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Achieving superelasticity in 
additively manufactured NiTi in 
compression without post-process 
heat treatment
Narges Shayesteh Moghaddam1, Soheil Saedi2, Amirhesam Amerinatanzi3, 

Alejandro Hinojos4, Ali Ramazani5, Julia Kundin6, Michael J. Mills4, Haluk Karaca  7 & 

Mohammad Elahinia3

Shape memory alloys (SMAs), such as Nitinol (i.e., NiTi), are of great importance in biomedical and 

engineering applications due to their unique superelasticity and shape memory properties. In recent 

years, additive manufacturing (AM) processes have been used to produce complex NiTi components, 

which provide the ability to tailor microstructure and thus the critical properties of the alloys, such 

as the superelastic behavior and transformation temperatures (TTs), by selection of processing 

parameters. In biomedical applications, superelasticity in implants play a critical role since it gives the 

implants bone-like behavior. In this study, a methodology of improving superelasticity in Ni-rich NiTi 

components without the need for any kind of post-process heat treatments will be revealed. It will be 

shown that superelasticity with 5.62% strain recovery and 98% recovery ratio can be observed in Ni-
rich NiTi after the sample is processed with 250 W laser power, 1250 mm/s scanning speed, and 80 µm 

hatch spacing without, any post-process heat treatments. This superelasticity in as-fabricated Ni-rich 

SLM NiTi was not previously possible in the absence of post-process heat treatments. The findings of 
this study promise the fast, reliable and inexpensive fabrication of complex shaped superelastic NiTi 

components for many envisioned applications such as patient-specific biomedical implants.

NiTi-SMAs are well known for their unique properties, i.e., superelasticity and shape memory properties, ena-
bling them to be exploited for functional and smart structures in biomedical and engineering applications1–3. 
�ese alloys present other bene�cial characteristics, such as biocompatibility, wear and corrosion resistance, low 
modulus of elasticity, and high work output4–9. However, the inability to produce complex NiTi parts has limited 
their potential in a variety of applications, which can be attributed to the di�culties regarding machining of NiTi 
due to the high reactivity of the alloy, spring back e�ects, stress-induced martensite, work hardening, and the 
burr formation10–12. Additive manufacturing (AM) is a widely used technique enabling the production of parts 
with freeform geometry without any tooling which o�ers a promising alternative to the conventional fabrication 
routes13. Selective laser melting (SLM) is a common powder-bed AM technique which produces metallic com-
ponents from metallic powder14. �e combination of NiTi’s superelastic e�ect, together with freeform design and 
fabrication in SLM, make it a very attractive combination for biomedical applications15,16.

In superelasticity, NiTi can recover a large amount of strain (up to 8% strain) by a reversible stress-induced 
transformation15,17–20. In general, the superelastic response of NiTi extremely relies on the microstructural fea-
tures of the alloy. �e microstructure of AM NiTi has been shown to be di�erent than the conventional NiTi due 
to the correlation between the melt pools and the associated complex heat transfer, thermal gradients, and grain 
growth15. �e leading practice to enhance superelasticity of NiTi-based alloys is precipitation formation through 
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post-process heat treatments (i.e., solution annealing and aging)21–25. It has been reported that Ni-rich NiTi alloys 
with Ni content of more than 50.6 at% are sensitive to heat treatments while it is not practical to perform heat 
treatments on equi-atomic or Ti-rich NiTi alloys26. Depending on the heat treatment conditions (e.g. aging time 
and temperature) and composition, di�erent types of precipitates are evolved into the sample. In general, the 
nano-size Ni4Ti3 precipitates with small relative distance could result in a perfect superelasticity15. �e AM fab-
rication parameters have also been shown to strongly a�ect the microstructure and transformation behavior of 
AM fabricated NiTi. �e important parameters that were found to be in�uential were laser power (P), scanning 
speed (v), layer thickness (t), hatch spacing (h), and scanning strategy. Energy input (E) is a combination between 
these parameters and is de�ned as “supplied energy via laser beam to a volumetric unites of powder”, which plays 
a crucial role in microstructure. E, therefore, can be calculated from the following formula (E = P/(v × h × t)).

