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Achieving the ultimate end-to-end rates of lossy quantum
communication networks
Matthew S. Winnel 1✉, Joshua J. Guanzon 1, Nedasadat Hosseinidehaj1 and Timothy C. Ralph1

The field of quantum communications promises the faithful distribution of quantum information, quantum entanglement, and
absolutely secret keys, however, the highest rates of these tasks are fundamentally limited by the transmission distance
between quantum repeaters. The ultimate end-to-end rates of quantum communication networks are known to be achievable
by an optimal entanglement distillation protocol followed by teleportation. In this work, we give a practical design for this
achievability. Our ultimate design is an iterative approach, where each purification step operates on shared entangled states
and detects loss errors at the highest rates allowed by physics. As a simpler design, we show that the first round of iterations can
purify completely at high rates. We propose an experimental implementation using linear optics and photon-number
measurements which is robust to inefficient operations and measurements, showcasing its near-term potential for real-world
practical applications.
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INTRODUCTION
The great challenge for quantum communication1 is how to
overcome loss2, the dominant source of noise through free space
and telecom fibres. Many applications3–7, including quantum key
distribution (QKD)8,9 (i.e., the task of sharing a secret random key
between two distant parties), suffer from an exponential rate-
distance scaling10,11. Determining the most efficient protocols for
distributing quantum information, entanglement, and secure
keys is of vital importance to realise the full capability of the
quantum internet12.
It is known that the reverse coherent information (RCI)13 is an

achievable rate for entanglement distillation by an implicit
optimal protocol based on one-way classical communication.
For the bosonic pure-loss channel, this rate is R ¼ �log2ð1� ηÞ10,
where η ∈ [0, 1] is the channel transmissivity. This is an achievable
rate for entanglement distillation, ED, over the lossy channel and
is also an achievable rate for secret key distribution, K, since an
ebit is a specific form of secret key bit. To summarise, we have
K � ED � R ¼ �log2ð1� ηÞ. Ref. 14 proved the upper bound, the
so-called Pirandola–Laurenza–Ottaviani–Banchi (PLOB) bound,
that is, K � �log2ð1� ηÞ. This, together with the lower bound,
R, from ref. 10, establishes K ¼ ED ¼ R ¼ �log2ð1� ηÞ ¼ C, the
two-way-assisted entanglement distribution capacity and secret
key distribution capacity of the pure-loss channel.
Likewise, there are fundamental limits to the highest end-to-

end rates of arbitrary quantum communication networks15, where
untrusted quantum repeaters divide the total distances into
shorter quantum channels (links). Quantum repeaters are strictly
required to beat the PLOB bound16,17. For a linear repeater chain,
it is optimal to place repeaters equidistantly, then the ultimate
end-to-end rate is given by �log2ð1� ηÞ15, where η now refers to
the transmissivity of each link. For a multiband network,
consisting of m generally entangled channels in parallel, the rate
is additive, �mlog2ð1� ηÞ15. These ultimate repeater bounds are
achievable by using an optimal entanglement distillation protocol
followed by quantum teleportation (entanglement swapping),

while ideal quantum memories are most likely required to
achieve the highest rates.
The goal of this paper is to give a physical realisation for

achieving these ultimate rates, which could pave the way for
experimental implementations. While the highest achievable
secret key rate for point-to-point CV QKD saturates the PLOB
bound8, it does not provide a physical design for entanglement
distillation. Furthermore, it is impossible to distil Gaussian
entanglement using Gaussian operations only18,19 so quantum
repeaters must use non-Gaussian elements20.
Protocols based on infinite-dimensional systems are required

to saturate the ultimate limits. However, the majority of
quantum-information-processing tasks and techniques are for
discrete-variable (DV) systems21 where the quantum information
is finite-dimensional. In contrast, for continuous-variable (CV)
systems2,22–24, the quantum information is infinite-dimensional
and encoded in the quadrature amplitudes, and in principle
offer easier state manipulation22 and compatibility with existing
optical telecom infrastructure25. Previous practical quantum
repeater designs are unable to distil entanglement at the
ultimate rates26–31.
Quantum repeaters have previously been categorised into three

generations depending on how they combat loss and other
sources of noise16,17. With respect to CV systems, the first two
generations remove loss via teleportation-based techniques, for
instance, entanglement swapping and/or noiseless linear ampli-
fication32–38. These techniques fail to achieve the ultimate limits
under pure loss since the output state is not pure and the success
probability is zero for high-energy input states. For instance, the
schemes based on noiseless linear amplification29–31 have the
same rate-distance scaling as the ultimate bounds but do not
saturate them. A simple explanation is given in Supplementary
Note 1, also see ref. 39.
The third generation of quantum repeaters40 uses quantum

error correction and is a purely one-way communication scheme.
It promises high rates since it does not require back-and-forth
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classical signalling, however, here the ultimate rates are bounded
by the unassisted quantum capacity of each link14, log2ð η

1�ηÞ<C.
This means the third-generation rate is zero if η ≤ 0.5, which
translates to a maximum link distance of about 15 km for optical
fibre with a loss rate of 0.2 dB km−1. In contrast, the two-way
assisted capacity of pure loss allows a nonzero achievable rate at
all distances. It is interesting to note that the family of GKP codes41

achieves the unassisted capacity of general Gaussian thermal-loss
channels with added thermal noise, where pure loss is the zero-
temperature case, up to at most a constant gap42. Likewise, our
main result is to give a practical protocol that achieves the two-
way assisted capacity of the pure-loss channel.
In summary, all three generations of quantum repeaters are

unable to operate at rates that saturate the ultimate limits of
quantum communications. Motivated by this reality, we introduce
an iterative protocol to purify completely from pure loss and achieve
the capacity of the channel. Our schemes are inspired by refs. 43,44.
The idea is that neighbouring nodes locally perform photon-number
measurements on copies of shared CV entanglement across the
lossy channel, followed by two-way classical communication to
compare photon-number outcomes. We show that the highest rates
of our purification scheme, requiring two-way classical communica-
tion, achieve the fundamental limits of quantum communications
for pure-loss channels. In contrast to quantum error correction, we
describe purification as a quantum-error-detection scheme against
loss. We consider a much-simpler design with good rates requiring
only one-way classical communication and no iteration.
In this work, the required measurements are quantum non-

demolition measurements (QND) of the total photon number of
multiple modes and can be implemented experimentally using
linear optics and photon-number measurements. This imple-
mentation is naturally robust against the inefficiencies of the
detectors and gates. Alternatively, these QND measurements
can be implemented using high finesse cavities and cross-Kerr
nonlinearities44.

