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Abstract: Described herein is the first application of perfluorinated solvent in the stereoselective
formation of O-/S-glycosidic linkages that occurs via a Ferrier rearrangement of acetylated glycals.
In this system, the weak interactions between perfluoro-n-hexane and substrates could augment the
reactivity and stereocontrol. The initiation of transformation requires only an extremely low loading
of resin-H+ and the mild conditions enable the accommodation of a broad spectrum of glycal donors
and acceptors. The ‘green’ feature of this chemistry is demonstrated by low toxicity and easy recovery
of the medium, as well as operational simplicity in product isolation.

Keywords: glycosylation; Ferrier rearrangement; perfluorinated solvent; high stereoselectivity;
reusability

1. Introduction

Facile and stereoselective construction of glycosidic linkages has always been one
of the major focal points in the carbohydrate research community. Among these, the 2,3-
unsaturated O-glycosides have attracted great attention because of their wide occurrence in
bioactive molecules (Figure 1a) [1,2] and the potential for rapid functionalization [3,4]. Over
the past several decades, various efficient methods have been established for forging such
core scaffolds with a Ferrier rearrangement [5,6] that employs readily accessible glycals, and
O-nucleophiles emerging as the most robust strategy [7–10]. Owing to the mild conditions
and short reaction times, Lewis acids are the catalyst class of choice to promote this type of
transformation [7–10], while Brønsted acids [7–10] and transition metal catalysts were also
found to be effective [7–12]. Alternatively, a Ferrier-type O-glycosylation could be mediated
by single-electron transfer reagents [13,14] via a radical pathway. These developments
notwithstanding, a predominant α-selectivity in the formation of O-glycosidic linkages
is normally dictated by multiple factors, including the conformation of glycal, anomeric
effect, as well as the solvent effect in most cases [10,15,16] (Figure 1b).
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Figure 1. Motivation and reaction design for acid-catalyzed stereocontrolled Ferrier-type glycosyl-
ation assisted by perfluorinated solvent. (a) Representative bioactive molecules with 2,3-unsatu-
rated O-glycoside scaffold; (b) Conventional approaches to access 2,3-unsaturated O-glycoside scaf-
fold; (c) Strategies to activate donor or/and acceptor for Pd-catalyzed O-glycosylation; (d) This work: 
acid-catalyzed stereocontrolled O-glycosylation assisted by perfluorinated solvent. 

In this context, palladium-catalyzed O-glycosylation with glycals as donors offers 
complementary and more programmable access by which excellent stereocontrol could 
be governed through the rational selection of the leaving group [17,18], ligand [19], or 
palladium source [20]. In this paradigm, tactics such as the addition of zinc reagent to 
render a softer acceptor [17,19], modification of glycal to activate the donor [21,22], or 
application of decarboxylative pathway to formally activate both reactants [23,24] are in-
voked to improve the performance of these reactions (Figure 1c). A review of these sys-
tems suggested that by incorporating a catalyst that could bring the donor and acceptor 
together through noncovalent interactions, the reaction might be catalytically mediated 
via a stereoselective manifold. Inspired by the recent advance in stereoselective O-glyco-
sylation by means of bifunctional H-bond catalysis with O-acceptor [25], we envisioned 
devising a novel catalytic system to mimic this activation mode with other less-explored 
weak interactions. 

Perfluorinated hydrocarbons displaying low chemical activity, low toxicity and low 
miscibility with common organic solvents have been recognized as a class of useful reac-
tion mediums in various research fields [26,27], particularly in molecular-oxygen-in-
volved aerobic oxidation reactions [28–34]. Wide application potential is also found in bi-
phase catalysis by virtue of their unique physical properties [35,36]. Moreover, fluorous 
solvents could engage in diverse weak interactions such as π–πF, C–F···H hydrogen bond, 
C–F···C=O, and anion-πF, which play essential roles in the promotion of chemical trans-
formations by enhancing reactivity and stereoselectivity as well as the design of functional 
materials [26,27,37–41]. In carbohydrate chemistry, it has been found that introducing a 
perfluorinated solvent could improve the reaction outcome [42–45]. These findings led us 
to postulate that the weak interactions stemming from perfluorinated solvent could be 
leveraged to improve the acid-catalyzed Ferrier-type glycosylation reaction (Figure 1d). 
On account of the weak acidic condition compared to traditional acid-catalyzed Ferrier 