�e main challenge is that the superelasticity, i.e., full strain recovery, in as-cast or as-fabricated conditions 
is rare to achieve. Up to now, several research groups have focused on the enhancement of superelasticity in 
AM NiTi-SMAs via post-process heat treatment15,27–30. Halani et al.31 observed stabilized strain recovery of 3% 
in Laser Engineered Net Shaping (LENS) Ni55Ti45 (at.%) a�er solution annealing at 775 °C for 10 h and aging 
at 500 °C for 1 h. Haberland et al.27 observed strain recovery of 3.4% with the recovery ratio of 95% in SLM 
Ni50.7Ti49.3 (at.%) a�er solution annealing at 950 °C for 5.5 h and aging at 350 °C for 24 h. Saedi et al.28 performed 
solution annealing at 950 °C for 5.5 h and aging at 350 °C for 18 h on SLM Ni50.8Ti49.2 (at.%); they observed strain 
recovery of 5.5% with recovery ratio of 95% in the �rst cycle, and stabilized strain recovery of 4.2% a�er 10 cycles. 
In another study, Saedi et al.29 detected strain recovery of 5.5% in SLM Ni50.8Ti49.2 (at.%) a�er aging at 600 °C for 
1.5 h, without solution annealing. Post process heat treatments, while proven to be e�ective, add an additional 
step which increase the time and costs of product’s preparation. Hence, it is desirable to enhance the superelastic-
ity of AM NiTi-SMAs without the need for post-process heat treatments.

�e present study is the �rst attempt to enhance the superelasticity of SLM NiTi through tuning the micro-
structure and texture by means of controlling the SLM process parameters. It is proven in literature that a strong 
columnar texture with preferred [001] direction in single crystals can signi�cantly enhances the superelastic, 
fatigue, and creep properties of cubic metals such as B2 NiTi32–35. Interestingly, [001] texture can also be induced 
during the SLM fabrication thanks to the directional cooling and layer-by-layer nature of SLM36,37. During the 
SLM fabrication, the well-oriented nucleated {100}A planes grow quickly along the maximum thermal gradi-
ents direction and dominate the texture38. Providing that the SLM processing parameters act in a way to satisfy 
“epitaxial growth”, the maximum gradient temperature occurs along the building direction and therefore creates 
[001]-oriented texture. “Epitaxial growth” is referred to as the fully melting of each layer and partially remelt-
ing of the corresponding sublayer, which, in turn, results in the growth of grains along the [001] direction39,40. 
According to Guan et al.41, h parameter is the most in�uencing parameter on the microstructure and texture 
of the alloy, since it directly controls the remelting of the neighboring scan tracks. To this end, the processing 
parameters of P = 250 W, v = 1250 mm/s, and t = 30 µm were kept constant28,29,42–45, where h was altered from 
80 µm to 180 µm. In this work, the transformation temperatures (TTs), and hardness of all SLM fabricated samples 
were evaluated. �e superelastic behavior of all the samples was also studied via compressive testing for 10 cycles. 
Finally, the grain microstructure as well as the texture for various h were evaluated.

Fabrication and Experimental Procedure
Fabrication. A slightly Ni-rich Ni50.8Ti49.2 (at.%) ingot was subjected to an Electrode induction-melting gas 
atomization (EIGA) by TLS Technik GmbH (Bitter�eld, Germany) to produce the NiTi powder (Note: �e result-
ant powders via EIGA technique are spherical and possess low impurity contents46). To ensure the layer resolu-
tion and �owability, particle size ranging from 25 to 75 µm was used. A SLM machine (Phenix Systems PXM), 
equipped with a 300 W Ytterbium �ber laser, was used to produce Ni-rich NiTi components. To minimize the 
level of impurity content within the resultant part, the oxygen level was decreased to 500 ppm prior to fabrication. 
Impurities of powder and SLM parts are presented in Table 1.

Several cylindrical samples (A1-6) with the diameter of 4.5 mm and length of 10 mm were fabricated. 
Alternating x/y scanning strategy was implemented for fabrication of the samples. Table 2 summarizes the 
employed set of processing parameters for each sample.

