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Abstract

Many signaling pathways that control cellular development, cell-cycle progression and nutri-

tional versatility have been studied inCaulobacter crescentus. For example, it was suggested

that the response regulator NtrX is conditionally essential for this bacterium and that it might

be necessary for responding to a signal produced in phosphate-replete minimal medium.

However, such signal has not been identified yet and the role of NtrX inC. crescentus biology

remains elusive. Here, using wild-typeC. crescentus and a strain with a chromosomally myc-

tagged ntrX gene, we demonstrate that high concentrations of phosphate (10 mM) regulate

ntrX transcription and the abundance of the protein. We also show that the pH of the medium

acts as a switch able to regulate the phosphorylation status of NtrX, promoting its phosphory-

lation under mildly acidic conditions and its dephosphorylation at neutral pH. Moreover, we

demonstrate that the ntrX gene is required for survival in environments with low pH and under

acidic stress. Finally, we prove that NtrX phosphorylation is also triggered by low pH in Bru-

cella abortus, a pathogenic alphaproteobacterium. Overall, our work contributes to deepen

the general knowledge of this system and provides tools to elucidate the NtrX regulon.

Introduction

Perception of environmental and intracellular cues is an essential feature of life. Signaling

pathways enable cells to regulate genetic and biochemical programs for adaptation and sur-

vival. Among the most important strategies that bacteria employ for performing those tasks

are the two-component systems (TCSs). They comprise a histidine kinase (HK) that autopho-

sphorylates upon perception of a stimulus and then transfers the phosphoryl group to a cog-

nate response regulator (RR) [1]. The phosphorylated RR is activated to perform output

functions such as modulation of gene expression, interaction with partner proteins, etc. [1].

Caulobacter crescentus is a gram-negative bacterium that grows in dilute aquatic environ-

ments and is a member of the alpha-subdivision of proteobacteria. Much attention has been

given to the study of C. crescentus signaling pathways to describe how they control cellular devel-

opment and cell-cycle progression [2], and also to understand how this oligothopic bacterium is

able to display nutritional versatility and to adapt to nutrient-poor environments. For example, a

system-level investigation of TCSs showed that at least 39 of the 106 two-component genes are
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required for cell cycle progression, growth, or morphogenesis [3]. Among them, the gene that

codes for the RR NtrX (CC_1743) was considered conditionally essential because a mutant strain

with the deleted gene could not be obtained in rich medium (PYE) but the deletion procedure

performed on minimal medium (M2G) yielded a stable deletion strain [3]. Further characteriza-

tion of this mutant indicated that it has a growth deficiency and fitness disadvantage in phos-

phate-replete minimal medium (M2G), but this difference with respect to the wild-type strain is

not manifested in phosphate-limited minimal medium (M5G) [4]. Although these observations

suggested that NtrX might be necessary for responding to a signal or metabolite present in the

M2Gmedium, such signal was not identified and the role of NtrX in C. crescentus biology

remains elusive.

NtrX forms a TCS with its cognate HK NtrY, which is predicted to be a membrane protein

with a periplasmic domain and intracellular HAMP, PAS and HK domains. The NtrY/X path-

way has been extensively studied in the pathogen Brucella abortus, in which it has been reported

that it participates in sensing low oxygen tension and in the regulation of the expression of deni-

trification enzymes and high-oxygen affinity cytochrome oxidases [5,6]. This TCS is also pres-

ent in other microorganisms where it has been involved in a variety of functions that includes:

nitrogen fixation and metabolism in Azorhizobium caulinodans [7], Rhodobacter capsulatus [8]

and Herbaspirillum seropedicae [9]; regulation of proline and glutamine metabolism in Ehrlichia

chaffeensis [10]; expression of respiratory enzymes in Neisseria gonorrhoeae [11]; and succino-

glycan production, motility, and symbiotic nodulation in Sinorhizobium meliloti [12,13].

In this article we report that NtrX expression is induced by 10 mM phosphate and that acidic

pH leads to NtrX phosphorylation. We also show that this signal is physiologically relevant

since C. crescentus produces the acidification of the M2Gmedium upon entry into stationary

phase, causing NtrX phosphorylation at this stage of the growth curve. Besides, we demonstrate

that ntrX deletion produces a decreased viability at stationary phase and a reduced resistance to

acidic stress. Finally, we prove that NtrX is also phosphorylated by acidic pH in B. abortus,

pointing out to a potentially conserved role across the alphaproteobacteria class.

