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Abstract—In this paper we consider the problem of achieving
a positive error-free communications rate without being detected
by an eavesdropper—we coin this the privacy rate. Specifically,
we analyze the privacy rate over Additive White Gaussian Noise
(AWGN) channels with finite and infinite number of samples
and Rayleigh Single Input-Single Output (SISO) and Multiple
Input-Multiple Output (MIMO) channels with infinite samples
when an eavesdropper employs a radiometer detector and has
uncertainty about his noise variance. Leveraging recent results
on the phenomenon of a Signal to Noise Ratio (SNR) wall when
there is eavesdropper noise power measurement uncertainty, we
show that a non-zero privacy rate is possible. We also show that
in this scenario, the detector should not necessarily take as many
samples as possible.

I. INTRODUCTION

N wireless communications there are several situations

where a user would want to communicate such that his
emissions are undetectable to other users—that is, transmit
with privacy. One emerging example is underlay cognitive
radio (CR) [1], where a secondary user seeks to communicate
with such low power as to not interfere with or be detected
by primary users. Another example is secure communications
where a wireless user does not want to reveal his presence
in the spectrum to an eavesdropper. Many attacks on wireless
networks are predicated on an attacker’s ability to determine
that a target is transmitting, e.g. [2], [3]. By transmitting
with sufficiently low power, we can avoid potential network
attacks, and also politely use the spectrum in the presence
of primary users. In this paper we determine the achievable
communications rate afforded by the privacy constraint under
a variety of eavesdropper and channel assumptions.

To formalize our objective, consider a scenario where two
users, Alice and Bob, would like to communicate over a
wireless channel without being detected by a detector, Dave.
Dave’s objective is not to decode Alice’s transmissions, but
merely to detect the presence of Alice’s transmissions. If Alice
does not want to reveal her position or even her existence,
encrypting her communications is not enough. Bash, Goeckel,
and Towsley [4] found that if Alice knows a lower bound
on the noise power Dave sees, O(v/N) bits can be sent
in N channel uses while guaranteeing that Dave’s sum of
probability of false alarm Pr4 and missed detection Pysp
is asymptotically arbitrarily close to one.

To make this more clear, we define two terms. I(N),
which behaves as O(v/N), is the number of undetected error-
free bits that can be sent in NN channel uses. Likewise,
Cpr = limn_oo I(IV)/N is the error-free privacy channel
capacity. The result in [4] means that Cp, = 0 in AWGN
channels. While the asymptotic rate is zero, this does not mean

no information can be communicated—I(N) is positive so
long as the probability of detection is nonzero. Bash, Goeckel,
and Towsley’s work is the first work that we are aware of
that puts information theoretic bounds on low probability of
detection communication.

The square root law found in [4] relates to problems in
steganography where a fixed-size, finite-alphabet covertext
object can be changed to hide a message. Because the
covertext object is transmitted noiselessly in steganography,
O(V/'N log N) bits can be transmitted by modifying O(v/N)
symbols in covertext of size N [5, Ch. 8, Ch. 13]. If we put
this in information theory terms of rate over a channel, where
covertext of size IV is analogous to N channel uses, this is
still asymptotically zero rate despite the noiseless transmission
because limy o, O(v/Nlog N)/O(N) = 0.

However, it is possible to achieve a positive rate when we
assume that Dave is uncertain of his noise level, and he uses
a radiometer as his detection test. This improves upon the
AWGN case with noise power certainty, where positive privacy
rate is not possible with a radiometer detector. However, it
is important to note that while a radiometer is the optimal
detector for AWGN systems where Dave knows his noise
variance, a radiometer is not optimal when Dave does not
know his noise variance [6]. Thus, the result we present is not
as strong as the one in [4], but our result does demonstrate
that in practical situations, a positive rate is possible while still
guaranteeing that Dave’s Pyp + Ppgq — 1.

It is important to distinguish privacy capacity from secrecy
capacity, which is the maximum error free rate that Alice
can talk to Bob, while preventing an eavesdropper from
decoding Alice’s transmissions. These two quantities have
different constraints, and unfortunately because of this we
have not been able to devise a fair metric for which to
compare power constrained, secrecy constrained, and privacy
constrained capacity.

In this paper we delve in greater detail into the notion of an
SNR wall [4], and how Alice can use it to her advantage to
communicate without being detected. We also try to estimate
what kinds of uncertainty we can reasonably expect and the
resultant communications rates that Alice and Bob can achieve
over SISO and MIMO AWGN and Rayleigh channels. We
use several assumptions of channel information: channel state
information (CSI) on the Alice-Bob and Alice-Dave channels
and CSI on the Alice-Bob channel and channel distribution
information (CDI) on the Alice-Dave channel, as seen in our
previous works [7], [8]. Unlike our previous work, in this paper
we incorporate for the SISO AWGN channel the fact that Dave
does not necessarily want to take into account as many samples
as possible.
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II. PRIVACY CAPACITY
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Fig. 1. System block diagram. T'y € [1/pTq, pT4]

A. Parameters and Notation Used

n Time Index

N Number of samples Dave observes

sin Alice’s Signal to Bob

rn Bob’s noise

d[n] Dave’s noise

rd Distance from Alice to the detector, Dave

T, Distance from Alice to the receiver, Bob

A Proportionality constant in free space path
loss

«@ Path loss exponent

T Variance of s[n]

Ty True variance of d[n]

I The interval [1/pTq, pI']

Ty Uncertain variance of d[n]. T'q € I.