Experiment. �e SLM fabricated parts were removed from the base plate using electrical discharge machin-
ing (EDM). A small portion of the parts (10–40 mg) was cut to determine the Transformation Temperatures 
(TTs) using a Perkin-Elmer DSC Pyris 1. For optical images, samples were �rst mounted using epoxy resin and 
hardener and polished in several stages, using a �ner paper and suspensions by a BUEHLER EcoMet/AutoMet 
250 Grinder-Polisher. �e microstructure was studied by a Keyence VH_Z250R optical microscope. Before opti-
cal imaging, samples were etched in a H2O (82.7%) + HNO3(14.1%) + HF(3.2%) solution for 90 sec. Specimens 
were further sectioned with wire electric discharge machining and were metallographically prepared with an 
Allied Multiprep with SiC grinding papers, and polished with felt pads with diamond grit, and Colloidal Silica. 

Ni50.8Ti49.2 (at. %)
Oxygen (wt.%) 
ASTM E1409

Carbon (wt.%) 
ASTM E1941

Nitrogen (wt.%) 
ASTM E1477

Powder 250 1250 80

SLM (A1) 250 1250 180

Table 1. Impurity contents of the as-received powder and the as-fabricated parts.
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Phase analysis was carried out using X-ray di�raction (XRD) in a Bruker D8 X-Ray di�ractometer with Cu-Kα 
radiation �xed with a di�racted beam monochromator. Orientation imaging (OI) was done using an FEI Apreo 
scanning electron microscope (SEM) at 30 KV with a EDAX Hikari Super EBSD camera. Scanning transmission 
electron microscopy (STEM) was done with a FEI TF-20 Tecnai 200 kV transmission electron microscope (TEM) 
adorned with an EDAX Apollo XLT Windowless EDS detector. Samples for the TEM were sectioned from bulk 
samples via focused ion-beam (FIB) milling. �e Vicker hardness of samples was measured by Metal-tester model 
900-391D under 100 g loads which was applied for 15 seconds. At least 10 indentations were done to report the 
average number. �ermo-mechanical tests were conducted by a 100 kN MTS Landmark servo-hydraulic test 
platform.

Results
Microstructural analysis. In Fig. 1(a–f), the optical images of SLM NiTi samples processed with di�erent 
h are compared. �e micrographs show that the size of imperfections and the level of porosities increase with 
h (lower E). �us, higher h results in a relatively lower density, which can be attributed to a rapid solidi�cation 
without completely �lling the gaps between the melted tracks47. For SLM fabrication, it is necessary to implement 
an optimum high E such that it results in the fully melting of the deposited powder layer as well as the partially 
re-melting of the previously melted layer ensuring “epitaxial solidi�cation” phenomenon40. When h is reduced to 
80 µm, the melt pools are observed in the microstructure and the imperfections are eliminated. However, a few 
microvoids are still detectable which can be attributed to the gases trapped within the melt pools or the Nickel 
element evaporation15,47,48. Finally, overlapped scan tracks are observed in the samples processed with low h, 
whereas the melt pools become larger and coarser as h increases. �e size of the beam diameter (d = 80 µm) might 
be responsible for the overlapped tracks in h = 80 µm sample (A1), as it results in the remelting of neighboring 
scan tracks and creates melt pool boundaries similar to welding.

Phase transformation response and hardness. In Fig. 2, the DSC curves of samples processed with 
selected h are illustrated. Both forward and back transformation peaks are broad; hence, magni�ed curves of A1, 
A3, and A6 samples are also shown. While the martensitic transformation is completed through multiples steps, 
the austenite peak is relatively sharper and accompanied with a shoulder. It is noteworthy that the last martensite 
peak becomes sharper as h decreases suggesting less heterogeneous microstructure. Such broad and multi-step 

Sample
Laser Power 
(P, W)

Scanning Speed 
(v, mm/s)

Hatch Spacing 
(h, µm)

Energy Input 
(E, J/mm3)

A1 250 1250 80 83.33

A2 250 1250 100 66.66

A3 250 1250 120 55.55

A4 250 1250 140 47.61

A5 250 1250 160 41.66

A6 250 1250 180 37.03

Table 2. List of processing parameters implemented during SLM fabrication.