Materials andmethods

Bacterial strains and culture conditions

C. crescentus cells were grown at 30˚C in M2G (10 mM phosphate, glucose as carbon source),

M5G (50 μM phosphate, glucose as carbon source), M2X (10 mM phosphate, xylose as carbon

source) or peptone yeast extract (PYE) media [14] supplemented when necessary with nali-

dixic acid 10 μg/ml, tetracycline 2 μg/ml or kanamycin 5 μg/ml (liquid) or 25 μg/ml (solid).

Cultures reached logarithmic phase when their OD600 was 0.2–0.3, while stationary phase was

defined by an OD600 of 1.2 or higher. When required, the pH of the liquid media was adjusted

using HCl, unless otherwise indicated. C. crescentus strains CB15N and ΔntrX were generously

donated by Laub MT, Department of Biology, Massachusetts Institute of Technology, Cam-

bridge, MA, USA.

B. abortus cells were grown at 37˚C in minimal medium [15] or tryptose agar (TA)

(DIFCO), supplemented when appropriate with nalidixic acid 10 μg/ml and/or kanamycin

25 μg/ml. The cultures reached logarithmic phase at OD600 0.2–0.4 and stationary phase at

OD600> 1.2. When appropriate, the pH of the minimal medium was adjusted to different val-

ues with HCl.

E. coli strains were grown at 37˚C in LB supplemented with kanamycin (50 μg/ml).

NtrX phosphorylation by acidic pH
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Construction of CC_NtrXmyc strain

To construct a C. crescentus strain with a chromosomally myc-tagged NtrX protein (CC_NtrXmyc)

we amplified ntrX from C. crescentus CB15N genomic DNA with primers PstI-ntrXff and

ntrX-Myc-PstIrev (5’-AACTGCAGATGAGCGCCGACGTTCTTGTG-3’and 5’-TTCTGCAGT
TACAGATCTTCTTCCGAGATCAGCTTCTGTTCCTCTTCCTCATCGCCCCGAG-3’, respec-
tively). Then, the PCR product was digested with PstI and ligated into the pNPTS138 plasmid.

The resulting vector was transformed into E. coli S17-1 and transferred to C. crescentus CB15N

by conjugation. Homologous recombination led to the integration of that plasmid, resulting in

ntrX_myc in the locus that was previously occupied by the endogenous gene (therefore, under the

same transcriptional regulation) and the wild-type endogenous copy of ntrX coded now after the

integrated pNPTS138 backbone. The integration of the plasmid was selected by kanamycin resis-

tance and verified by PCR.

Construction of the complemented strain CC_ΔntrX-NtrXmyc

DNA encoding full-length tagged NtrX was amplified from pNPTS138-ntrX-myc using prim-

ers pMR10-NtrXff and Myc-pMR10rev, 5’-tcctgcagagctctagagtcgagacATGAGCGCC
GACGTTCTTGTGGTGG-3’and 5’-TTAAGTGCGGCCCCCTCGAGGGGGTCTACAGATCTT
CTTCCGAGATCAGCTTCTGTTC-3’, respectively. The PCR product was used as a megapri-

mer in a PCR reaction with the pMR10 plasmid as template, according to the restriction-free

cloning method [16]. Then, the PCR reaction was digested with DpnI at 37˚C for 2 h and the

mixture was transformed into competent E. coli DH5α cells. Selection was carried out on

LB-kanamycin plates, and the resulting plasmid (pMR10-ntrXmyc) was isolated and seq-

uenced. Finally it was transformed into E. coli S17-1 and transferred to C. crescentus ΔntrX by

conjugation. Complemented strains were selected by kanamycin resistance and then NtrXmyc

expression was verified by Western blot against the tag.

The plasmid encoding the mutant protein NtrXmyc(D53A) was obtained from pMR10-NtrXmyc

by PCR amplification using primers 50-GCTTTGCTGGTGCTGGCCATCTGGATGCAGG-30 and
50-CCTGCATCCAGATGGCCAGCACCAGCAAAGC-30, followed by digestion with the enzyme

DpnI. Further steps to obtain the C. crescentus strain were conducted as detailed in the previous

paragraph.