RESULTS
First, we introduce our iterative protocol for the complete
purification of high-dimensional entanglement, saturating the
two-way assisted capacity of the bosonic pure-loss channel. Then,
we show that our protocol without iteration (i.e. single-shot) still
gives high rates which fall short of the ultimate limits by at worst a
factor of 0.24. Finally, we explain how to implement our protocol
using linear optics and photon-number measurements.

Iterative purification
Alice and Bob share multiple copies of a state which is entangled
in photon number, such that in a lossless situation they will always
measure the same number of photons. Our purification technique,
in a pure loss situation, is for Alice and Bob to each locally count
the total number of photons contained in multiple copies of the
shared entangled states, and then compare the results. If they
locally find a different total number of photons, this means
photons were lost. Alice and Bob then iteratively perform total
photon-number measurements over smaller subsets of states until
their outcomes are the same, and hence distil pure entanglement.
We prove that the highest average rate of the protocol achieves
the capacity of the pure-loss channel.
We now consider our protocol in detail. The protocol is shown

in Fig. 1. Consider two neighbouring nodes in a network, Alice and
Bob, separated by a repeaterless link. Round one of our iterative
protocol is identical to the entanglement purification of Gaussian
CV quantum states from ref. 44, however, our protocol includes an
iterative procedure. Alice prepares m copies of a pure two-mode
squeezed vacuum (TMSV) state, χj i ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� χ2

p P1
n¼0 χ

n nj i nj i in
the Fock photon-number basis, with squeezing parameter

χ∈ [0, 1]. The unique entanglement measure, E, for a bipartite
pure state, ϕj i, is given by the von Neumann entropy, S, of the
reduced state, i.e., E ¼ �trðρAlog2ρAÞ, where ρA ¼ trB ϕj i ϕh j. This
means Alice initially prepares mEχ ebits of entanglement, where
Eχ= G[(λk−1)/2], where GðxÞ ¼ ðx þ 1Þlog2ðx þ 1Þ � xlog2ðxÞ,
λk ¼ 2nþ 1, n ¼ sinh2 r, and r ¼ tanh�1χ.
Alice shares the second mode of each of the m pairs with Bob

across the link. The error channel we consider is bosonic pure loss,
modelled by mixing the data rails with vacuum modes of the
environment, or a potential eavesdropper (Eve), on a beamsplitter
with transmissivity η.
Alice encodes the quantum information into a quantum-error-

detecting code so that Bob can detect errors on his side. To do
this, she performs a QND measurement of total photon number
on the m modes and obtains outcome k1 (where subscript 1 refers
to round one of iteration), and shares this information with Bob via
classical communication. Alice’s measurement projects the system
before the channel onto a maximally-entangled state44

ϕk1;m

�� �
AB

¼ ð1� χ2Þm2 χk1
Xn1þn2þ���þnm¼k1

n1;n2;��� ;nm
n1; n2; � � � ; nmj iA n1; n2; � � � ; nmj iB

(1)

¼ ð1� χ2Þm2 χk1
Xdk1 ;m�1

μ¼0

μk1;m
�� �

A
μk1;m
�� �

B
; (2)

where jμk1;mi ¼ jnðμÞ1 ; nðμÞ2 ; � � � ; nðμÞm i can be viewed as orthogonal
basis states which form a quantum-error-detecting code, each
composed of

Pm
i¼1 n

ðμÞ
i ¼ k1 photons. We discuss the code in

detail later. The pure maximally entangled state ϕk1;m

�� �
AB

has
entanglement Ek1;m ¼ log2dk1 ;m ebits with dimension

dk1;m ¼ k1þm�1
k1

� �
, and the probability of Alice’s measurement

outcome, k1, is P
Alice
k1;m ¼ ð1� χ2Þmχ2k1dk1;m. The dimension, dk1;m, is

the total number of ways k1 identical photons can be arranged
among the m distinct rails.
Bob then performs a QND measurement of the total photon

number across the m rails on his side to detect loss errors. If Bob
obtains the outcome j1 photons and knows that Alice sent k1
photons, then both Alice and Bob know that k1−j1 photons
were lost. Bob’s QND measurement, with success probability

Fig. 1 Our iterative protocol for the complete purification of
Gaussian continuous-variable quantum states. Alice shares m two-
mode-squeezed-vacuum states with Bob across independent pure-
loss channels with transmissivity η. Iterative QND measurements of
total photon number at Alice’s and Bob’s sides followed by classical
communication herald pure states whenever kn= jn, which means
round n is successful and the protocol is complete. The highest
average rate of quantum communication achieves the capacity (the
PLOB bound14). Alice’s measurements encode the quantum informa-
tion onto the rails, and Bob’s measurements purify the entangle-
ment and decode the quantum information.
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PBobk1;j1
¼ ð1� ηÞk1�j1ηj1 k1