Figure 1. Optical micrographs of Ni50.8Ti49.2 (at.%) in samples fabricated by di�erent hatch spacing (h) 
parameter: (a) h = 80 µm, E = 83.33 J/mm3, (b) h = 100 µm, E = 66.66 J/mm3, (c) h = 120 µm, E = 55.55 J/mm3, 
(d) h = 140 µm, E = 47.61 J/mm3, (e) h = 160 µm, E = 41.66 J/mm3, and (f) h = 180 µm, E = 37.03 J/mm3.
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transformation may indicate the presence of ultra-�ne coherent precipitates or impurities, producing a strong 
resistance to the large lattice deformation associated with B19′. Such precipitates/impurities, if available, also can 
cause inhomogeneous Ni distribution and matrix composition49.

�e TTs are extracted from the DSC graphs and their variation as a function of E is given in Fig. 3. �e Ms 
temperature has been extracted from the last and sharpest peak of the martensitic transformation. Additionally, 
Vicker hardness values of the samples have been included. It is clear that TTs are increased as the parameter h is 
decreased (higher E). �e corresponding DSC plots are also plotted in Fig. 2(b). In the circumstances where the 
applied E is higher, the melt pools are held at a relatively higher temperature, and therefore, the matrix composi-
tion shi�s to a higher Ti content due to the higher rate of Ni evaporation (note: the melting point of Ni element 
is lower than that of Ti). It should be noted that higher E is also associated with a higher level of impurity, the 
formation of Ti-rich impurities, and hence the Ti depletion in the NiTi matrix. However, it is reported that the 
Ni depletion associated with Ni evaporation compensates or even overcomes the Ti depletion associated with 
the formation of Ti-rich impurities15,50. �us, the corresponding Ni depletion results in an increase in the TTs15. 
Finally, an increasing trend for Vicker hardness of samples is also observed as h is decreased (higher E).

Superelastic response. In Fig. 4(a), the superelastic responses of samples processed with di�erent h are 
investigated at room temperature (RT). All samples were �rst loaded up to 600 MPa, to ensure the loading plateau 
has reached the “apparent” elastic regime of the martensite phase, and then were unloaded. �e plots indicate that 

Figure 2. A comparison of DSC results showing the e�ect of h parameter on TTs of Ni50.8Ti49.2 (at. %).

Figure 3. Transformation temperatures (TTs) and Vicker hardness of SLM Ni50.2Ti40.8 (at. %) samples as a 
function of (a) h and (b) v.
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the lowest h sample (80 µm) results in the best superelastic response at room temperature (A1). However, to be 
able to compare all the important characteristics of the superelastic response (e.g., critical stress for martensitic 
transformation, strain recovery, and recovery ratio), the superelastic tests were also conducted at Af + 10 °C and 
were plotted in Fig. 4(b). Again, the A1 showed the best superelastic response and the highest strain recovery of 
5.62% with recovery ratio of 98% at Af + 10 °C. However, these two characteristics are degraded as h is increased. 
�e poorest response belongs to the sample processed with h = 160 µm, with 4.35% strain recovery and 83% 
recovery ratio (A5). Further, the plots present no considerable di�erence in terms of critical stresses for the sam-
ples processed with h up to 140 µm, however, a drastic drop was observed in the sample fabricated with highest h 
(180 µm) (A6). �is can be explained by the fact that the neighboring scan tracks are not fully bonded and there 
exists gaps and porosity along the melt pool boundaries51.

In Fig. 5(a–f), cyclic responses of the samples processed with di�erent h are presented at Af + 10 °C, respec-
tively, to analyze the stability of each sample. �e irrecoverable strain (εirrec), recoverable strain (εrec), and total 
strain (εtot.) of the �rst and last cycles are also summarized in Table 3. As expected, the most stabilized superelastic 
response is observed for the sample processed with the lowest h while the hysteresis is degraded as h is increased. 
�e highest strain recovery of 5.2% is attributed to the sample fabricated by h = 80 µm. As h is increased, the sta-
bilized strain recovy is degraded where the poorest strain recovery of 3.4% is attributed to the sample fabricated 
by h = 160 µm. It should be noted here that there was a slight increase in the recovery ratio, εrec, and the εtot in the 
h = 180 µm sample, reasons for this are still not understood and are still being explored.