Figure 1. Motivation and reaction design for acid-catalyzed stereocontrolled Ferrier-type glycosyla-
tion assisted by perfluorinated solvent. (a) Representative bioactive molecules with 2,3-unsaturated
O-glycoside scaffold; (b) Conventional approaches to access 2,3-unsaturated O-glycoside scaffold;
(c) Strategies to activate donor or/and acceptor for Pd-catalyzed O-glycosylation; (d) This work:
acid-catalyzed stereocontrolled O-glycosylation assisted by perfluorinated solvent.

In this context, palladium-catalyzed O-glycosylation with glycals as donors offers
complementary and more programmable access by which excellent stereocontrol could
be governed through the rational selection of the leaving group [17,18], ligand [19], or
palladium source [20]. In this paradigm, tactics such as the addition of zinc reagent to render
a softer acceptor [17,19], modification of glycal to activate the donor [21,22], or application of
decarboxylative pathway to formally activate both reactants [23,24] are invoked to improve
the performance of these reactions (Figure 1c). A review of these systems suggested that
by incorporating a catalyst that could bring the donor and acceptor together through
noncovalent interactions, the reaction might be catalytically mediated via a stereoselective
manifold. Inspired by the recent advance in stereoselective O-glycosylation by means
of bifunctional H-bond catalysis with O-acceptor [25], we envisioned devising a novel
catalytic system to mimic this activation mode with other less-explored weak interactions.

Perfluorinated hydrocarbons displaying low chemical activity, low toxicity and low
miscibility with common organic solvents have been recognized as a class of useful reaction
mediums in various research fields [26,27], particularly in molecular-oxygen-involved
aerobic oxidation reactions [28–34]. Wide application potential is also found in biphase
catalysis by virtue of their unique physical properties [35,36]. Moreover, fluorous sol-
vents could engage in diverse weak interactions such as π–πF, C–F···H hydrogen bond,
C–F···C=O, and anion-πF, which play essential roles in the promotion of chemical transfor-
mations by enhancing reactivity and stereoselectivity as well as the design of functional
materials [26,27,37–41]. In carbohydrate chemistry, it has been found that introducing a
perfluorinated solvent could improve the reaction outcome [42–45]. These findings led
us to postulate that the weak interactions stemming from perfluorinated solvent could be
leveraged to improve the acid-catalyzed Ferrier-type glycosylation reaction (Figure 1d).
On account of the weak acidic condition compared to traditional acid-catalyzed Ferrier
rearrangement, the translation of this design into an effective process would further enable
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stereocontrol and broadens the substrate generality. Notably, the use of perfluorinated
solvent could additionally ease the isolation of the glycoside products and the recovery of
the reaction medium and assistor.