Construction of BA_NtrXmyc strain

To construct a B. abortus strain with a chromosomally myc-tagged NtrX protein (BA_NtrXmyc)

we amplified ntrX from B. abortus 2308 genomic DNA with primers BA-ntrXff and BA-ntr-

Xmycrev, 5’-AACTGCAGATGGCGGCCGATATTCTTGTTGTTG-3’ and 5’-TTCTGCAG
TTACAGATCTTCTTCCGAGATCAGCTTCTGTTCTACGCCGAGAGACTTCAGCTTGCGA-3’,
respectively. Then, the PCR product was digested with PstI and ligated into the pNPTS138 plas-

mid. The resulting vector was transformed into E. coli S17-1 and transferred to B. abortus 2308

by conjugation. Homologous recombination led to the integration of the plasmid, resulting in

ntrX_myc in the locus that was previously occupied by the endogenous gene (therefore, under

the same transcriptional regulation) and the wild-type endogenous copy of ntrX now coded

after the integrated pNPTS138 backbone. The integration of the plasmid was selected by kana-

mycin resistance and verified by PCR.

Isolation of total RNA from C. crescentusbacterial cell culture

C. crescentus wild type and CC_NtrXmyc were grown in M2G or M5G at 30˚C until station-

ary phase (OD600 1.0–1.3). After harvest, the supernatant was removed, and the pellet was
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resuspended in 100 μl of a solution containing 84 μl of TE buffer, 15 μl of 10% SDS and 1 μl

of 10 mg/ml proteinase K. The samples were then incubated at 37˚C for 1 h and 600 μl of

Qiagen RLT lysis buffer was added. Total RNA was isolated following the Qiagen RNeasy

Mini Bacterial protocol. DNA was subsequently removed by digestion with RQ1 RNase-free

DNAse (Promega) according to the manufacturer’s instructions. RNA was quantified using

a NanoDrop spectrophotometer (ND-1000, Thermo Fisher Scientific).

Real-time quantitative RT-PCR assay

Reverse transcription was performed with SuperScritpt III First-strand synthesis kit (Invitro-

gen) using random decamer primers (Invitrogen). Complementary DNA (cDNA) samples

were used as templates in quantitative real-time PCRs (qRT-PCRs). Primers were designed

with the Primer3 program (http://www.ncbi.nlm.nih.gov/tools/primer-blast/) obtaining prim-

ers NtrX-RTff and NtrX-RTrev (5’-CTGGAGGATGAAGGCTATGC-3’ and 5’-CAGATATC
CAGCACCAGCAA-3’, respectively), which amplify a 101 bp region. Real-time PCRs were per-

formed with SYBR Green in 96-well plates in an Mx3005P Stratagene instrument and analyzed

with the MxPro program. The results for the target mRNA were normalized to the amount of

the C. crescentus CC_0088 mRNA for which primers 5’-CGGCTCATTCTCGATCTCTT-3’
and 5’-CCTCGACAATGCTGAACTGA-3’were used.

Western blot analysis

To verify the expression of the NtrXmyc protein, the CC_NtrXmyc strain was grown under the

conditions indicated in the figure legends. Then, the OD600 of the cultures was measured and

volumes corresponding to the same amount of bacteria were centrifuged. The pellets were

resuspended in 1X Laemmli buffer and heated 10 min at 90˚C. These samples were loaded in

two polyacrylamide gels and subjected to electrophoresis. One of them was stained with Coo-

massie Brilliant Blue (total protein stain for loading controls) while the other was transferred

to a nitrocellulose filter (Millipore). Membranes were probed with monoclonal mouse anti-

myc antibody (Cell Signaling Technology) at a 1:2,000 dilution, and a secondary HRP-conju-

gated anti-mouse antibody (Sigma) used at a 1:3,000 dilution. Blots were developed using

SuperSignalTMWest Pico Chemiluminiscent Substrate (Thermo Scientific), following the

manufacturer’s instructions. Signal intensity was measured using ImageQuant LAS4000 (GE

Healthcare Life Sciences) and quantified using the ImageJ program.

Phosphoprotein affinity gel electrophoresis. NtrXmyc phosphorylation was analyzed in

cultures grown and incubated as detailed in the figure legends. The samples were prepared by

centrifuging equal amounts of bacteria, according to the OD600 of the cultures, and then the

pellets were frozen until used. C. crescentus samples were resuspended in 1X Laemmli buffer

and disrupted by sonication, using one pulse of 15 seconds at an output wattage of 2 (Qsoni-

caXL– 2000 series, Misonix). B. abortus samples were disrupted using a Precellys24 homoge-

nizer (Bertin Technologies) with 4 cycles of 3 x 30 seconds at 6,500 rpm, incubating on ice

between each cycle. The homogenate was centrifuged for 2 min at 5,000 x g at 4˚C to remove