Discussion
Selection of SLM processing parameters in favor of superelasticity. It was known from the lit-
erature of SLM NiTi alloys that post-process heat treatments (i.e., solution annealing and aging) were required 
to improve superelasticity in the as-fabricated alloy15,27–30. Hence, �nding a way to improve superelasticity and 
stability in the as-fabricated SLM NiTi was critical to avoid the extra costs and e�orts associated with post-process 
heat treatments. �e approach in this research was to enhance superelasticity through altering h parameter, while 
implementing a high P (250 W) to ensure crack-free microstructure. It was revealed that the employment of low 
h (80 µm) and moderate E (83.3 J/mm3) in sample A1 resulted in the highest stabilized strain recovery of 5.2% at 
room and body temperature.

Several factors could account for the improved superelasticity, including but not limited to the development 
of a preferred texture, presence of precipitates, or grain re�nement. To illustrate these claims and quantify the 
superelasticity phenomenon, EBSD, XRD, and TEM measurements were performed on the selected as-fabricated 
SLM NiTi Ni50.8Ti49.2 (at. %) samples.

Origin of superelasticity in as-fabricated SLM NiTi. XRD analysis. In Fig. 6, XRD spectra of the 
h = 80 µm (A1), h = 120 µm (A3), and h = 180 µm (A6) fabrications is shown. �e spectra of the fabrications only 
exhibit peaks associated with the austenite B2 phase, as indicated by (011)B2, (002)B2, and (112)B2 re�ections. �e 
presence of strong B2 peaks con�rms that the majority volume fraction of the samples are B2 phase. �is agrees 
with the �ndings from DSC, where single-step transformation from B2 austenite to monoclinic B19′ martensite 
is observed. Apparent noise and broadening at the base of the XRD peaks could have been a remnant from sec-
ondary phases with a low volume fraction. Variation in the peak intensities is likely to be due to the signi�cant 
di�erence in the grain orientations due to di�erent deposition conditions, as will now be discussed.

EBSD analysis. In Fig. 7(a–c), the OIM inverse pole �gure (IPF) images with respective pole �gures are demon-
strated for the h = 80 µm, h = 120 µm, and h = 180 µm specimens (A1, A3, and A6), respectively. �e pole �gures 
in each case are relative to the build direction. From the pole �gures the specimens with a h greater than 80 µm 
(e.g., A3, A6), show a weak [001] texture, whereas the h = 80 µm specimen shows a strong [001] texture. �e IPF 
image of h = 180 µm specimen (A6) shows an irregular coarse grain structure. �ere is an apparent orientation 
preference along [001] in the narrow channels that form along the edges of the melt pool. �e distance between 
the channels is consistent with h. Meanwhile, the “island” regions between the channels are typically comprised 
of multiple grains which do not reveal any apparent preferential orientation. For the h = 120 µm sample, A3, there 

Figure 4. �e superelastic response of samples A1–6 tested at: (a) room, and (b) Af + 10 temperatures.
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is a similar channel grid with a [001] texture, once again consistent with h. However, the islands consist of similar 
grain orientations, or mix of irregular �ne grains. �e h = 80 µm specimen (A1) does not exhibit a pronounced 
channel and island structure. A strongly pronounced texture along the [001] was also observed. From these pole 
�gures it is also apparent that [100] and [010] directions are aligned with the laser scanning directions. Moreover, 
as it was shown in Fig. 3, the Vicker hardness of samples was increased as the h decreased (higher E) and thus 

Figure 5. Superelastic cycling of SLM Ni50.8Ti49.2 (at. %) fabricated by di�erent h parameter: (a) h = 80 µm, (b) 
h = 100 µm, (c) h = 120 µm, (d) h = 140 µm, (e) h = 160 µm, and (f) h = 180 µm.