P Characterizes Dave’s uncertainty about I'y

CN(u,T) | Denotes circularly symmetric complex
Gaussian distribution with mean p and
variance I’

Pp Probability of detection

Pup Probability of missed detection

Pra Probability of false alarm

13 Sum of probabilities of detection errors
P MD and P, FA

Ry, Privacy rate

Cor Privacy capacity

Q2 (+) Tail probability of a X% distribution

Q) Tail probability of a Gaussian distribution

~' Dave’s detection threshold

Consider a communications scenario where Alice has one
antenna and transmits a signal s[n] to Bob. At the same time,
Dave is a passive detector, listening for Alice’s transmissions
and trying to determine her presence: whether or not she is
transmitting.

We initially assume SISO AWGN Alice-Bob and Alice-
Dave channels with complex valued symbols as depicted in
Fig. 1. In Section V we assume SISO Rayleigh channels
and in Section VI we assume MIMO Rayleigh channels. Bob
and Dave experience noise r[n] and d[n], respectively. All
of our signals—that is, s[n], r[n], and d[n], are mutually
independent. We assume the received signal power, P, is a
scaled monomial function of the distance, which is consistent
with the free space path loss model where P o< 1/72 [9, p.
107], as well as multipath path loss models, where P o 1/r®

with «, the path loss exponent, as low as 1.2 and as high
as 6.2 [10]. We let P = A/r* for some proportionality
constant A. The uncertainty in Dave’s measurement is given
by g € [(1/p)Ta, pLa], p > 1, where 'y is the true noise and
p characterizes the uncertainty, as done in [6]. As discussed
in section VIII, one source of Dave’s noise uncertainty Alice
can expect and put reasonable bounds on is thermal noise.

Dave needs to establish the noise level, as he will see in
(1). This noise comes from several sources, which include
but are not limited to thermal noise in his receiver and
environmental noise from his surroundings. The thermal noise
can be modeled purely based on temperature. However, the
temperature also needs to be measured, and even the most
accurate thermometers have an uncertainty range. Also, the
environmental noise can be unpredictable, and the only way
Dave can attempt to establish the environmental noise is
to gather samples. However, he can never be certain that
the samples he collected were in the absence of Alice’s
transmissions. Hence, he may believe that the environmental
noise is higher than the true value. R

We chose the uncertainty model as I'y € [(1/p)T4, pL'q]—
the same model that Tandra and Sahai use [6]. We will
see later in Section VIII that this geometrically symmetric
model does not mesh well with temperature uncertainty from
thermometers, which is arithmetically symmetric. However, an
arithmetically symmetric model does not allow for the width
of the uncertainty interval to ever be greater than 2 I, making
the geometrically symmetric model a more natural choice.

To define privacy capacity, we assume that Dave is trying
to distinguish between the following two signal hypotheses,

Hy : z[n] = d[n], (1)
Hi: aln] = \/%s[n] +dfn), 2)

with n € {1,..., N} and associated probability distributions
Py(x) and P (x), respectively.

The privacy capacity C),. is defined as the maximum error
free rate at which Alice can talk to Bob, while guaranteeing
that

§=Pyp+Pra>1-—c¢ 3)

for Dave for some arbitrarily small e. It is possible to bound
¢ by bounding the total variation distance between Py(z) and
Py (z), defined as

1Py — Polli= /\Pl(x)—PU(x)|dx. @

Under the optimal detector for distinguishing Pj(x) from
Py(x) [11, Ch. 13],

1
5:1—§||P1—P0H1. (5)

Hence, if we force ||P1 — Pp||< 2, then Dave’s £ > 1 — e.
To find the privacy capacity under noise uncertainty, we
would have to find the input distribution such that the rate of
information between Alice and Bob is maximized when Dave
uses the optimal detector for the input distribution that Alice
chooses, while keeping the total variation distance between P;
and Py less than 2e. We leave this as an open problem, and
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instead solve the problem when we fix the detection test to be
an energy detector (radiometer), described by

z[n]*z[n] >+, (6)

where ' is the detection threshold of Dave’s choosing and N
is the number of samples.

Because we have assumed a suboptimal detector for Dave,
we are no longer solving for Cp, and instead are solving for
an achievable privacy rate R,.. The capacity of an AWGN
channel is maximized with a Gaussian input distribution, so
we assume Gaussian signaling for Alice.

III. SNR WALL

As ment/i\oned in Sec. II, we assume that Dave only knows
his noise I'; is contained to the interval I = [1/pl'y, pI'4]
(where p would equal one if Dave knew the noise exactly). In
this scenario, Tandra and Sahai showed that robust detection of
Alice is impossible [6], even if Dave takes an infinite number
of samples. In their proof, they derive

o
—-T
Ppa=maxQ | L—1 )
Tqel /%Fd
7/ - Fs - fd

Pyp=1— min Q
Tqel

—— | ®)
NEXRES

where they have used the Central Limit Theorem (CLT) on
the chi square distribution of the test statistic. From this they
conclude that Dave faces an SNR wall: if Alice transmits with
an SNR below p — 1/p, Dave cannot detect Alice, even if he
gathers an infinite number of samples. By maximizing Pr4
and Pysp independently, Dave’s true performance is no worse,
and with probability 1 better, than if he did not maximize
over [. If Dave were to instead just assume one value of
I’y € I, then with probability 1, Dave’s assumption about
T'y is incorrect, and his Py;p and Pgp4 will be higher than
what he calculates.