j1

� �
, heralds a renormalised mixed state

shared between Alice and Bob which does not depend on loss for
any outcome j1. That is, together Alice’s and Bob’s QND
measurements remove all dependence on loss and have exchanged
success probability for entanglement, while they learn that k1−j1
photons were lost to the environment. All outcomes besides zero at
Alice and Bob herald useful entanglement. If j1 ≠ k1, they must do
further rounds of purification (iteration) since the output state is not
pure. If j1= k1, then the output state is strictly pure and purification
is complete in a single round. For a simpler protocol, Alice and Bob
may post-select on outcomes j1= k1 without further iteration. We
show later in the paper that this single-shot protocol still gives
excellent rates.
Explicitly, the global output state heralded by outcomes k1

and j1 is

where A, B, e refer to the m-rail quantum systems owned by
Alice, Bob, and the environment, respectively, as shown in Fig. 1.
The full derivation of this state is in Supplementary Note 2. The

factor ð1� ηÞ
k1�j1

2 η
j1
2 is outside the sum, thus, we have the

remarkable result that the renormalised output state shared
between Alice and Bob does not depend on η. Therefore, the
entanglement shared between Alice and Bob also has no
dependence on η, which has been exchanged for probabilities.
Additional rounds of purification can purify more entangle-

ment after the initial round. One approach is for Alice and Bob to
locally perform QND measurements as in round one but on
m−n+ 1 rails, and obtain outcomes kn, jn, where n refers to the
round number. At round n, there is no entanglement shared
between Alice and Bob on the last n−1 rails and the photon
number of each of these rails is completely known. At round n,
these last n−1 rails can be discarded while the m−n+ 1 rails
should be kept.

Rate of iterative purification for finite numbers of rails
The rate of our purification protocol (in ebits per use) is maximised
if Alice performs her first measurement offline (i.e., setting
PAlicek1;m ¼ 1), where she obtains outcome k1. For finite m, there is a
finite k1 which optimises the rate. However, for large squeezing
χ→ 1 outcomes k1 is dominated by k1→∞ with unity probability.
Therefore, the large squeezing limit χ→∞ without k1 pre-selection
is equivalent to k1→∞ with offline k1 pre-selection.
Taking Alice’s first measurement to be done with result k1

offline (which can be chosen in advance to optimise the rate or,
for example, the practicality of the protocol), the rate for finite m is

Ek1;mðηÞ ¼
1
m

Xm�1

n¼1

X
j1;k2;j2;¼ ;kn;jn

PE; (4)

where the sum is constrained by

k1 � k2 � k3 � � � � � kn; (5)

j1 � j2 � j3 � � � � � jn; (6)

ks � ksþ1 � js � jsþ18s; (7)

ks > js8s≠ n; (8)

kn ¼ jn; (9)

where the probability of success for a particular combination of
outcomes, j1, k2, j2,…, kn, jn, for a given k1 and m is

P ¼ ð1� ηÞk1�j1ηj1

kn þm� n

kn

� �
kn
jn

� �
k1 þm� 1

k1

� � Yn�1

s¼1

ks � ksþ1

js � jsþ1

� �" #
;

(10)

where a maximally entangled state is generated with entangle-
ment

E ¼ log2
kn þm� n

kn

� �	 

: (11)

The rate Ek1;mðηÞ for finite m can be optimised over Alice’s initial
outcome k1 prepared offline and the number of rails m as a
function of η. We numerically compute the rate in Supplementary
Note 3 for small k1 and m. We show next that the highest rate of
our iterative protocol achieves the capacity, C, for m→∞ and
k1→∞ (i.e., χ→ 1). We show this without having to compute
Eq. (4) directly which would be arduous.

Optimality of our protocol
The RCI10,13, R, gives an achievable lower bound on the distillable
entanglement, ED, and on the optimal secret key rate. The RCI is
defined in the “Methods” section. We will show that our protocol is
optimal for entanglement distillation as m→∞ and χ→ 1 and
that no entanglement is lost between rounds. We use the RCI as a
benchmark to test the quality of our distillation procedure. The
optimal distillation protocol implicit by the RCI is not required here
since our scheme gives the same performance as the implicit
optimal protocol round after round for large m.
We require that the weighted average von Neumann entropy of

the reduced pure states heralded after round one, S1, plus the
average RCI of the failure states heralded after round one, F1,
equals the RCI of the state before round one. Note that the RCI
equals the von Neumann entropy for pure states. We have

S1 þ F1 ¼ 1
m

X1
k1¼0

Xk1
j1¼0

Pk1;j1;mRk1;j1;m; (12)

in units of ebits per channel use, where

S1 ¼ 1
m

X1
k1¼0

Pk1 ;j1¼k1;mRk1;j1¼k1;m; (13)

F1 ¼ 1
m

X1
k1¼0

Xk1�1

j1¼0

Pk1;j1;mRk1;j1;m; (14)

where Pk1;j1;m ¼ PAlicek1;mP
Bob
k1;j1

, where PAlicek1;m ¼ ð1� χ2Þmχ2k1dk1;m and

PBobk1;j1
¼ ð1� ηÞk1�j1ηj1 k1

j1

� �
. When the first round succeeds, the

entanglement of the renormalised maximally entangled pure-
state shared between Alice and Bob heralded by outcomes k1= j1
is given by the von Neumann entropy of the reduced state:

Ek1¼j1;m ¼ Rk1;j1¼k1;m ¼ log2
k1 þm� 1

k1

� �	 

; (15)

jϕk1 ;j1;m
i
ABe

¼ ð1� χ2Þm2 χk1ð1� ηÞ
k1�j1

2 η
j1
2

Pn1þn2þ���þnm¼k1

n1;n2;��� ;nm

Pl1þl2þ���þlm¼k1�j1; li�ni8i

l1;l2;��� ;lmffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n1
l1

� �
n2
l2

� �
n3
l3

� �
� � � nm

lm

� �s
n1; n2; � � � ; nmj iA � n1 � l1; n2 � l2; � � � ; nm � lmj iB � l1; l2; � � � ; lmj ie;