SLM Ni50.8Ti49.2 
(at. %)

Applied Stress 
(MPa)

1st Cycle 10th Cycle

εtot (%) εIrrec (%) εrec(%)
Recovery 
Ratio (%)

Total εIrrec 
(%)

Stabilized εrec 
(%)

A1 600 5.72 0.10 5.62 98 0.47 5.20

A2 600 5.51 0.38 5.13 93 1.21 4.44

A3 600 5.47 0.62 4.85 89 1.86 3.84

A4 600 5.12 0.8 4.32 84 2.09 3.41

A5 600 5.22 0.87 4.35 83 2.15 3.40

A6 600 5.85 0.77 5.08 87 2.37 3.79

Table 3. Summary of the cyclic response of SLM Ni50.8Ti49.2 (at. %) samples at �rst and last cycle.
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the highest HV was observed for A1. �e higher hardness when a higher E is implemented can be related to the 
grain re�nement and texture along the [001] direction, which, in turn, yields to denser microstructure, higher 
strength, and hardness. �e pronounced [001] texture and higher hardness partially explains the high recovery 
ratio for the h = 80 µm fabrication52,53. �e development of the [001] texture could technically improve the super-
elasticity in compression, because the Schmid factor for the slip systems for [001] orientation in B2 phase NiTi 
(i.e., <001>{110} and <001>{100}) is zero under compressive loading33,53. A relatively low Schmid factor means 
that the critical stress for slip is much higher than the critical stress for stress induced martensite transformation 
(SIMT), thereby minimizing plastic deformation and improving the superelasticity53. It should be noted that 
di�erent slip systems can be activated depending on the single crystal orientation and stress state (tension/com-
pression)54. Superelastic response along other orientations (e.g., transverse to the build direction) would be less 
pronounced due to the weaker texture and unfavorable orientations38,55. �e precipitation hardening is another 
important factor that could also result in enhanced superelastic e�ects which was further explored through TEM 
analysis.

TEM analysis. TEM foils were extracted from the h = 80 µm (A1) and h = 120 µm (A3) samples, represent the 
two extremes of the deposition conditions in the study. �e h = 80 µm TEM foil was taken transverse to the build 
direction and was oriented at 45° angle from the build direction within the melt pool. �e A3 foils were taken 
parallel to the build direction and were plucked from the island and channel region. STEM micrographs of the 
h = 80 µm (A1) and h = 120 µm (A3) fabricated specimens can be seen in Fig. 8. For the h = 120 µm specimens 
large regions dislocations arrays were observed throughout the structure as seen in Fig. 8(a). In Fig. 8(b) stringer 
like secondary phases were present within the boundaries, EDS further revealed enriched O and Ti as well. In 
addition, there were some particles that revealed some enrichment in C. In similar studies by Ma et al.56, O-rich 
precipitates, most likely Ti4Ni2O precursors, were found in similar regions. Observations of the h = 80 µm spec-
imen, in Fig. 8(d), revealed networks of low angle boundaries (LAB), which are most likely a remnant from the 
solidi�cation process. Similar LAB structures have been observed previously in SLM fabricated NiTi and 316 
stainless steel56,57. In Fig. 8(e), the presence of �ner secondary phases with the average size of ~80 µm and the 
standard deviation of ~6 nm within LABs were observed. Further EDS analysis of these secondary phases revealed 
enrichment in O and Ti. �e enrichment in the Ti and O has been shown previously to represent the formation 
of Ti4Ni2O

58. Similar precipitates have been seen by Sam et al.59 but were not directly attributed to be a�ecting the 
superelastic response. �e presence of these “oxides”, at larger sizes (>1 µm), have been observed previously to 
lower the Ms temperature, but, the ultimate e�ect on the superelastic response was negligible. �ese “oxides” that 
are substantially larger will tend to act as crack initiators when adjacent to voids in structural fatigue60.

Selected area di�raction patterns (SADPs) on [111] type zone axes from both specimens, seen in Fig. 8c,f, 
were collected, in an e�ort to detect the presence of Ni4Ti3 superlattice re�ections61. �e lack of superlattice re�ec-
tions in the di�raction patterns in Fig. 8c and f proves the absence of Ni4Ti3 precipitates in both the h = 80 µm and 
h = 120 µm fabrications. Ma et al.56 had previously shown in that at a smaller h value, small Ni-rich precipitates 
had formed at a �ne scale (1–3 nm) due to the increased heat from thermal cycling at small h. �e presence of 
these �ne precipitates were understood to be draining the surrounding matrix of excess Ni and thus raising the 
martensitic transformation temperature56.