In Tandra and Sahai’s work, when Pr4 and Pp;/p are
maximized independently, pI'; maximizes (7) and 1 /pL4
maximizes (8). Because it is impossible for I'; to be 1/pl'y
and pI'; simultaneously, Dave’s detection performance can be
improved and remain robust. We instead analyze the scenario
that Dave maximizes their sum,

¢ = minmax [Pra(Ca,y) + Pup(@Cu?)| . ©
v Tael
Dave performs a min max—for every threshold, he has to
maximize £ over the uncertainty interval.

It is important to note that £’ is bounded between 0 and
1, which follows from the fact that Pp > Ppa, where Pp
is the probability of detection. A detector can always achieve
Pp = Ppy4 by ignoring the input data and flipping a coin
with probability of heads being Pp, and declaring a detection
when it is heads [12]. Hence any algorithm the detector uses
should be able to achieve Pp > Pr 4. Additionally, if Pp <
Pr 4, then the detector can simply switch what he declares a
detection and a non-event.

IV. AWGN CHANNEL PRIVACY RATE WITH
MEASUREMENT UNCERTAINTY

Alice can achieve a rate of log,(1+1I's/T",) bits per channel
use when her power is constrained to I'y and Bob’s noise
power is I';. [13, Ch 9]. Using this we define the privacy rate

Rpr = (10)

max

log, (1 4+ 4 Ls),
Tyt limao e £/(N,Iy)=1 82( Ty ry)

where &'(N,Tg) is the sum of Ppa and Pyp after N
observations.

A. Privacy Rate

From [7], we know that when Dave uses (9) as his detection
metric,

Pra= Pr(T(z) >~'; Ho)

2N~
“2u. () "
0, ify >T
lim Ppa= T (12)
N300 1, if 4 < Ty
Pp= Pr(T(z) >+'; Hy)
2N~
=Qvz: | == (13)
XZN Fd+ %Fg
d
. A
0, ity >Tq+ =T,
lim Pp— Z‘{ (14)
N 1, ity <Ty+ =T,
Tq

for some choice of fd € [1/pT 4, pT4] (where (11) and (13) are
the equations for an energy detector). We want to maximize
Alice’s signal power while forcing & — 1, so we can either
force Pp — 0 or Pr4 — 1. To do this we need to satisfy

A< Ty (15)
or
~ A
v>Ta+ 2T (16)

d

for all 4/ and some [y € [1/pL'4, pL'a] while maximizing I'.
For 7/ < pI'y, we can choose 'y = pI'y to satisfy (15). For
~y > pl'a, we can’t satisfy (15) but we can satisfy (16) by
choosing T = 1/pT"; and constraining

A
—Ts < (p— 1/p)Tq. (17)
Ta
Hence, the SNR wall to force & — 1 is
Po=Targ(p— 1)/ A. (18)

Given this, for Alice to achieve privacy, she should emit
less power than (18), resulting in

Rpr= ngﬂoo log, (1 + %%)

—log, (145 ()" (p-1)). (9
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B. Lower Bound on SNR Wall

Alice can communicate with a positive rate given by (19)
while forcing Dave’s detector to have all errors so long as she
talks below the SNR wall in (18). Unfortunately, Alice does
not know what Dave’s uncertainty is, so Alice cannot know
with certainty if she is communicating just below the SNR
wall to maximize her rate. However, she can lower bound all
of the SNR wall parameters under some assumptions.

In most situations there is at least some area in which
Alice can be certain that there is no eavesdropper, such as her
immediate vicinity or her building. She can use this to lower
bound r4. Dave’s noise level depends on the temperature, so
Alice can also lower bound p by assuming a temperature
uncertainty that is less than what is available in highly-accurate
thermometers. The noise level I'; can also be lower bounded
by assuming a temperature in Dave’s receiver and some noise
figure. The path loss exponent o can be lower bounded as well
based on the propagation environment characteristics.

With these lower bounds, Alice can achieve private
communication—that is, she can pick a rate R < R, =

log, (1 + 1;—;’ (:—j) (p— %)) Numerical results are discussed

in Section VIIL.

V. RAYLEIGH FADING CHANNEL PRIVACY RATE WITH
MEASUREMENT UNCERTAINTY

A. Problem Statement

s[n] ~ CN(0,Ts)
Alice } ‘I % X

Hy ~ CN(0,Tpq) —»

1

d[n] ~ cN(o.f‘d)—>@

@~{Bob|

Hy ~ CN(0,Tp,.) % rln]~ CAN(0, I'y)

Dave

Fig. 2. System block diagram. T'y € [1/plg, pT4l

We can also apply similar analysis to Rayleigh fading
channels with complex valued symbols as depicted in Fig.
2. All other aspects of the scenario are the same as the
SISO setup. For simplicity, the channel gains H; and H, are
assumed to be static over the signaling period.

For detection the two hypotheses are:

Hy: z[n]=d

(20)

Hgys[n] + d[n]. 21

&ﬂp‘k 3.