(3)
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which does not depend on the transmissivity, η, nor the amount
of two-mode squeezing, χ. When the first round fails, the RCI of
the renormalised mixed state shared between Alice and Bob
heralded by each pair of outcomes k1 and j1 is

Rk1 ;j1;m ¼ log2

k1 þm� 1

k1

� �
k1 � j1 þm� 1

k1 � j1

� �
26664

37775; (16)

which also does not depend on the transmissivity, η, nor the
amount of two-mode squeezing, χ. See Supplementary Note 2 for
the derivation.
The amount of squeezing is scaled to infinity χ→ 1, such that

Alice initially measures a large amount of photons k1→∞ and m/
k1→ 0. Furthermore, from the fact that PBobk1 ;j1

is a binomial
distribution, Bob will most likely measure j1 ≈ ηk1 photons. Using
these conditions, we show in Supplementary Note 3 that Eq. (12)
approaches

lim
χ!1

ðS1 þ F1Þ ¼ �m� 1
m

log2ð1� ηÞ ¼ m� 1
m

C; (17)

which ensures that round one of purification is optimal since there
is no loss of rate after round one asm→∞, given that the average
RCI at the end of the round equals the initial RCI of the protocol.
Thus, there exists an optimal protocol to follow round one which
can saturate the two-way assisted quantum capacity (the PLOB
bound) using our protocol as an initial step. The entanglement is
optimally exchanged for success probability.
Similarly, we prove in Supplementary Note 3 that round n is

optimal since there is no loss of rate at round n as m→∞, up to
the same factor, m�1

m . This factor comes from Alice’s and Bob’s
measurements of photon numbers.
To quantify this loss of entanglement, consider the protocol

before the channel. We will see that for finitem some entanglement
is immediately lost after Alice’s QND measurement. Ref. 44 defined
the entanglement ratio, denoted by Γ1, as the average entangle-
ment heralded by Alice’s QND measurement divided by the total
initial entanglement mEχ, that is,

Γ1 �
P1

k1¼0 P
Alice
k1;mEk1;m

mEχ
: (18)

In the limit of a large number of rails limm!1 Γ1 ¼ 1 for all
0 < χ ≤ 1, which means asymptotically Alice’s QND measurement
heralds no loss of entanglement. However, for finite m in the limit
of large squeezing, limχ!1 Γ1 ¼ ðm� 1Þ=m. So, for a finite number
of rails m some entanglement is lost since 1/2 < (m−1)/m < 1. This
means we must take m→∞ to get the highest rates.
Similarly, to quantify the entanglement lost at round n > 1, we

define the entanglement ratio, Γkn�1 , as the weighted average
entanglement heralded at round n overall outcomes kn normal-
ised by the weighted entanglement heralded by outcome kn−1 at
the previous round, n−1, that is,

Γkn�1 �
P

kn
PknEkn

Pkn�1Ekn�1

¼
P

kn
dkn log2dkn

dkn�1 log2dkn�1

; (19)

where dkn ¼ knþm�n
kn

� �
and dkn�1 ¼ kn�1þm�nþ1

kn�1

� �
. Pkn (Pkn�1 ) and Ekn

(Ekn�1 ) are defined in Eqs. (10) and (11), for a given kn(kn−1), and of
course, we can take ji= ki for all i since here we consider no loss
channel. Many of the factors cancel giving the simple expression
in Eq. (19). Curiously, for large numbers of rails, the amount of
entanglement lost at round n is the same as for round one, i.e.,
limm!1 Γkn�1 ¼ ðm� 1Þ=m for all kn−1. This result ensures that
"encoding” into kn photons is asymptotically optimal throughout
the entire duration of our iterative procedure up to the factor
(m−1)/m, which approaches unity for large m.

Achieving the capacity
The average rate in case of success of pure entanglement distilled
at round n in ebits per use of the channel is

Sn ¼ 1
m

X
k1;j1;¼ ;kn;jn

PE δkn ;jn ; (20)

and the average rate in case of failure of entanglement distilled at
round n in ebits per use of the channel is lower bounded by the
average RCI

Fn ¼ 1
m

X
k1;j1;¼ ;kn;jn

PR ð1� δkn ;jnÞ; (21)

where P is the probability from Eq. (10) and R ¼ log2
knþm�n

knð Þ
kn�jnþm�n

kn�jn

� �24 35
is the RCI of the heralded states. Note δkn ;jn is the Kronecker delta
function. For the rate in case of success, the RCI equals the von
Neumann entropy since the states are pure, R= E. The entangle-
ment in case of failure at round n will be purified at a later round.
Since our protocol is optimal at round n for χ→ 1 and m→∞,

we have the following expressions:

S1 þ F1 ¼ m� 1
m

C (22)

lim
m!1ðSn þ FnÞ ¼ lim

m!1
m� 1
m

Fn�1

� �
; (23)

for 2 ≤ n ≤m. We solve this system of equations by addition, and
we find that the average rate in case of success of purification
using our iterative procedure for m→∞ and χ→ 1 is

Eiteration ¼ lim
m!1

Xm
n¼1

Sn (24)

¼ lim
m!1

m� 1
m

C � lim
m!1

Xm�1

n¼1

Fn
m

(25)

¼ C: (26)

We achieve the capacity (PLOB) in the limit of a large number of
rails, where limm!1

Pm�1
n¼1

Fn
m ! 0 and limm!1ðm� 1Þ=m ! 1.

See Supplementary Note 3 for the proof.

Achievable rates of repeater networks
Our protocol purifies completely at the PLOB rate. Assuming ideal
quantum memories are available, after teleportation (entangle-
ment swapping) we achieve the ultimate end-to-end rates of
quantum communication networks by adopting the routing
methods of ref. 15. That is, the results can be extended beyond
chains to consider more complex topologies and routing
protocols15. We describe details about entanglement swapping
in Supplementary Note 4. We plot the highest rates of iterative
purification as a function of total distance with no repeater and
one repeater in Fig. 2a (black lines) which coincide with the
capacities. We also plot rates in Fig. 2a for single-shot purification
for finite m where Alice and Bob stop after the first round which is
a much more practical design. We discuss in detail those single-
shot rates next.