unbroken cells and precellys beads, and the supernatant was then centrifuged 5 min at 10,000

x g. Laemmli buffer to a final 1X concentration was added to the resulting supernatant. To

avoid NtrX dephosphorylation, the samples were not heated and they were loaded after disrup-

tion in polyacrylamide gels copolymerized with 35 μMPhos-tag™ and 150 μMZnCl2. Electro-

phoresis was performed with standard denaturing running buffer at 4˚C under constant

voltage (150 V). After electrophoresis, the gels were washed with EDTA 1 mM and then the

proteins were transferred to a nitrocellulose membrane (Millipore) to performWestern blots

as previously described. When appropriate, the bands were quantified with the ImageJ
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program, and the percentage of NtrX phosphorylation (NtrX~P %) was calculated as the ratio

[(NtrX~P)/(NtrXTOT)]x100, where NtrXTOT corresponds to the total intensity of the bands of

phosphorylated and unphosphorylated NtrX.

Growth curve and determination of bacterial viability

Overnight cultures of C. crescentus CB15N, the ΔntrX mutant strain and the CC_ΔntrX-

NtrXmyc complemented strain were diluted to an OD600 of 0.005 in M2G and were incubated

at 30˚C with agitation (170 rpm). Samples were periodically taken to measure the OD600 and

to determine the bacterial viability by counting the number of colony forming units (CFU)

after plating 10-fold serial dilutions onto M2G plates and incubating them at 30˚C for 3 days.

Bacterial survival in response to acidic pH stress

The different C. crescentus strains were grown in M2G medium until they reached logarithmic

or stationary phases, according to the OD600 values that were previously mentioned. At this

point, they were centrifuged, resuspended in the same volume of M2Gmedium adjusted to

pH 4.0, and incubated at 30˚C with agitation for 30 minutes. Samples were taken immediately

after the addition of the acidic media (time 0) and after the incubation period (time 30) to

determine the number of viable bacteria by plating 10-fold serial dilutions on solid M2G plates.

The experiment was performed independently three times by triplicate and the percentage of

survival was calculated as the ratio between the number of viable bacteria at time 30 and the

initial viable bacteria (time 0) multiplied by 100.

Statistical analysis

Statistical analyses were performed using a two-tail Student’s t-test, or one-way or two-way

ANOVA with a Bonferroni’s multiple comparison post-test using GraphPad Prism5. Data are

presented as mean ± standard deviation (SD) of the mean. P-values of�0.05 were considered

significant. Statistical significance levels were defined as follows: �p<0.05; ��p<0.01;
���p<0.001.

Results

NtrX expression is induced by high concentrations of phosphate

In order to understand the activation of the NtrY/X system in C. crescentus, we decided to

determine under which growth conditions NtrX is expressed. Previous reports indicated that a

C. crescentus ΔntrX strain grows more slowly and has a fitness disadvantage in phosphate-re-

plete minimal medium (M2G, 10 mM phosphate), but not in the phosphate-limited medium

M5G (50 μM phosphate) [4]. This might suggest that the C. crescentus NtrY/X pathway is nec-

essary for responding to a signal or metabolite produced in M2G, but it could also imply that

NtrX is not present in M5G. To establish the expression of this RR, we measured the levels of

the ntrX transcript by qRT-PCR in C. crescentus wild type (CC_WT) grown in M2G and M5G

and observed that the expression of the gene is significantly lower under phosphate-limited

conditions (Fig 1A).

Then, to verify if there is a correlation between the levels of the ntrX transcript and the

abundance of the protein, we generated a strain with a chromosomally myc-tagged NtrX

(CC_NtrXmyc) that was grown in M2G and M5G. As a control, we performed qRT-PCR with

samples of this strain in the two media. Despite presenting higher levels of the ntrX transcript

compared to CC_WT, it was confirmed that in the engineered strain the expression of ntrX is

also lower in the M5Gmedium (S1A Fig). Moreover, Western blot analysis did not detect

NtrX phosphorylation by acidic pH
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NtrXmyc under phosphate-limited conditions, but it could be demonstrated that the protein is

expressed in M2G (Fig 1B and 1C). Then, CC_NtrXmyc was grown in M5G supplemented with

phosphate to match the concentration present in M2G and NtrXmyc was detected either after 1

h or 24 h of culture indicating that, in fact, phosphate induces NtrXmyc accumulation (Fig 1B).