When Alice has channel state information (CSI) for the
Alice-Dave channel, Dave and Alice’s objectives are the same
as the AWGN case. We use the same strategy to analyze the
privacy rate in this scenario. This is an unlikely scenario in
practice, but the resulting privacy rate gives us an idea of
the best case Alice can hope to achieve. When Alice only
has channel distribution information (CDI) for the Alice-Dave

channel, Dave’s objective is the same as the AWGN case.
However, Alice can no longer guarantee that £’ — 1 because
she will not know the instantaneous value of the channel fade.
Accordingly, we have to change the constraint in the privacy
rate definition to be limy_,o F[¢'(Ts, N)] > 1 — ¢, which is
equivalent to requiring that limy_,o, Pr({(T's, N) = 1) >
1—e

B. Privacy Rate Under Alice-Dave CSI

Under CSI with a static channel gain, the channel is
still characterized as a AWGN channel with a known scalar
multiplier, so we assume Gaussian signaling for Alice. Dave
uses the same detection test as the AWGN case and hence the
same detection threshold. The probability of detection is now

Pp= Pr(T(z) >+'; Hy),

/
=0z, # . (22)
Fd + E ‘H d|2rs

We quickly see that aside from the addition of a new scale
factor |Hy|? everywhere there is <, our equations for the
Rayleigh fading CSI case will be the same as the AWGN
case (note the similarity between (13) and (22)). Hence Alice
should talk below

Targ
FslHd: |HZ\2dA (P - 1/[))

Using the power level from (23),

(23)

Hg,H,= lim logy(1+ 4 1=
R:DT| dy 11y Ngnoo Og2( +rg I‘T,)

@ 2
—logy(1+ Ft (%) Hichz(p— 1)), 24

Because Hy ~ CN(0,T14) and H, ~ CN(0,Ty,.), we have

Ryr=Tlogy(1+ £ (22) whes (o~ 1/p)),

where ¢ ~ F(2,2), that is, an F-distribution. With this, the
ergodic rate is

Rpr,erg = /0 10g2 (1 + ¢l‘) fx(l‘)dl’
= % 1Og2(¢)7

s o D (%)
the weighted average rate, with the weight being the pdf f, (z)
of the F distributed .

We can also find the outage rate
Pr(Ry, < c¢)=Pr(F(2,2) < (2° - 1))
2°-1)

GRS 7

(25)

(26)

[e3
. This ergodic rate represents

C. Analysis of Privacy Rate under CSI

Alice can communicate with a positive rate with zero
probability of detection so long as she talks below the power
in (23). If we compare the privacy rates of the Rayleigh fading
and AWGN channels,

Pr(Privacy Rateg,yeign < Privacy Rateswen) = 71+h”' .
Tha
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Fig. 3. Rayleigh Outage Rate under CSI for various p’s. All parameter ratios
are 1.

we see that if the channel gains have identical distributions,
then the probability that the Rayleigh fading channel under
CSI has a greater privacy rate than the AWGN channel is one
half. There is a small probability that the channel gain ratio
will be very large in Alice’s favor, causing the ergodic privacy
rate under CSI to increase over the rate of the AWGN channel.
This phenomenon is similar to what occurs in physical layer
security - by sending at a high rate when the channel is
in Alice’s favor, Alice can achieve a higher ergodic secrecy
capacity under fading channels than under a AWGN channel
[14]. A plot of the outage rate can be found in Fig. 3.

D. Privacy Rate under Alice-Dave CDI

Next we study the privacy rate when only channel distri-
bution information is known about the Alice-Dave channel.
We assume CSI for the Alice-Bob channel and E[s[n]*Hy] =
0 Vn. Otherwise the system setup is the same as the CSI case.
However, Alice can no longer guarantee that £’ — 1 because
she no longer knows the exact value of H; when she transmits.
Hence, we have to modify our definition of privacy rate to
logy(1+ 5 =) (28)

RZ”"’G =

max
limy_ o0 E[¢/ (T4, N)]>1—¢

While Pr4 remains the same, Pp now changes to

. 1. ’7/ — fd
0, with probability 1 — Q2 <A>
@sthd/Z

Pp = (29)

. o ’}/ - fd
1, with probability @,z <A> .
@Fthd/Q

When we analyze £ we can see that the worst case scenario
for Alice is when Dave picks v/ = pI'y, which maximizes
Pp. For any 4" < pI'g, we choose pI'y for the value
of T'y. Hence to have limy_,oo E[¢/(NV,T5)] > 1 — € or
limy 0o Pr(§(N,Ts) =1) > 1 — ¢, we need

Ppa+ Pyp>1—c¢

(p—3)Ta
1-Qu | m—=—2—|>1-¢ 30
QXz <£F6th/2 - € ( )
d

[Ergodic] Rate vs p for Fading and Nonfading Channels

4.5
4r Nonfading
35| Fading with CSI
= = = Fading with CDI, e = 0.001
31| = = = Fading with CDI, € = 0.01
= = = Fading with CDI, € = 0.1

Rate (bits per channel use)

Fig. 4. Comparison of Rate or Ergodic Rate vs p. All parameter ratios are
1. The ergodic rate under CDI increases with e.

Thus, to maximize rate under the constraint, Alice should
transmit with power

(p—3)Ta

I'sy=———F—7——.
%ng (G)th/2

Assuming CSI on the Alice-Bob channel, we have

1
|H,.|? Ty <7~d>a P=5

H, =lo 1+ — | — )] —— .31

82 ( th/2 Fr Tr Q_21(€) ( )

X2

Rpr,e

Because |H, >~ L=y3, we can find the ergodic rate

efx/Q

Rpr.e.erg= / log, (1 + Bz) B
0
1 1 1
=— ep(—=|E (=
m(2) P (23) ! (23)

. _ 1
where Ey(z) = [° ET_tdt and B = (:—”’) Ljr’” pilp-

r

dx

We can also find the outage rate

- 1
Pr(Ry. < c¢)= Pr (Xg < (2°— 1)B)

