 = fT uint − c⋆int and

gint
2 = σ int

max −σ⋆
int which are evaluated on the intermedi-

ate design defined by βH = 16.0, while their allowable

values are the actual values one wishes to impose on the

design. The intermediate design is defined with a sharp

Heaviside in order to approach the true response as much

as possible.

In all other aspects – e.g. problem setup, boundary condi-

tions, number of iterations – the implementation follows the

same assumptions and parameters as described in the previ-

ous sections. The only difference is that the problem (19) is

solved with MMA (Svanberg 1987) which was not needed

in the previous sections. In the authors’ opinion, the results

obtained with these settings are at least as good as any other

published results in the literature that are based on constraint

aggregation within a density-based topology optimization

framework. Hence we believe that they provide a solid refer-

ence for comparison to the proposed procedures that achieve

stress constraints only by length scale control.

6.2 Comparison to Table 8

Our quantitative comparison focuses on the results from Ta-

ble 8 because they reveal the full potential of the proposed

procedures – having both an adaptive filter radius and the

freedom of spatial variation. The compliance values from

the table are used as c⋆int for the p-norm optimization and

σ⋆
int is the same as σ⋆

max in Table 8. The filter radius is set

according to the final native radius in the table so that the

minimum length scales match.

Looking at the results in Table 10, it is observed that for

all three cases the p-norm approach converged successfully

and satisfied both the compliance and the stress constraints.

In comparison to Table 8, all three layouts have higher vol-

umes. At the same time, the layouts in the second and third

column are somewhat stiffer than their respective layouts,

and the layout in the second column has also lower stresses –

these are due to a certain slack in the final values of the con-

straints. Therefore, one cannot conclude that either approach

reaches better trade-offs in terms of compliance, stress and

volume.

The proposed procedures that are based on controlling

the length scale should not be seen as a direct alternative

to traditional approaches. Their underlying formulation is

a simple minimum compliance problem while stresses are

regulated and reduced by manipulating the length scale of
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Table 10 Minimum volume optimization of an L-bracket with compliance and stress constraints, using a p-norm approximation of the maximum

stress, ηd = 0.4 and ηe = 0.6. The filter size is plotted alongside the optimized layout. The values inside the square brackets are the relative

difference compared to Table 8.

Filter radius 3.54 4.20 5.93

σ⋆
max 4.000 ·10−1 3.500 ·10−1 3.000 ·10−1

σV M
max(ρ

int) 3.809 ·10−1 [-1.30%] 3.221 ·10−1 [-9.85%] 3.002 ·10−1 [-0.86%]

Compliance 2.211 ·102 [+0.09%] 2.170 ·102 [-3.00%] 2.048 ·102 [-12.59%]

Volume 9.602 ·103 [+6.91%] 10.05 ·103 [+12.04%] 10.70 ·103 [+19.54%]

Layout

Stresses

the design. So it is natural that the resulting layouts are dif-

ferent than those obtained with a traditional approach, how-

ever the overall trade-off of the three critical quantities is at

least as good. From a computational point of view, the pro-

posed procedures do not require computing an adjoint state

and can be implemented without a formal optimizer, hence

they can serve as an efficient means for finding stiff designs

that comply with stress requirements.

7 Conclusions

This paper addresses the relation between length scale and

maximum stresses in continuum topology optimization. First,

the reduction in maximum stress when length scale is in-

creased is demonstrated on classical test cases used for stress-

based topology optimization. Then, two different numerical

procedures are proposed that essentially offer control over

the length scale, according to the allowable maximum stress.

Both procedures treat the filter radius, which is the parame-

ter that dominates the attained length scale, as a design vari-

able – in addition to the usual point-wise density variables.

In contrast to typical stress-based procedures that treat the

stresses as a function of the topology, we see them as a func-

tion of the length scale only. Subsequently, the topology is

determined from a standard minimum compliance formula-

tion – which bounds also the stresses according to the in-

equalities presented by Bendsøe et al (1993).

In the first procedure, the filter radius is adapted through-

out the optimization process according to the derivative of

the maximum stress w.r.t. the filter radius. In between up-

dates of the filter radius, standard minimum compliance is

performed. In the second procedure, a spatially varying fil-

ter radius is introduced so that large length scale is obtained

where stresses are high, whereas small length scale is main-

tained elsewhere. It is shown that the optimized designs pro-

vide a good trade-off between compliance and stress. From

a computational standpoint, the proposed procedures are ef-

ficient and simple to implement. The large number of lo-

cal constraints is avoided, and the well-known difficulties

with applying aggregation techniques are circumvented. In

essence, the stress-constrained topology optimization is posed

as a minimum compliance problem with additional treat-
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ment of the length scale so that sufficient smoothness of the

design is guaranteed.

Examining the optimized designs, it can be seen that in

some cases the physical density distribution exceeds the pre-

scribed design domain – namely, for enforcing the desired

curvature (or void length scale) in re-entrant corners. This

is an attribute of the density-based approach where the de-

sign domain determines the distribution of the mathematical

variables, but it is difficult to constrain the physical densities

into the same domain (as discussed also by Clausen and An-

dreassen (2017)). In cases which require strict enforcement

of the design domain on the physical densities, it may be

necessary to modify the domain locally so that eventually

the physical densities remain within the prescribed bound-

ary. However, in the majority of cases the design domain is

merely a simple initial guess for conceptual design, and the

designer may not have a clear idea of where large fillets will

be necessary. Then, the proposed procedures can be seen as

a computational tool for designing the topology and simul-

taneously determining the required curvatures of re-entrant

corners in the design domain.
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