Finally, cultures of CC_NtrXmyc were grown in M2G, centrifuged, and incubated in M2G

or M5G. We observed that NtrXmyc was expressed in the M2G culture before and after resus-

pending the strain in the same medium, but the protein was no longer detected after 8 h in

M5G (Fig 1C). When we used an initial culture in M5G, NtrXmyc was not expressed neither at

the beginning of the assay nor after the incubation in the same medium, but it was detected

after 8 h in M2G (Fig 1C). Altogether, our work points out that NtrX expression is induced

under phosphate-replete conditions.

Fig 1. NtrX expression is induced under phosphate-replete conditions. The expression of NtrX in different media
was determined by qRT-PCR andWestern blot. (A) qRT-PCR to determine the level of ntrX transcripts in C.
crescentus wild type grown in M2G andM5G until stationary phase. Data represent the mean ± standard deviation of
three independent experiments, each performed by triplicate. The p-value was determined by a two-tailed Student’s t-
test (��p<0.01). (B) The CC_NtrXmyc strain was grown in M2G or M5G and samples of these cultures were analyzed
after 16 h. Also, at this point an aliquot of the M5G culture was taken, 10 mM sodium phosphate was added and it was
further incubated for 1 h or 24 h when samples were withdrawn to be analyzed byWestern blot. (C) Initial cultures of
CC_NtrXmyc were grown overnight in M2G or M5G, and samples were taken at time zero (lane ‘-’), or they were
centrifuged and resuspended in fresh M2G or M5G. After an 8 h incubation aliquots of these samples were analyzed by
Western blot. Each experiment from (B) and (C) was performed independently three times, and the result of one of
these repetitions is shown.

https://doi.org/10.1371/journal.pone.0194486.g001
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NtrX is phosphorylated during stationary phase

After verifying that NtrX is expressed in M2G, we studied its phosphorylation status at different

stages of growth. To this end, the CC_NtrXmyc strain was grown inM2G and samples were taken

at different times to measure their OD600 and to perform electrophoresis in gels with affinity for

phosphoproteins. These gels were prepared with Phos-tag™, a reagent that reduces the migration

of phosphorylated proteins, and NtrXmycwas identified byWestern blot against the tag. Our

experiments show that NtrXmyc is phosphorylated upon entry to stationary phase, it remains

phosphorylated for 10 h and returns to a dephosphorylated state after a prolonged period of time

(i.e. 44 h of culture) (Fig 2A). As a control, we also analyzed a stationary-phase sample of a ΔntrX

mutant transformed with a plasmid that codes for NtrXmyc_D53A (pMR10-NtrXmyc_D53A), in

which the phosphorylatable aspartate residue was mutated for alanine. In this case, we did not

observe a band of the tagged protein with reduced mobility (S2 Fig), indicating that the modifica-

tion that NtrX undergoes during stationary phase is its phosphorylation, and that the Phos-tagTM

gels separate the phosphorylated isoform from the unphosphorylated protein.

To determine if NtrX phosphorylation was a consequence of a modification in the culture

medium associated with the bacterial growth, log-phase bacteria were centrifuged and resus-

pended in cell-free supernatants from stationary-phase cultures. After incubating them for

0.5 h or 1 h, we observed a significant increase in NtrXmyc phosphorylation (Fig 2B and 2E).

On the contrary, phosphorylated NtrXmyc (NtrX~P) was not detected after incubation of log-

phase bacteria with fresh M2Gmedium (Fig 2B and 2E), indicating that NtrX phosphorylation

is triggered by an extracellular signal that is present in the supernatants of stationary-phase

M2G cultures.

Then, log-phase bacteria were resuspended in stationary-phase supernatants obtained from

cultures grown in M5G, which produced a significant increase in the phosphorylation of

NtrXmyc with respect to fresh M2G, but this increment was not as high as that observed with

stationary-phase supernatants fromM2G cultures (the phosphorylated fraction reached levels

of 30% and 60%, respectively) (Fig 2C and 2E). The experiment was repeated by resuspending

the exponential-phase bacteria grown in M2G with a supernatant obtained after growing

C. crescentus until stationary phase in M2X, a minimal medium that has xylose as the carbon

source. In this case, we determined a significant increase in the phosphorylated fraction of

NtrXmyc with respect to fresh M2G, reaching a percentage of NtrX~P similar to stationary-

phase M2G supernatants (Fig 2C and 2E), indicating that the signal that causes NtrX phos-

phorylation is produced by the bacterial metabolism using either glucose or xylose as carbon

source.