=1-0Q, ((20— 1);). (33)

E. Comparison of Privacy Rates Under Different Channels

A plot of the privacy rates can be found in Fig. 4 with all
parameter ratios set to one (that is, g—:; = 11:—; = :—; =1). As
we previously observed the ergodic privacy rate of a Rayleigh
channel under CSI is greater than that of a AWGN channel
because of the small probability of having a channel gain ratio
in Alice’s favor. We also observe that the ergodic privacy rate
for a Rayleigh channel under CDI is lower than that of an
AWGN channel, with only small increases in privacy rate for

orders of magnitude increases in e.
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- s[n] ~ CN(0, Q) 2\ M\
Alice VT ) + Bob
[G];[D]; —— T
(1 X ng) [H];;[B];;
(ney X ng r(n] ~ CN(O diag(R(i)))

(Gli v ENO SO |y ~envo,mian )

[D]; = ,/W [Blij =
d[n] ~ CN(0,Ty) —>® Dave

Fig. 5. The circle multiplication symbols denote matrix multiplication.

A
Trrli)™

VI. MIMO RAYLEIGH PRIVACY RATE

We also extend our results to MIMO Rayleigh fading
channels with complex valued symbols (Fig. 5). We also
assume that while Alice and Bob have multiple antennas, Dave
has only one antenna.

Let a bolded quantity represent a vector or matrix. Let
CN(p,E) denote a vector of circularly symmetric complex
jointly Gaussian random variables with mean p and covariance
matrix Z. Let n; and n, denote the number of transmit and
receive antennas, respectively. Let the [v]; operator be the ith
entry of a vector v, and let the [M ]Z-j operator be the row ¢,
column j entry of a matrix M. Let H denote the set of all
variances of the matrix H, with Var([H];;) = (4, 7). Let
the diag operator denote a diagonal matrix with the diagonal
entries given by the argument.

Alice sends signal s[n] at time index n. Bob and Dave
experience noise r[n] and d[n], respectively. Bob’s jth antenna
is located [r,];; away from Alice’s ith antenna, and Dave’s
antenna is located [ry]; away from Alice’s ith antenna. Bob
and Dave experience channel gains H and G, respectively.
We denote the diagonal entries of Q, the covariance matrix of
our signal s[n], as S(i). For simplicity, the channel gains H
and G are assumed to be static over the signaling period.

Dave’s detection hypotheses are

Hy: z[n] =dn] (34)
Hy: z[n] = Z A [Gi[s[n]]: + d[n].  (35)

2\ Tl

Alice’s objective is to find the maximum error-free rate at
which she can communicate to Bob while forcing £ > 1 —e.

A. Privacy Rate under Alice-Dave Channel Distribution In-
formation (CDI)

We assume Dave uses the same detection test as before
(6). Let L[n ] =y ,/([m] 7= [Glils[n]]; + d[n], and let
=" W [G];|2Ts; +T'4. Therefore L[n] ~ CN(0,1).
Then we can find Dave’s detection probability

Pp=Pr (}V S (T L)) > 7')

2N~
:ngz\r ng 20/, -
S A [GLIES() + Ta

) . (36)

6
Dave’s asymptotic Pp and Pr 4 are [7]
0, >T
lim Ppa— 7> T 37)
N—oo 17 ’Y < 1_‘d
’ - A 20/ -
0, y >ZW|[G]1| S(z)—i—Fd
lim Pp= =t (38)
N—oo t

—_

A .
/ 2 :
v 7 <D e llGLITS () + Ta
Zﬂmm
For Dave to robustly detect Alice Dave should choose the
7' that maximizes ¢'. Forcing ¢’ — 1 is equivalent to forcing
PD — 0 for Fd = pI'y [7]. However, we can only lower bound
Pr(¢’ — 1) because under CDI the [G];’s are random. Hence

Nne A
P ———|[G]:|*S(i —hryl >1—e
. (; RGPS < (0= ) d> >1-e(39)
Ideally we would use a generalized chi square distribution
(|[G]:]? are x3 distributed) and calculate the set S that satisfies
(39). However, we are unable to find an analytical solution.
Instead, we use the Lyapunov Central Limit Theorem (LCLT)
for an approximate analytical solution (see Section VI-Al),
and also compute the constraint numerically (see Section
VI-A2).

Once we have the set of valid power allocations,

Ry = log,|T + HQH' | (40)

Q: S satisfies (39), [Qlii <S(3) Vi,

Q positive semidefinite

1) Analytic Solution to Privacy Rate under Alice-Dave
CDI: For this solution we assume [rg]; = rq,[G]; =
'y, R(i) =Ty, [rr]ij = 17, H(3,5) = 'y Vi, j. These param-
eter uniformity assumptions allow us to use the Marchenko-
Pastur (MP) law [15]. We also assume n; = n, = n, but these
results can be generalized to ny # n,..

We use the LCLT, which unlike the classical CLT allows
for the random variables to not be identically distributed but
requires some extra bounds on their means and variances. The
LCLT allows us to avoid the problem of writing the inverse
tail of a generalized chi square distribution Q;é s(*), where
the function itself depends on S, the values we are trying to
solve for. By applying the LCLT to (39),

n 7 5
PPN URA0 Z(firgsw) <(p—1)Ta.
i=1"d 4

i=1

(41)

The combination of the LCLT’s n — oo assumption with
the following constraint results in a good approximation of
privacy rate, as we will see in Section VI-A2.