2. Results and Discussion
2.1. Optimization of Reaction Conditions

Based on these design criteria, the study on this stereocontrolled glycosylation com-
menced by employing tri-O-acetylated glucal 1a as the donor, while ethanol 2a serves
as both the acceptor and solvent (Table 1). TFE (trifluoroethanol) was first attempted
as the additive, which might promote glycosylation through acidic proton or/and other
noncovalent weak interactions with 2a [46]. Encouragingly, the O-glycosidic product 3a
was provided in 45% yield after 6 h at 100 ◦C (entry 1). The use of PFD (1H,1H,2H,2H-
perfluoro-1-decanol) with a longer perfluorinated alkyl chain improved the yield to 55%,
indicating the dominant role of the fluorine effect (entry 2). This speculation was further
corroborated by the enhanced chemical yield when PFH (perfluoro-n-hexane) without an
acidic proton was used as the catalyst (entry 3). Nonetheless, a significant decrease in
conversion was observed when PFTEA (perfluoro-triethylamine) [47] was utilized, imply-
ing that the basic environment could retard the progress of this transformation (entry 4).
It should be noted that high α-selectivity was detected for the generated O-glycosidic
product for all these reactions (α:β > 20:1). Unsurprisingly, less than 10% yield and poor
stereoselectivity (α:β = 5:1) was obtained in the absence of additive (entry 5). These results
illustrated the positive effect of weak interactions on both efficiency and stereocontrol. As
more complex glycosyl acceptors may not be accessed as easily and well-suited for use in
solvent quantities, the reaction using stoichiometric glycosyl acceptors was evaluated in
PFH due to the environmental friendliness and recyclability. However, under this set of
conditions, only a trace amount of 3a was detected (entry 6). Exogenous proton was intro-
duced, and notably, 0.6 wt% of H+ type sulfonic resin (resin-H+) was sufficient to deliver a
quantitative amount of glycosylated α-3a (entry 7). Meanwhile, when CH2Cl2 was used as
the solvent, low yield (16%) and poor stereoselectivity (α:β =1.5:1) were delivered (entry 8).
Similarly, the stereoselectivity was decreased (α:β = 7:1) when PFH was substituted by
ethanol (entry 9), and no 3a was obtained with less amount of PFH (10%) and n-hexane as
a solvent, further affirming our hypothesis (entry 10). Other solvents were also screened,
but no satisfactory results could be observed (entries 11–13). Lowering the temperature to
80 ◦C led to appreciable erosion of chemical yield (entry 14), whereas a prolonged reaction
time of 14 h led again to a good yield (entry 15). A trace amount of 3a was detected when
the temperature was further decreased to 60 ◦C (entry 16). The absolute configuration of 3a
was determined by X-ray crystallographic analysis.

Table 1. Optimization of the reaction conditions.

Molecules 2022, 27, x FOR PEER REVIEW 3 of 10 
 

 

rearrangement, the translation of this design into an effective process would further ena-
ble stereocontrol and broadens the substrate generality. Notably, the use of perfluorinated 
solvent could additionally ease the isolation of the glycoside products and the recovery of 
the reaction medium and assistor. 

2. Results and Discussion 
2.1. Optimization of Reaction Conditions 

Based on these design criteria, the study on this stereocontrolled glycosylation com-
menced by employing tri-O-acetylated glucal 1a as the donor, while ethanol 2a serves as 
both the acceptor and solvent (Table 1). TFE (trifluoroethanol) was first attempted as the 
additive, which might promote glycosylation through acidic proton or/and other non-
covalent weak interactions with 2a [46]. Encouragingly, the O-glycosidic product 3a was 
provided in 45% yield after 6 h at 100 °C (entry 1). The use of PFD (1H,1H,2H,2H-per-
fluoro-1-decanol) with a longer perfluorinated alkyl chain improved the yield to 55%, in-
dicating the dominant role of the fluorine effect (entry 2). This speculation was further 
corroborated by the enhanced chemical yield when PFH (perfluoro-n-hexane) without an 
acidic proton was used as the catalyst (entry 3). Nonetheless, a significant decrease in con-
version was observed when PFTEA (perfluoro-triethylamine) [47] was utilized, implying 
that the basic environment could retard the progress of this transformation (entry 4). It 
should be noted that high α-selectivity was detected for the generated O-glycosidic prod-
uct for all these reactions (α:β > 20:1). Unsurprisingly, less than 10% yield and poor stere-
oselectivity (α:β = 5:1) was obtained in the absence of additive (entry 5). These results 
illustrated the positive effect of weak interactions on both efficiency and stereocontrol. As 
more complex glycosyl acceptors may not be accessed as easily and well-suited for use in 
solvent quantities, the reaction using stoichiometric glycosyl acceptors was evaluated in 
PFH due to the environmental friendliness and recyclability. However, under this set of 
conditions, only a trace amount of 3a was detected (entry 6). Exogenous proton was intro-
duced, and notably, 0.6 wt% of H+ type sulfonic resin (resin-H+) was sufficient to deliver 
a quantitative amount of glycosylated α-3a (entry 7). Meanwhile, when CH2Cl2 was used 
as the solvent, low yield (16%) and poor stereoselectivity (α:β =1.5:1) were delivered (entry 
8). Similarly, the stereoselectivity was decreased (α:β = 7:1) when PFH was substituted by 
ethanol (entry 9), and no 3a was obtained with less amount of PFH (10%) and n-hexane as 
a solvent, further affirming our hypothesis (entry 10). Other solvents were also screened, 
but no satisfactory results could be observed (entries 11–13). Lowering the temperature to 
80 °C led to appreciable erosion of chemical yield (entry 14), whereas a prolonged reaction 
time of 14 h led again to a good yield (entry 15). A trace amount of 3a was detected when 
the temperature was further decreased to 60 °C (entry 16). The absolute configuration of 
3a was determined by X-ray crystallographic analysis. 