In order to identify the signal, we tested conditions that are hallmarks of cultures at stationary

phase. We incubated log-phase bacteria with fresh M2G prepared without glucose (M2G -gluc)

or without ammonium (M2G –NH4) and determined that phosphorylated NtrXmyc was not

present in any of the cell lysates obtained from these samples (Fig 2D), and that there was no sig-

nificant difference with respect to resuspending the bacteria in fresh M2G (Fig 2E). These results

rule out that the scarcity of glucose or ammoniummight cause NtrX phosphorylation during sta-

tionary phase.

NtrX is phosphorylated under acidic pH conditions

It has been reported that glucose, as a sole organic carbon source in minimal medium, is

metabolized by C. crescentus by the Entner-Doudoroff pathway and that pH decreases during

culture [17]. In fact, we measured the pH of supernatants from C. crescentus cultures in M2G

at different times and corroborated that the medium is acidified as the bacteria enter stationary

phase (reaching a pH value of 5.0, Fig 3A). Therefore, we investigated if the exposure to acidic

NtrX phosphorylation by acidic pH
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pH is the environmental signal that leads to NtrX phosphorylation. CC_NtrXmyc at exponen-

tial phase was resuspended in cell-free supernatants from cultures in stationary phase, with or

Fig 2. NtrX phosphorylation is achieved during the stationary phase of growth.Different samples of CC_NtrXmyc

were analyzed by phosphoprotein affinity electrophoresis andWestern blot to determine the presence of
phosphorylated NtrX (the phosphorylated and non-phosphorylated forms of the protein are indicated on the left of the
gels). (A) An overnight culture was diluted in fresh M2G and samples were taken at the indicated time points to
determine their OD600 and NtrX phosphorylation. (B) M2G log-phase cultures (‘M2G log’) were centrifuged and
resuspended in fresh M2G or in cell-free supernatants from cultures in stationary phase (‘M2G sta’). NtrX
phosphorylation was analyzed in samples taken after 0.5 h or 1 h incubations. As controls, aliquots of the original
stationary- and log-phase cultures were included. (C) Bacteria grown in M2G until logarithmic phase were
centrifuged, resuspended in fresh M2G (control) or in cell-free supernatants from cultures grown until stationary
phase in M2G (‘M2G sta’,), M2X (‘M2X sta’) or M5G (‘M5G sta’). Samples were obtained after an incubation period of
0.5 h. (D) Western blot of bacterial lysates obtained from cultures grown in M2G until logarithmic phase that were
centrifuged and resuspended in fresh M2G, or in fresh M2G prepared without ammonium chloride (‘M2G –NH4’) or
without glucose (‘M2G –gluc’), and incubated for 0.5 h. Each experiment from panels (A) to (D) was performed
independently at least three times, and the result of one of these repetitions is shown. However, the bands of all of them
were quantified and used to elaborate the histogram presented in (E). The statistical analysis was performed by a one-
way ANOVA followed by a Bonferroni’s multiple comparisons post-hoc test, comparing ‘M2G sta’ to ‘M2G log’, and
‘M2G log resuspended in M2G fresh’ to all the conditions in which the ‘M2G log’ culture was resuspended. ��p<0.01,
���p<0.001.

https://doi.org/10.1371/journal.pone.0194486.g002
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without their pH adjusted to 7.0. After performing Phos-tag™ electrophoresis andWestern blot

analysis to these samples, we observed that NtrXmyc was phosphorylated only when the bacte-

ria were incubated in the acidic supernatant (Fig 3B), confirming that the acidification pro-

duced at stationary phase is responsible for NtrX phosphorylation. To determine the pH range

at which this event is triggered, log-phase CC_NtrXmyc was resuspended in fresh M2G with

the pH adjusted to different values. The results show that NtrXmyc is phosphorylated under

mild acidic conditions, observing the maximum phosphorylation between pH 5.0 and 4.5,

which corresponds to 60% of NtrXmyc in the phosphorylated state (Fig 3C), as was also deter-

mined in the cultures under stationary phase (Fig 2E).

Taken into consideration that stationary-phase supernatants obtained in M5G were not

efficient to phosphorylate NtrXmyc, and that this medium is prepared with a different buffer

system (Pipes instead of phosphate), we measured their pH. During early stationary phase,

M5G cultures reached a pH of 6.0, a value at which the phosphorylated fraction of NtrXmyc is

low (approximately 20% as shown in Fig 3C), explaining their poor efficiency to phosphorylate

NtrXmyc previously (around 30% of NtrX~P, Fig 2E).