To simplify (41), we use the norm property that for a; > 0,

vV i a? < Zz Qq, (42)
giving us the new constraint function
> —1/p)T
ZS(,L) < (p — /p) d (43)

i=1 (1+Q 1(6))%1—‘9-

To see (42), observe that the unit ball described by setting the
right hand side (RHS) of (42) to one is a strict subset of the
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Fig. 6. Privacy rates vs p under the LCLT model. Rates increase with € and
number of antennas

unit ball described by setting the left hand side of (42) to one.
Hence by using the RHS, we have restricted the valid set of
power allocations that we are maximizing over.

From this point forward we use the MP distribution. The
MP law tells us the distribution of the eigenvalues of a matrix
JJ® when [J];; ~ CN(0,1) [15]. The parameter uniformity
assumptions allow us to write our new channel matrix H=
VT, 3 1f the distribution of the eigenvalues for the general
H were known, that distribution could be used.

If we take the singular value decomposition (SVD) of H-=
\/7UEVH where ¥ = diag(c;) and let Q = VSV where
S = diag(F G )) then our privacy rate approximation is

FrAS(i)
RyrcLr= logy ( 1407 44
pr,CLT S 81(111)34>XO v, Z ng( +o roT, )
S satisfies (43) i=1
where 0 = ); are the eigenvalues of JJ " Our numerical

solution in VI-A2 considers the off diagonal elements of Q.
By using Lagrange multipliers and Kuhn-Tucker conditions,
we can find the optimal power allocation as

0 B rre
(1+Q‘1(e))%1"g ALp A

S(i) = Vi (45)

where 6 is a water filling parameter. The familiar water filling
solution follows from the fact that applying the LCLT and
(42) changes our constraint function (43) to a total power
constraint.

While the eigenvalue distribution of H converges asymptot-
ically with the number of antennas, it converges very quickly.
By using Equations 15, 19, 20, and 21 in [15] with

Py — —=Yp TLaly (ra)"
0= 1T¥Q=1(e T, T, \7r

we get an analytical approximation of the privacy rate.

(46)

Surface of Valid Power Allocations for A =1, rq =5.2 7.4 2.456
I'y =3.245 11.1 13.876, p =1.1, € =0.01

0.015

0.01

1's3

0.005

sz 0 0 a1

Fig. 7. Boundary surface of valid power allocations for arbitrary A, €, p, I'g,
rq. All points below the surface in the first octant are also valid. The discrete
points are the true boundary, whereas the background surface is an ellipsoid.

If ny # n,, the rate bound can be found numerically by
evaluating (15) in [15]. The privacy rates are plotted in Fig. 6
for 1, 3, 5, and 7 antennas, with ¢ = 0.001,0.01, and 0.1.

It is important to note that there is no SNR term in the pri-
vacy rate. By solving for the maximum allowable power given
the detector noise uncertainty and the ratios of parameters, we
eliminate SNR.

This privacy rate differs to that found in [16]. Hero derives
Cpr = B log (5/T+ A7) |
of H¥H and p is a water-filling parameter. However, the low
probability of detection (LPD) constraint in [16] is different
from ours— [16] constrains the Chernoff exponent, which lim-
its how quickly Dave’s detection errors decay exponentially to
zero. This constraint acknowledges that while Dave’s detection
will be asymptotically perfect with noise power certainty, it
is still possible to transmit a finite amount of data with a
reasonably high & for Dave. Our result differs because we
assume noise power uncertainty and a radiometer for Dave.

where \; are the eigenvalues

2) Numerical Solution to Privacy Rate under Alice-Dave
CDI:

Again, we are interested in maximizing Alice’s rate under
the constraint given by (39). By using the generalized Y3
distribution [17], we plot valid power allocations for arbitrary
values of A,G,T"; and r4 and 72 = 3. Because the rate mono-
tonically increases in power, we are only interested in power
allocations at the boundary of our constraint function. The
discrete points in Fig. 7 come from (39), whereas the surface
plot is that of an ellipsoid, as (%)24— (%)24— (ﬁ)2 =1,

(p=1/p)Ta
Tl Q3 (99(0/2°
the maximum power allowed for that antenna if only that
antenna were used [7]. The model match can be evaluated
by calculating the average of ( (1)) + (%)2 + (ﬁ)z,

where S can be found by solving S(7) =
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which is approximately 0.9 for the plotted values and for thirty
other sets of arbitrarily chosen parameters. Additionally, all
the points are strictly interior to the corresponding ellipsoid.
As a side note, consider that the constraint surface for total
power-constrained MIMO is a plane in the first hyperoctant.

When just accounting for noise from temperature, we have
a low resultant transmit power, as we will see in Section
VIII. Under the traditional sum power constraint, maximizing
MIMO capacity at low SNR involves beamforming. The
optimal beamforming covariance matrix is Q = Pvv’!, where
P is the power constraint and v is the right singular vector
of H that corresponds to its largest singular value. We can
employ this same method for the MIMO privacy rate. However
it is important to note that while precoding with the right
singular vectors is optimal under the sum power constraint,
it is not optimal under a per-antenna power constraint [18].
Finding the privacy rate can be reformulated as finding the
maximum of the capacities with per-antenna power constraints
for each valid power allocation in Fig. 7. The advantage of
using the right singular vectors is that it is computationally
inexpensive - it only involves finding the SVD of H and then
scaling the vector out to the boundary of the valid power
allocation surface. Additionally, the beamforming approach
does not require the parameter uniformity assumptions, unlike
the LCLT approach.