Table 1. Optimization of the reaction conditions. 

 
Entry a Additive Catalyst b Solvent Temp. (°C) Yield (%) c Stereoselectivity (α:β) 

1 TFE - Ethanol 100 45 >20:1 
2 PFD - Ethanol 100 55 >20:1 
3 PFH - Ethanol 100 60 >20:1 
4 PFTEA - Ethanol 100 15 >20:1 

Entry a Additive Catalyst b Solvent Temp. (◦C) Yield (%) c Stereoselectivity (α:β)

1 TFE - Ethanol 100 45 >20:1
2 PFD - Ethanol 100 55 >20:1
3 PFH - Ethanol 100 60 >20:1
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Table 1. Cont.

Entry a Additive Catalyst b Solvent Temp. (◦C) Yield (%) c Stereoselectivity (α:β)

4 PFTEA - Ethanol 100 15 >20:1
5 - - Ethanol 100 <10 5:1
6 - - PFH 100 trace -
7 - resin-H+ PFH 100 96 >20:1
8 - resin-H+ CH2Cl2 100 16 1.5:1
9 - resin-H+ Ethanol 100 85 7:1
10 PFH resin-H+ Hexane 100 - -
11 PFH resin-H+ Toluene 100 trace -
12 PFH resin-H+ DCE 100 trace -
13 PFH resin-H+ DMF 100 - -
14 - resin-H+ PFH 80 55 >20:1

15 d - resin-H+ PFH 80 95 >20:1
16 - resin-H+ PFH 60 trace -

a Unless otherwise specified, all reactions were performed with 1a (0.138 mmol, 1 equiv), 2a (1.2 equiv), additive
(10 mol%), catalyst (0.2 mg, 0.6 wt%) for 6 h under N2 in 0.5 mL solvent. b Resin-H+: sulfonic polystyrene type
resin. c Isolated yields. d 14 h. DCE: dichloride ethane, DMF: N, N-dimethylformamide.