Since our experiments were performed adjusting the pH of the M2G medium with HCl, it

was necessary to exclude that the chloride ions were triggering NtrXmyc phosphorylation. For

this reason, we repeated our assays resuspending log-phase CC_NtrXmyc in fresh M2G that

was adjusted to different pH values with acetic acid (HAc) or sulfuric acid. Regardless of the

acid used, we observed maximal phosphorylation at mild acidic pH (S3 Fig), confirming that

the acidic pH is the signal that causes NtrX phosphorylation and not the presence of chloride

ions.

Finally, we incubated log-phase CC_NtrXmyc bacteria with fresh acidic M2G for different

periods of time and observed that NtrXmyc phosphorylation takes place as soon as 1 min after

the treatment (Fig 3D). Then, these treated cultures were centrifuged and resuspended in fresh

M2G at pH 7.0, which caused a very fast (< 1 min) dephosphorylation of NtrXmyc (Fig 3E).

Therefore, acidic pH is acting as a switch able to dictate the phosphorylation status of NtrX.

ntrX deletion causes a decreased bacterial viability during stationary phase

Given that NtrX is phosphorylated during stationary phase in M2G, we wanted to establish if

deleting the ntrX gene affects the bacterial viability at this particular culture stage. C. crescentus

CB15N (CC_WT) and ΔntrX (here denoted as CC_ΔntrX) were grown in M2G and samples

were taken at different times to measure their OD600 and to determine the viability by plating

on solid media. The culture of CC_WT increased its OD600 and the number of bacteria during

exponential phase, presenting a slight decrease in viability upon entry into stationary phase

and a stable number of CFU at this stage during the analyzed period (Fig 4A and 4B). In con-

trast to previous reports that described a slower doubling time for CC_ΔntrX with respect to

CC_WT [4], we observed that the OD600 and the number of cells of the mutant strain inc-

reased during exponential phase at a rate similar to the wild type. However, during stationary

phase there was a persistent and significant decrease on the amount of viable bacteria when

compared to the wild-type strain (Fig 4B). Given that the OD600 at stationary phase is similar

between CC_WT and CC_ΔntrX (Fig 4A), the reduction in the number of viable cells is

accompanied by an increasing amount of dead bacteria that are not lysed. Complementation

of the ntrX deletion with the wild-type tagged gene (CC_ΔntrX-NtrXmyc) restores the pheno-

type of the wild-type strain (Fig 4A and 4B). Altogether, our results show that entry into sta-

tionary phase conduces to NtrX phosphorylation and that the presence of this RR is required

to sustain viability throughout this stage.
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C. crescentusNtrX is involved in acid resistance

It has been proved that C. crescentus presents an increased resistance to acid stress during sta-

tionary phase [18]. Therefore, we decided to study ntrX relevance in the response to a sudden

exposure to acidic pH when the cells are at an exponential or stationary phases. The performed

experiment consisted in growing the bacteria in M2G until they reached the desired stage,

resuspending them in M2G at pH 4.0, incubating them for 30 min and determining the num-

ber of viable cells. In accordance to previous reports [18], wild-type C. crescentus presented a

significant increase in its resistance to acid stress during stationary phase, while exponential

cultures showed a fast death rate (Fig 4C). When CC_ΔntrX was exposed to pH 4.0 for 30 min,

the cultures at exponential phase presented a drastic reduction on their viability, comparable

to the percentage of survival of the wild-type strain (Fig 4C). Importantly, cultures of the

mutant strain at stationary phase showed a marked reduction on their viability after the acidic

stress, reaching a survival percentage that is significantly lower than that corresponding to the

wild-type strain under the same culture stage (Fig 4C). On the other hand, the complemented

strain CC_ΔntrX-NtrXmyc behaves as CC_WT. This indicates that NtrX is required to elicit a