By using only one eigenchannel and sending only one
symbol & ~ CN(0,02), we precode X = wvz. Defining
Ts = (8(1),5(2),...,8(n))T, our power allocation is
Ty = 02V, where v is the vector such that [v]; = |[v];|?.
We find the scalar 02 such that T's is at the boundary of the
set of valid power allocations. Having found o2 and )\, the
largest eigenvalue of HH”,

oi)\l )

Rpr,beamforming: IOgQ(l + T, (47)

We then use a Monte-Carlo simulation to find the ergodic
rate. Additionally, we do a brute force search to find the
true ergodic privacy rate. In our Monte Carlo simulation,
for every realization of H we discretize the space of valid
power allocations, calculate the per antenna power constrained
(PAPC) capacity at each allocation [18], and then pick the
maximum across all power allocations. Because calculating
the PAPC capacity is computationally expensive at low power
allocations [18], we also present a lower bound which sets the
channel covariance matrix as the diagonal matrix with the per
antenna power constraints along the diagonal.

We compare the LCLT, beamforming, grid search, and grid
search lower bound methods under the parameter uniformity
assumptions (as required by the LCLT) in Fig. 9. We see
that at 3 antennas the computationally fast LCLT method
provides a good approximation of the privacy rate. However,
we see increasing the number of antennas increases the error
in the LCLT approximation. There are three factors affecting
the error approximation: the use of the LCLT which assumes
n — oo, the use of the MP law which also assumes 1 — oo
but converges quite rapidly, and the use of inequality (42). All
three factors together combine to result in an approximation
that lower bounds the true privacy rate, and becomes worse as
the number of antennas increases.

Privacy Rates for 7 = 3, ¢ = .01, 11:—’; = 11:—; =1,r.=5
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Fig. 9. Comparison of privacy rates vs p under different models

The beamforming solution performs well with parameter
uniformity, but as the privacy constraint region becomes
skewed, the approximation error grows (Fig. 8). With param-
eter uniformity, the privacy constraint region is symmetric
and represents the best case scenario for the beamforming
solution, allowing it to perform well despite using only one
eigenchannel and the wrong precoding matrix.

We can apply all these results to look at some hypothetical
numbers on privacy rates.

R

Y1 V2

Fig. 10. PDFs of test statistics at infinite samples. The dotted PDFs are those
at the lower end of the uncertainty interval
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Fig. 11. PDFs of test statistics at finite samples, The dotted PDFs are those
at the lower end of the uncertainty interval.

VII. DAVE’S OPTIMAL NUMBER OF SAMPLES
A. Worst case scenario

So far in this paper, we assumed that Dave’s detection
performance increases with the number of samples he takes,
despite being forced to have £ > 1 — ¢ [7]. We showed that
asymptotically, Dave’s £ is either 0 or 1, depending on Alice’s
transmit power. However, the assumption that more samples
is better is actually incorrect, given constraint (9). To see this,

we calculate £ at 1 sample,
A~ A~/
¢" = minmax | exp - exp <j) .(48)
v Teel Tq+ %Fs Ty
AT, >0, ¢ >0at N =1.
Also, &' < 1 because an exponennal with a negative exponent
must be less than 1. However, we showed that at an infinite
number of samples, Dave’s ¢’ = 1, provided Alice’s transmit
power is low enough. Because £’ is a continuous function over
N, there must exist some finite N where £’ is minimized for
Dave, and we revise (9) to

We can plainly see that because

& = min min max [PFA(Fd,’y N) + Pyp( Fd,’y N) }(49)
N v Taerl

This result initially seems counterintuitive. In any detection
scenario, the detector is at worst no better off, and almost
always better off by gathering more samples. In this scenario,
the detector is actually better off ignoring samples past the
optimal number. However, if we look at (49), we see that
Dave is trying to account for the worst case scenario when he
maximizes I'y over I. As Dave collects more samples, there
is a chance that he will observe a rare event that represents
his worst case. Because his test statistic is cumulative, he will
eventually accumulate enough rare events that decrease his
detection performance.

Another way to analyze this situation is with the test statistic
probability density function (pdf)’s themselves.

At a large number of samples, by the CLT, the pdf of the
test statistic under each hypothesis converges to a Gaussian
distribution, and with an infinite number of samples the
Gaussian distribution converges to a delta function at the
mean of the distribution. The red deltas in Figures 10 and 11
represent the null hypothesis of Alice _not transmitting. Hy;
represents the null hypothesis pdf with Fd =1/pl'g, and Hy ,,
represents the null hypothesis pdf with Fd = pI'y. Conversely,
the green deltas represent the alternate hypothesis that Alice
is transmitting, with H; ; representing the alternate hypothesis

Rate vs p for Finite and Infinite Samples

2
Finite N, ¢ = .001
Finite N, ¢ = .01 - -
s Finite N, € = .1 g
Infinite N -

15| = =

Rate (bits per channel use)

1 1.5 2 2.5 3

p
Fig. 12. Rate vs p for finite and infinite samples. Rate increases with e

pdf with Ty =1 /pLq, and H,, representing the alternate
hypothesis pdf with fd = pl'y.

If Dave chooses any detection threshold less than Hy,,
sAuch as 1, by the robustness criterion in (49), he chooses
'y = pI'4q. This means the pdfs of his test statistic are Hy,
and H, ,, implying he will have 100% false alarms. If Dave
chooses any ¢ detection threshold greater than H ,,, such as 7o,
he chooses Fd = 1/ply to satisfy (49). This means the pdfs
of his test statistic are Hy; and H;;, implying that he will
have 100% misses. There does not exist a threshold that Dave
can choose that will allow his asymptotic ¢ to be less than 1,
and hence it would seem that Alice can communicate while
forcing Dave’s £ to asymptotically approach 1.