Single-shot purification
Purification is complete after a single round if no photons are lost
and Alice and Bob detect the same number of photons, j1= k1. If
Bob detects fewer photons than Alice, j1 < k1, further purification
is required, however, it is most practical to disregard those

M.S. Winnel et al.
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outcomes and keep only the outcome j1= k1 which purifies in
one shot. Alice’s measurement can be pre-selected and prepared
offline, thus, improving the rate of a particular pair of outcomes.
The single-shot rate for a given m and k ≡ k1= j1 can be quite
close to the PLOB rate.
Recall that the optimal protocol implicit by the RCI is based on

one-way classical communication13, whereas, our iterative proce-
dure requires two-way classical communication. Here, the single-
shot protocol requires only one-way classical communication,
like the implicit optimal protocol. Alice and Bob agree on the
quantum-error-detecting code (k and m) in advance, so Alice does
not need to send any classical information towards Bob. Bob only
needs to send classical information towards Alice, telling her when
the protocol succeeds. This greatly simplifies the required back-
and-forth signalling in a quantum network.

Highest achievable rate of single-shot purification
The rate of single-shot purification is as follows. The probability
that Alice obtains outcome k is PAlicek;m ¼ ð1� χ2Þmχ2kdk;m, however,
for the single-shot protocol we can incorporate this step into
Alice’s state preparation and assume this is done offline such that
PAlicek;m ¼ 1. This means the rate will not depend on χ. When Bob
obtains the outcome which matches Alice’s, k, his probability is
PBobk ¼ ηk and the output state is pure with entanglement
Ek;m ¼ log2dk;m. Thus, the achievable rate of single-shot entangle-
ment purification in ebits per use of the channel is

Esingle shotk;m ðηÞ ¼ PBobk Ek;m
m

¼ ηk

m
log2

k þm� 1

k

� �
: (27)

The rate is divided by the number of rails, m, to compare
directly with the PLOB bound14. This is required because Alice and
Bob exploit a quantum channel whose single use involves the
simultaneous transmission of m distinct systems in a generally
entangled state.
This rate is for a perfect implementation without any additional

losses, errors, or noise. The protocol heralds pure states in a single
attempt, so if we have ideal quantum memories, after entanglement
swapping (see Supplementary Note 4 for details on entanglement
swapping) we can distribute entanglement between ends of a
network without any loss of rate, i.e., at the rate given by Eq. (27)
where η is the transmissivity of the most destructive link.

Our optimised rate over k and m is shown in Fig. 2a, without
and with one quantum repeater (with a repeater, we assume ideal
quantum memories). The PLOB bound can ultimately be broken at
46.3 km using single-shot purification between nodes and a single
repeater for entanglement swapping. In Fig. 2b, we show the ratio
of our optimised single-shot rate with the PLOB bound, showing
that at long distances the protocol falls short of the PLOB bound
by just a factor of lnð3Þ=3 � 0:366, and remarkably, our rate
approaches C=2 at short distances. At short distances, the rate is
optimised for larger k while at long distances k= 1 is always
optimal since the probability that photons arrive scales like ηk at
long distances. The optimal number of rails is about m= 3 at most
distances (including long distances) since increasing the number
of rails decreases the rate like 1/m. Larger m is sometimes optimal
at short distances.
The rate of our single-shot purification protocol is unable to

saturate the ultimate limit because we post-select on Bob’s
outcomes, throwing away useful entanglement when j ≠ k and
j > 0. Keeping all measurement outcomes, the rate increases,
however, it is less practical to do so.

Quantum error detection
In this section, we describe our single-shot purification protocol as
quantum error detection. Consider encoding an arbitrary finite-
dimensional single-rail state with dimension dk,m:

ψk;m

�� � ¼ 1ffiffiffiffiffiffi
Nψ

p Xdk;m�1

μ¼0

cμ μj i; (28)

where Nψ ¼ Pdk;m�1
μ¼0 jcμj2.

The code is a subspace with dk,m dimensions (dk,m-dimensional),
a subspace of the infinite-dimensional Hilbert space chosen to
detect loss errors nondeterministically. It is represented by the
projector onto the subspace

Pk;m ¼
Xdk;m�1

μ¼0

μk;m
�� �

μk;m
� ��; (29)

where μk;m
�� � ¼ jnðμÞ1 ; nðμÞ2 ; nðμÞ3 ; � � � ; nðμÞm i are the orthogonal basis

states (code words) which make up the code subspace (code
space), where μ is the logical label. Note nðμÞi is the number of
photons in the ith rail, which depends on the logical label μ, as
well as k and m where

Pm
i¼1 n

ðμÞ
i ¼ k. There are dk,m code words,

Fig. 2 Optimal rates of entanglement purification. a We plot the highest rates of iterative purification (black), single-shot purification (red),
and single-shot purification for qubits (blue dashed) as a function of the total end-to-end distance, for optical fibre with a loss rate of
0.2 dB km−1. Purification is used to distribute and purify entanglement between nodes and entanglement swapping connects the end users.
To illustrate, we plot rates without a repeater and with one repeater. Equivalently, these rates are secret key rates since ebits are specific types
of secret bits62. Our highest rates coincide with the ultimate limits of quantum communications (black), shown here the repeaterless PLOB
bound14 and the one-repeater bound15. At all distances, the output states are strictly pure. The scaling improves for increased numbers of
repeaters (not shown). b The ratio of the optimised rate of our single-shot purification protocol without a repeater with the repeaterless PLOB
bound as a function of distance, showing how close it comes to saturating the bound (and therefore end-to-end quantum-repeater networks
in general). The optimal number of photons, k, at each distance is shown in rounded brackets. At shorter distances codes with more photons
are optimal. The three-rail encoding (m= 3) is optimal at most distances, with sometimes a larger m optimal at distances less than about
1.6 km. At large distances, the ratio Esingle shotk;m =C approaches lnð3Þ=3 � 0:366. As the distance goes to zero, Esingle shotk;m =C ¼ 1=2.
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i.e., for a given code the set of code words is
f μk;m
�� �g ¼ f 0k;m