In summary, there exists an unmet need for a methodology to enhance the superelasticity of as-fabricated 
SLM NiTi, without the need for post-process heat treatment. �e as-fabricated specimen processed with said 
parameters demonstrated remarkable superelasticity behavior, i.e., strain recovery of 5.62% with recovery ratio 
of 98% in the �rst cycle, and the stabilized strain recovery of 5.2% a�er 10 cycles. Such improved superelasticity 
(under compression) is attributed to the strong texture along the [001] direction, which is typically observed 
within [001]-oriented single crystal conventional NiTi alloys62. While this level of superelasticity under compres-
sive loading is of great interest, a next critical step is to evaluate the superelasticity of the as-fabricated Ni-rich 
NiTi alloy under tension. In a recently published paper63, however, it has been shown that the SLM NiTi alloy 
presents premature failure due to the presence of numerous un-melted powders concentrated in the edges of the 
specimens, which could act as crack initiation sites. Should this problem be successfully addressed, a higher level 
of recoverable strain under tension is expected, probably 1.5 times larger due to the di�erences in deformation 
mechanisms with loading direction and the unidirectional nature of twin deformation64–68.

Figure 6. XRD measurements of the A1 (h = 80 µm), A3 (v = 1250 mm/s), and A6 (h = 180 µm) fabrications.
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In addition to the texture, precipitation also plays an important role in enhancing superelasticity. In SLM 
process, the previously deposited material is thermally cycled from the repeated laser passes, which might result 
in the precipitation of Ni4Ti3 particles in the Ni-rich NiTi alloy. Ma et al.56 had done simulations to best capture 
the complex thermal history of the deposited material in addition to simulating and predicting the precipitation 
behavior of the Ni4Ti3 precipitates. �eir simulations indicated that precipitates would be most probable to form 
at small h and high E; however, the presence of the Ni4Ti3 precipitates was not con�rmed in their work. It should 
be noted that in their study, a substantially lower laser power (50 W) was used. �e broadened DSC peak could 
indicate the presence of very �ne precipitates (or nuclei of precipitates). According to Sehitoglu et al.53, even for 
the [001]-oriented single crystals, the good superelasticity can only be obtained a�er aging treatment. However, 
one should note that Kaya et al.69 and Liu et al.70 observed superelasticity in the [001]-oriented Ni51Ti49 (at. %) 
and Cu71Al18Mn11 (at. %) alloys in unaged conditions, respectively. While superelasticity can be achieved in low 
h samples, it is necessary to perform post-process heat treatment on high h samples to achieve superelasticity.

Figure 7. �e inverse pole �gure maps (le�) and the pole �gure texture plots (right) of the (a) h = 80 µm 
(A1), (b) h = 120 µm (A3), and (c) h = 180 µm (A6) fabrications. �e micrographs are oriented along the build 
direction and the scanning directions in each case are indicated by the black arrows. All micrographs have 
300 µm scale bars.
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Conclusion
In this study, we present a method to tailor the superelastic response by adjusting the processing parameters for 
SLM fabrication. It has been shown that moderate E through lower h results in better superelasticity behavior 
within as-fabricated SLM Ni50.8Ti49.2 (at. %). �e main �ndings of the study are outlined as follow:

•	 Hatch spacing is a very e�ective parameter to tailor the grain size, shape and orientation, and thus the super-
elastic response of SLM fabricated NiTi alloys.

•	 As h was decreased from 180 to 80 µm, clearer melt pool boundaries were observed in the SLM NiTi samples. 
�e lowest h (80 µm) resulted in the �nest melt pools due to the intense overlapping between the neighboring 
scan tracks.

•	 At lower h, higher TTs and Vicker hardness were observed in the SLM NiTi samples due to the grain re�ne-
ment in the NiTi matrix.

•	 Without any heat treatment, the as-fabricated samples with low h (80 µm) demonstrated remarkable super-
elastic response with strain recovery of 5.62% and recovery ratio of 98% in the �rst cycle. �e stabilized strain 
recovery was 5.2% a�er 10 cycles.

•	 �e enhanced superelasticity of SLM NiTi fabricated by h = 80 µm in as-fabricated condition can mainly be 
attributed to the strong texture along the [001] orientation along the building direction, as the TEM images 
con�rmed the absence of Ni4Ti3 precipitates.
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