However, if we analyze the finite sample case, we see
that the strategy employed in the infinite sample case no
longer works because the pdfs now have a support that is
not infinitesimal. Dave can choose any detection threshold he
desires, as long as he satisfies (49). Dave could ghoose the
threshold 1, in which case there is no choice of I'y and the
corresponding pdfs that will force his £/ to be arbitrarily close
to 1. From Fig. 11, with v, as Dave’s choice of detection
threshold, his worst case £ over the choice of I'; would be on
the order of .15 as opposed to asymptotically 1.

In order for Dave to actually compute the optimal N, v,
and I'y in (49), Dave needs to know Alice’s I';. Because
we are assuming that Alice and Dave are not cooperative,
it is not realistic to assume that Dave has this information.
However, if Alice assumes that Dave knows I';, then Alice
will be assuming the best case detection performance for Dave
under the constraints he is given, and Alice will be guaranteed
to communicate with privacy.

As we can see in Fig. 12, there is a dramatic decrease in
privacy rate when we assume Dave uses the optimal number
of samples.

Interestingly, the optimal number of samples decreases as p
increases, as seen in Fig. 13.
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Optimal Number of Samples for Detection vs p
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Fig. 13. Optimal number of samples for Dave. € has little effect. Becomes
difficult to compute at low values of p
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Fig. 14. Sum of detection error probabilities for the average case, vs number
of samples

B. Average Case Scenario

If instead of maximizing his worst case to be robust, Dave
targeted the average case, we see that more samples is better.

While we were not able to show this analytically, we did
numerically compute the average case

pla
¢ = minmin/
1

, [PFA(fd»'V/7N)
Ny /pTa

+ Pap(Ta v, )| fr, (Ca)dE f50)

where f3 (-) is the pdf of I'y. Assuming a uniform distribution

on I'y, we can see in Fig. 14 that £” decreases monotonically
with respect to N when the optimal threshold +,,, is used.
This scenario is not entirely realistic because we are as-
suming that Dave has knowledge about ffd(')’ and more
importantly that he is not trying to be robust about his
detection method. This detection metric would allow for his
calculated £” to be not be his true sum of detection errors

10

TABLE I
PRIVACY RATES
Bandwidth | MIMO R, | SISO R,
TMhz | 98.1 bits/s | 9.07 bitls
10 Mhz | 981.2 bits/s | 90.7 bit/s
20 Mhz | 1962.3 bits/s | 1814 bits/s

because I'; can only be one value in /. However, analyzing this
scenario does provide intuition for the initially counterintuitive
result seen previously.

C. Further Extension of Finite Sample Results

We leave this finite sample analysis as an open problem for
the other types of channels we consider: SISO and MIMO
Rayleigh channels. While we didn’t conduct the finite sample
analysis on such channels, the fact that we can overcome
the square root law in [4] by assuming noise uncertainty,
radiometer use, and Dave’s taking of a finite number of
samples, is the important aspect in this work.

VIII. PRACTICAL RATES

One concern in achieving these rates in practice is that Alice
will not be certain of where the SNR wall is, especially in the
Rayleigh case as the SNR wall is random. We make some
practical assumptions in [7], leading to the results in Table I.

While these bitrates found in Table I are low, if Alice
can obtain better estimates of the noise uncertainty by taking
into account interference sources or other factors, this privacy
rate can increase. Fig. 6 shows the privacy rate versus p.
Additionally, if Bob gets closer, the bitrates can increase sig-
nificantly because the received power is inversely proportional
to distance squared.

The MIMO privacy rates are 2.7 times greater than having
four individual SISO channels. It is important to remember
that the search space for power allocation is not a plane like
the standard total power constrained capacity problem—the
search space is ellipsoidal in nature, as seen in Fig. 7. This
non-planar shape allows us to increase our capacity by a factor
beyond the number of antennas.

IX. OTHER SOURCES OF NOISE UNCERTAINTY

Up to this point we assumed that Dave’s noise uncertainty is
not affected by Alice’s behavior. However, Alice could set up
interference sources that turn on and off at random intervals.
This interference can create more noise uncertainty for Dave
and increase Alice’s privacy rate. Also, because Alice set
up the interference sources herself, she can estimate Dave’s
uncertainty from these sources.

Additionally, there can be other noise sources present that
are not in collusion with Alice. In the extreme underlay
scenario, the primary user could be seen as an interference
source that increases Dave’s noise uncertainty. However, Bob
has to be able to reject the noise for this to increase his rate,
because otherwise his noise increases as well and offsets the
gain in allowable transmit power.

We leave further study into these areas as an open problem.
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X. CONCLUSION

It is possible to overcome the square root law of private
communication if two assumptions are made: the detector is
uncertain of its noise level and the detector uses a radiometer.
We showed that in it’s attempt to maximize the worst case
scenario in the pursuit of robustness, the detector should
only take into account a finite number of samples. While
the detector cannot actually calculate the optimal number of
samples without knowing the transmitter’s power, the detector
does know that the optimal number of samples decreases as
its uncertainty about the noise increases.

Further work would be to analyze Rayleigh SISO and
MIMO channels to confirm that a finite number of samples
is optimal in those cases as well.
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