�� �
; 1k;m
�� �

; 2k;m
�� �

; � � � g. Quantum information up
to dimension dk,m can faithfully be transmitted to Bob, condi-
tioned that he detects no errors. Photon loss (and photon gains)
will result in states outside of code space, which we can
distinguish as an error.
The set of logical states forming the dk,m-dimensional basis of

the code consists of all possible ways k identical photons
can be arranged among the m distinct rails. For example,
μk¼2;m¼3

�� � 2 f 0; 0; 2j i; 0; 2; 0j i; 2; 0; 0j i; 0; 1; 1j i; 1; 0; 1j i; 1; 1; 0j ig.
The code space is a subspace of the full Hilbert space of them rails
which introduces the redundancy required for error detection,
that is, k photons and m rails can encode dk,m-dimensional states.
The dimension grows rapidly with k and m. For example, with just
k= 4 photons and m= 5 rails, we can efficiently encode 70-
dimensional states, i.e., truncated at Fock number 69j i, with
success probability PBobj¼k¼4 ¼ ηk ¼ η4. This is a great advantage
over noiseless linear amplification, for example, if we choose the
gain of the amplifier to be g ¼ 1=

ffiffiffi
η

p
to overcome the loss then

the success probability is PNLA ¼ 1=g2ðdk;m�1Þ ¼ ηðdk;m�1Þ ¼ η69,
totally impractical. Furthermore, noiseless linear amplification fails
to purify completely and cannot completely overcome the loss.
The encoding step is

S ¼
Xdk;m�1

μ¼0

μk;m
�� �

μh j; (30)

which maps Fock states, μj i, from a single mode to the code
words, μk;m

�� � ¼ jnðμÞ1 ; nðμÞ2 ; � � � ; nðμÞm i. The combined operation of
encoding, loss, and decoding is a completely-positive trace-non-
increasing map

E ¼ S�1 	 L�m 	 S ¼ E ¼ ηk=2
Xdk;m�1

μ¼0

μj i μh j; (31)

where L�m is the map for independent applications of the pure-
loss channel on the m rails, the decoding step, S�1, performs a
QND measurement of the total photon number, and if k photons
arrive, then it successfully decodes back to a single rail. The
decoding step succeeds only if no photons are lost. The combined
operation, E, is a scaled identity map up to the (dk,m−1)th Fock
state, thus, the protocol succeeds with success probability
PBobk ¼ trðρABÞ ¼ ηk with unit fidelity.
The input state may be entangled with another mode. For

example, we may consider encoding one arm of an arbitrary

entangled state, ψk;m

�� � / Pdk;m�1
μ¼0 cμ μj iA μj iB. In this case, the

operation, E, acts on Bob’s mode only and Alice leaves her mode
alone. The final state shared between Alice and Bob is
ρAB ¼ ð1� EÞρin, where ρin is the initial state and 1 is the identity
on mode A. Note there is still useful entanglement if photons are
lost. The entanglement-distribution rate of single-shot error

detection for a maximally entangled initial state ϕk;m

�� �
AB

¼
1ffiffiffiffiffiffiffiffiffiffiffi

dk;m�1
p Pdk;m�1

μ¼0 μj iA μj iB is given by Eq. (27), showing that error

detection and purification indeed are equivalent.
One might consider using purification to distribute Gaussian

entanglement for long-distance CV QKD between trusted end users
of a network, performing the entanglement-based CV-QKD protocol
based on homodyne detection45,46 or heterodyne detection47.
Consider the initial data state to be a truncated TMSV state with
dimension dk,m given by

χk;m
�� � ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

χ2 � 1
χ2dk;m � 1

s Xdk;m�1

μ¼0

χμ μj iA μj iB: (32)

The state is Gaussian except for the hard truncation in Fock
space. The protocol works as follows. First, truncated TMSV states,
χk;m
�� �

, are distributed using our single-shot purification scheme
between all repeater nodes and held in quantum memories.
Once successful, CV entanglement swapping is used to entangle
the end users who use the entanglement to perform CV QKD.
While the purification scheme can be complex (depending on the
chosen protocol size), the CV entanglement swapping is simple. It
works by performing dual-homodyne measurements on some of
the modes, followed by conditional displacements, swapping the
entanglement48, see Supplementary Note 4 for details on how to
compute the secret key rate.

A simple example: the qubit code
The simplest nontrivial code uses a single photon, k= 1, in two
rails, m= 2, (i.e., unary dual-rail) and protects qubit systems,
dk=1,m=2= 2, from loss. It is equivalent to the original purification
protocol from ref. 43, but in this context, we use it to purify
entanglement completely from pure loss to first order in Fock
space and we can protect arbitrary single-rail qubit states from
loss. The code words can be defined 0k¼1;m¼2

�� � � 0; 1j i and
1k¼1;m¼2

�� � � 1; 0j i. The projector onto the code space is
P ¼ 0; 1j i 0; 1h j þ 1; 0j i 1; 0h j. The encoding step is

S ¼ 0k¼1;m¼2

�� �
0h j þ 1k¼1;m¼2

�� �
1h j (33)

¼ 0; 1j i 0h j þ 1; 0j i 1h j; (34)

which maps the vacuum component of the data mode onto a
single photon of the second rail and the single-photon
component of the data mode onto a single photon of the first
rail. If either of these photons is lost, the protocol fails. The success
probability is PBobj¼k¼1 ¼ η. The maximum single-shot rate in ebits

per use is Dsingle shot
k¼1;m¼2 ðηÞ ¼ η=2, as shown by the dashed line in Fig.