2.2. Substrate Scope

With the optimized conditions in hand, the substrate generality with respect to gly-
cosyl acceptors was evaluated using glucal 1a as the standard donor. As depicted in
Scheme 1a, various types of glycosyl acceptors, including alkyl, allyl, benzyl, and propargyl
alcohols, could give the desired glycosidic products in excellent yield with high stereocon-
trol at the anomeric center (3b-3o, α:β > 20:1). It is noteworthy that sterically hindered (3f
and 3j) and structurally rigid (3o) alcohols that are unreactive reactants for conventional
Ferrier rearrangement approaches could convert efficiently to respective O-glycosylation
products. Subsequently, phenols with different substituents and substitution patterns were
examined, and the glycosidic 3p-3ac was synthesized smoothly (Scheme 1b). Compared
to aliphatic alcohol acceptors, the yields and stereoselectivities deteriorated in most cases,
probably due to the strong background reaction catalyzed by an acidic hydroxyl group of
phenols. Apart from O-nucleophiles, S-nucleophiles were also applicable for this reaction
(Scheme 1c). Although all the tested substrates reacted well with 1a to give compounds
4a-4e in good yields, the stereochemical outcome varied greatly. For instance, a 1:1 α:β
mixture was detected for 4a (from n-butylthiol) while 4b (from t-butylthiol) was generated
with an α:β ratio > 20:1. Likewise, thiophenol with electron-withdrawing group delivered
S-glycosidic 4c in poor stereocontrol while 4d with an electron-donating group on thio-
phenol was obtained with α:β ratio of 10:1. When 2-methylbenzenethiol was utilized, the
desired glycosylation product 4e was formed in 75% yield with 6:1 α:β selectivity. Addi-
tionally, C-3 substitution products 4c’ and 4e’ were isolated alongside 6% and 8% yields,
respectively. The absolute configurations of 3aa, 3ab, 4e, and 4e’ were determined by X-ray
crystallographic analysis, and those of other products in this scheme were assigned by
analogy. Water also functioned well as an acceptor in the developed reaction, giving α-5 an
87% yield.
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Subsequently, the generality of this glycosylation method was studied with other
types of glycal donors (Scheme 2). Firstly, D-galactal 1b, C-4 epimer of 1a was employed,
and the results were summarized in Scheme 2a. A series of alcohols were examined, and
these reactions invariably gave only 6a-6e in excellent yields and α:β > 20:1. Phenols, thiols,
and thiophenols were also applicable to afford 6f-6i in good yields and stereoselectivities.
As a C-3 epimer of 1a, the combination of D-allal 1c with selected glycosyl acceptors forged
the corresponding products in more than 80% yield (3a, 3aa, 4b, and 4c). Interestingly,
remarkable α-selectivities were detected for all of these reactions, same with the case for
glucal 1a (Scheme 2b). L-Rhamnal 1d was also verified to be a competent donor for this
transformation, and 7a-7d was established with excellent outcomes (Scheme 2c). However,
when the pentose substrates were employed in this procedure, such as D-xylal 1e or D-
arabinal 1f (a pair of C-3 epimers) as glycosyl donors, poor α:β ratios were observed for
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these reactions (Scheme S1, 8a-8d), indicating the direct significance of C-5 substitution in
stereoinduction.
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To demonstrate the practicality of the developed glycosylation strategy, the reactions
of 1a with an array of functional molecules as acceptors were investigated (Scheme 3a).
First, glycosylated product 9a with a long alkyl chain was prepared in 90% chemical yield
with α:β > 20:1, indicating the potential utility in lipidosome assembly. A fluorous tag
containing long-chain linear perfluorocarbon was well tolerated to afford 9b with the
same level of outcome. Glycosylation with sugar alcohol delivered disaccharide 9c in 80%
yield with α:β selectivity of 12:1. When phenol derived from tetraphenylethylene with
aggregation-induced emission attribute was reacted, 9d could be generated in moderate
yield with α:β = 9:1. Furthermore, the reaction operated smoothly on bioactive diosgenin
to generate the C-O bond formation product 9e with perfect stereochemical control.
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A gram-scale reaction between 1a and 2a was also implemented under the standard
conditions, in which the synthetic efficiency and stereocontrol observed for the small-scale
reaction were perfectly preserved (Scheme S2). Additionally, given the ease of isolation and
good recyclability of organofluorine solvent, the recycling experiments were conducted to
reinforce the utility of this strategy. After the completion of each reaction, the target product
was easily isolated by phase separation, and the recovered reaction system (bottom phase)
was reused successively. As summarized in Scheme 3b, when ethanol 2a was used to react
with donor 1a, the stereoselectivity (α:β > 20:1) was perfectly preserved, and the chemical
yield was maintained at a good level (>70%) even after a repetition of this procedure for
seven times. Similar results were obtained by using 3,4-dimethylphenol 2q as a glycosyl
acceptor for the recycling experiment.

3. Materials and Methods

The detailed procedure of the synthesis and characterization of the products are given
in Supplementary Materials.

4. Conclusions

In conclusion, an acid-catalyzed stereoselective Ferrier-type glycosylation assisted by
perfluorinated solvent has been established. A wide range of glycal donors and glycosyl
acceptors are well accommodated to provide structurally diverse O- and S-glycosylated
linkages products in good efficiency for most cases. The utilization of perfluoro-n-hexane
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as the solvent improves the reaction conditions, increases the yield, and enhances the
stereocontrol at the anomeric center. Notably, the turnover of this procedure is achieved
with a minimal amount of resin-H+. Aside from experimental ease in isolating products,
the use of low toxic and recyclable perfluorinated solvent highlights the environmental
friendliness of the developed method.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10.3
390/molecules27217234/s1, CCDC 2132603, 2160183, 2160185, 2160188, and 2161131 contain the supple-
mentary crystallographic data for this paper. These data can be obtained free of charge via www.ccdc.
cam.ac.uk/data_request/cif (accessed on 22 March 2022), by emailing da-ta_request@ccdc.cam.ac.uk,
or by contacting The Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ,
UK; fax: +44 1223 336033, synthesis and characterization of all compounds described in this paper.
References [48–68] are cited in the supplementary materials.
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