2a (with and without a repeater).

Physical implementation
Entanglement purification (iterative and single shot) requires joint
QND measurements on multiple rails. These measurements can be
performed via controlled-SUM quantum gates and photon
number-resolving measurements (see Supplementary Note 5, for
example). Another technique is to use high finesse cavities and
cross-Kerr nonlinearities44.
More simply, our scheme can be implemented using beamsplitters

and photon-number-resolving detectors, however, it also requires
an entangled resource state, Ωk;m

�� �
. This is a common technique in

linear optics49,50. See ref. 51 for a review of quantum information
processing using linear optics. The resource state can also be
generated using linear optics and photon-number measurements.
That is, we have a simple method of implementing our protocol,
though at some cost to the success probability.
We focus on the single-shot linear-optics protocol, shown in

Fig. 3. Alice shares m entangled states, χj i, with Bob. Note each rail
could have a different χ, distiling different amounts of entangle-
ment between Alice and Bob at the end of the protocol, however,
maximal entanglement is heralded when all rails have the same
value of χ. Alice and Bob each prepare locally multimode resource
states, Ωk;m

�� �
, consisting of (m+ 1) modes. We assume they do

this offline so it does not affect the quantum communication rate:

Ωk;m

�� � / Xdk;m�1

μ¼0

f μ μj ijμfk;mi; (35)

where μj i are Fock states, jμfk;mi are “anticorrelated” code
words. Writing the usual code words in the Fock basis as
jμk;mi ¼ jnðμÞ1 ; nðμÞ2 ; nðμÞ3 ; � � � ; nðμÞm i, where nðμÞi is the number of
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photons in the ith rail, and where
Pm

i¼1 n
ðμÞ
i ¼ k, recalling that the

code space was defined as the set of all states with this property,
then jμfk;mi ¼ jk � nðμÞ1 ; k � nðμÞ2 ; k � nðμÞ3 ; � � � ; k � nðμÞm i. The coeffi-

cients, fn, are

f n ¼
k

nðμÞ1

� �
k

nðμÞ2

� �
� � � k

nðμÞm

� �	 
�1=2

: (36)

The last m modes of Ωk;m

�� �
are fed into the beamsplitters with

the distributed entanglement and are measured by photon-
number detectors. The first mode is kept locally by the user and
remains at the end of the protocol, as shown in Fig. 3.
Detecting k photons means there were no loss events since

nðμÞi þ k � nðμÞi ¼ k. That is, all photons are accounted for in the
circuit and the output state is strictly pure. There may be useful
entanglement for measurement outcomes other than 0; kj i 0; kh j
at each pair of detectors, and further purification (iteration) can
increase the rate, but we do not consider it due to practicality.
Adjusting the amount of entanglement prepared for each rail,

adjusting the loss on each rail, or selecting different coefficients in
the resource state, fn, results in a different output state, which may
be useful for certain tasks. For example, if the entangled states
prepared for each rail are identical and have the same amount of
squeezing and fn is chosen as in Eq. (36), then a maximally
entangled state will be heralded between Alice and Bob at the
output. For another example, consider the dual-rail case (m= 2), if
the second rail is maximally entangled and fn is chosen as in
Eq. (36), then the output state is the initial state of the top rail. This
tuning of the circuit parameters is useful, for instance, for CV QKD
where the target state is a truncated TMSV state.
The linear-optics scheme detects all errors and outputs a pure

state. There is, however, an additional success probability penalty
using linear optics because of Bob’s decoding measurement.

We assume Alice prepares offline, then the success probability is

PBob linear opticsk;m ¼ ηk

2mðk�1Þ Pd�1
n¼0 f

2
n

; (37)

which depends on m. Compare this with the ideal purification
protocol where PBobk ¼ ηk which does not depend on m. The
penalty paid for using linear optics is mainly due to the
exponential 2m(k−1) factor, which is painful for anything other
than k= 1, where PBob linear opticsk¼1 ¼ η=m. For more details we refer
you to Supplementary Note 6.
The linear-optics circuit leads naturally to a controlled-SUM

gate using linear optics and number measurements, albeit with
distorted coefficients (this distortion ultimately has no effect in
our protocol since we immediately measure the state). For the
interested reader, we refer you to Supplementary Note 5 for
more details.
Since Alice’s encoded state is prepared offline, it is useful to

consider more generally that she encodes an arbitrary state into
the code: ð1� SÞ ψk;m

�� �
.

Preparation of resource states
For our linear optics and number measurement circuit, the resource
state, Ωk;m

�� �
, and Alice’s encoded state she prepares offline, are

multi-mode entangled states. Once these states are prepared, our
scheme requires just beamsplitters and photon detectors. One
practical way to prepare these states is to use a Gaussian Boson
Sampler (GBS)52 and post-selecting on a specific photon-number-
resolving measurement click pattern on some of the modes of the
output53,54. This allows our scheme to be implemented entirely
using linear optics and number measurements. Using the GBS
method for the simplest scheme with k= 1 and m= 2, we have
found the resource state, Ωk¼1;m¼2

�� � ¼ ð 0; 1; 0j i þ 1; 0; 1j iÞ= ffiffiffi
2

p
,

can be prepared with high fidelity, F > 0.999, with success
probability ≈ 10−6. This was found by optimising the parameters
of a GBS network via a machine learning algorithm called “basin
hopping”55. In https://github.com/JGuanzon/state-finder, we have
provided our code that implements this algorithm, as well as the
parameter set we found that generates this resource state.
Alternatively, adaptive phase measurements56 can be used to
prepare the needed resource states directly from dual-rail Bell pairs
or GHZ-like states which may have a higher probability of success.

Experimental imperfections
Our linear-optics circuit is robust to loss. The quality of the state
Alice sends can be managed since her encoding is done offline. In
any case, we are interested in the noise introduced by the
protocol, not the noise in the initial state we are trying to transmit.
The measurement and detection scheme at Bob’s side is such that
all photons are accounted for, so if Alice’s encoding is perfect, the
protocol can correctly identify if any photons are lost in the
channel or at the detectors. More details are presented in
Supplementary Note 6, where we also perform a numerical
simulation incorporating inefficient detectors with dark counts
and a thermal-noise channel. Our protocol is robust to the
practical values of these imperfections.

The directionality issue
Often in quantum communications, it is best if quantum states
propagate in one preferred direction (from Alice towards Bob)
when reverse reconciliation is used. This is a persistent problem
in CV quantum communications. For instance, CV measurement-
device-independent protocols57–60 work only in an extremely
asymmetric configuration, with the node (ineffective as a
repeater) positioned close to one of the trusted parties. This
directionality problem is also present in the repeater protocols

Fig. 3 Implementation using linear optics and number measure-
ments. The aim of the protocol is for Alice to share quantum
information contained in a dk,m-dimensional pure state, ψk;m

�� �
,

which can be entangled with another system which Alice keeps,
with Bob separated by a pure-loss channel. Shown in this figure, the
aim is to distribute a pure maximally entangled state between Alice
and Bob. Alice shares m entangled states, χj i, with Bob. Encoding/
decoding simply requires beamsplitters, photon detectors, and
(m+ 1)-mode entangled resource states, Ωk;m

�� �
. We can assume

Alice’s encoding (the state heralded after Alice’s measurement) is
prepared offline so that the success probability of the protocol is the
probability of Bob’s side only. There is, however, a success-
probability penalty for using linear optics, noting crucially that this
penalty does not depend on the loss. The protocol succeeds when
Bob detects the same number of photons Alice sent, k. If Bob
detects less photons, multiple rounds of error detection are required
or Alice and Bob can simply disregard those states.
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considered in ref. 29,30, where they work best in one direction,
which for reverse reconciliation is again from Alice towards Bob.
Our purification schemes allow states to propagate in any
direction in a quantum network since the output states are pure.
Using purification for CV-QKD works the same for both direct
and reverse reconciliations. We have no directionality problem.
This is an important requirement for large CV networks. Note
that the memoryless CV repeater protocol introduced in ref. 31

also fixes the directionality problem.

DISCUSSION
We have presented a physical protocol that achieves the two-way
assisted quantum capacity of the pure-loss channel14. Error
correction requires short distances between neighbouring repea-
ter nodes, while in contrast, we showed simple error detection can
saturate the PLOB bound. An open question is what protocol can
saturate the fundamental limits for added thermal noise and close
the gap between the theoretical upper and lower bounds14.
Our protocol is an optimal one and can be performed using

CSUM quantum gates and measurements. However, it is
unknown whether other gates and measurements may also
achieve the capacity, and if they can do so more efficiently, i.e.,
approaching the PLOB bound more quickly with the number of
iteration rounds, n.
Our ultimate protocol is experimentally challenging since it

requires iterative purification steps. However, we show that by
simplifying our protocol to just a single round of purification, we
can still achieve excellent rates. This is superior to other
nondeterministic techniques such as noiseless linear amplification
where it is impossible to remove all effects of loss.
Our purification protocol can be implemented using linear

optics and number measurements. This does introduce some
probability penalty (which does not depend on the loss), however,
having an all-optical design is experimentally convenient.
One limitation of our results is the requirement for high-

performance quantum memories. However, purification outputs
pure states which is extremely beneficial. Firstly, pure states can
handle a higher amount of decoherence coming from nonideal
quantum memories. Secondly, distributing pure states will
prevent how much thermal noise builds up across a network
during entanglement swapping. Finally, purity may be bene-
ficial for both point-to-point and repeater-assisted CV QKD,
improving the signal-to-noise ratio and decreasing Eve’s
knowledge of the key, speeding up the classical post-
processing part of the protocol.
Thus, purification is inherently a useful technique for over-

coming the unavoidable losses in quantum communication
networks. Remarkably, purification can be employed totally
using linear optics and number measurements and is compa-
tible with existing DV and CV infrastructure. Finally, we remark
that since the lossy entanglement is completely purified, it can
be used for exotic tasks, such as device-independent quantum
key distribution and demonstrating Bell nonlocalities, over long
distances.

METHODS
Noise model
Bosonic pure loss is the dominant source of noise for many
quantum communication tasks. The pure-loss channel is equiva-
lent to introducing a vacuum mode and mixing the data state on a
beamsplitter with transmissivity η ∈ [0, 1]. The Kraus-operator
representation of the single-mode pure-loss channel is61

LðρÞ ¼
X1
l¼0

AlρA
y
l ; (38)

with Kraus operators Al ¼
ffiffiffiffiffiffiffiffiffiffi
ð1�ηÞl

l!

q
η

n̂
2âl associated with losing l

photons to the environment, where â and ây are the single-mode
annihilation and creation operators, respectively, and n̂ ¼ âyâ is
the photon-number operator.

Reverse coherent information
Take a maximally entangled state of two systems A and B.
Propagating the B system through the quantum channel defines
the Choi state of the channel. Then the reverse coherent
information represents a lower bound for the distillable entangle-
ment and for the optimal secret key rate. The reverse coherent
information of a state ρAB is defined as13

RðρABÞ ¼ SðρAÞ � SðρABÞ; (39)

where S(ρA) and S(ρAB) are von Neumann entropies of ρA ¼
trBðρABÞ and ρAB respectively. The von Neumann entropy of
ρ is �trðρlog2ρÞ.
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