Fig 3. The acidification produced at stationary phase is responsible for NtrX phosphorylation. (A) Variation in the
pH of the supernatant of a C. crescentus culture in M2G as a function of the bacterial optical density. (B-E) Phos-tag™
electrophoresis andWestern blot of CC_NtrXmyc at exponential phase (‘M2G log’) treated under different conditions.
(B) Bacteria were resuspended in cell-free supernatants from cultures in stationary phase (‘M2G sta’) with their pH
adjusted to 7.0) or with their corresponding pH (‘pH 5.0’), and analyzed after 30 minutes. Bacteria collected from the
original cultures at stationary and log phases were used as controls. (C) Exponentially growing cultures were
centrifuged, resuspended in M2G with the pH adjusted to different values (indicated in the figure) and incubated for
30 minutes before Phos-tagTM andWestern blot (left). The intensity of the bands was quantified in several experiments
and used to elaborate the plot presented on the right of the panel. (D) Kinetics of phosphorylation at pH 5.0. Log-phase
CC_NtrXmyc was resuspended in fresh acidic M2G (pH 5.0) and aliquots were taken at different times. (E) Kinetics of
dephosphorylation at pH 7.0. A log-phase culture was incubated for 30 min with fresh M2G at pH 5.0 to allow NtrX
phosphorylation. Then the culture was centrifuged, resuspended in fresh M2G at pH 7.0 and incubated for the
indicated periods of time when aliquots were taken to perform the Phos-tag™ electrophoresis. Each experiment was
performed independently at least three times, and the results of one of these repetitions are shown.

https://doi.org/10.1371/journal.pone.0194486.g003
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Fig 4. ntrX deletion causes a decreased bacterial viability during stationary phase and under acidic stress. Cultures
of C. crescentus CB15N (WT), the ΔntrX mutant strain and the complemented strain CC_ΔntrX-NtrXmyc (ΔntrX
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response during stationary phase that leads to the increased acid resistance that characterizes

this stage.

NtrX phosphorylation is also triggered by acidic pH in Brucella abortus

As it has been mentioned, the NtrY/X system has been involved in numerous responses to

diverse stimuli in different microorganisms. For this reason, we wanted to address if the phos-

phorylation of the RR by acidic pH is a singular feature of C. crescentus biology or if it is con-

served in other bacteria. Our group has been studying the role of the NtrY/X system in the

physiology and virulence of B. abortus, which is, as C. crescentus, an alphaproteobacteria. We

reported that this pathway participates in the adaptation to low oxygen concentrations and

that the intracellular PAS domain is important for this function [5]. We thought that it would

be interesting to use B. abortus as another model to study the signaling triggered by acidic pH

because one major mechanism of Brucella pathogenesis is the ability to survive in an acidic

environment inside macrophages [19]. In fact, phagosome acidification is a key intracellular

event to induce the expression of virulence genes [20].

We constructed a B. abortus strain with a chromosomally myc-tagged NtrX protein

(BA_NtrXmyc) and grew it in minimal medium (MM). During exponential phase, the pH of

the medium was close to 7.0 and it did not change significantly upon entry into stationary

phase. We also analyzed samples of BA_NtrXmyc at different stages of the growth cycle, observ-

ing a low proportion of phosphorylated NtrXmyc in exponential and stationary phases (Fig 5).

Then, exponential-phase cultures were centrifuged, resuspended in fresh media with the pH

adjusted to different values, incubated for 30 min and used to prepare cell lysates that were

subjected to Phos-tag™ electrophoresis andWestern blot. The results show that NtrXmyc is

barely phosphorylated at neutral pH (consistent with the previous results in exponential and

stationary phases) and that the phosphorylated fraction increases at lower pH values, with a

+pMR10-ntrXmyc) were diluted to an OD600 of 0.005 in M2G and were incubated at 30˚C with agitation. Samples were
periodically taken to determine the OD600 (A) and bacterial viability (B) by counting colony-forming units (CFU) per
ml. Each assay was performed by duplicate and the average ± SD of one representative experiment is shown. Statistical
analysis was performed by a one-way ANOVA followed by a Bonferroni’s multiple comparisons post-hoc test.
���p<0.001 between CC_WT and CC_ ΔntrX. (C) Bacterial survival in response to acid stress. Bacteria grown in M2G
until logarithmic or stationary phases were incubated in acidic M2G (pH 4.0) for 30 minutes. At the initial and final
time points the number of viable bacteria was determined and the percentage of survival was calculated. The
experiment was performed by triplicate and the mean + SD of a representative experiment is shown. Data was
analyzed by a two-way ANOVA followed by a Bonferroni’s multiple comparisons post-hoc test. ��p<0.01.

https://doi.org/10.1371/journal.pone.0194486.g004

Fig 5. NtrX phosphorylation is also triggered by acidic pH in Brucella abortus. Phosphoprotein affinity gel
electrophoresis followed byWestern blot of samples of the B. abortus BA-NtrXmyc strain grown in minimal medium
until logarithmic phase (‘MM log’), resuspended in fresh MMwith its pH adjusted to different values and incubated
for 30 min. As controls, samples of cultures at log and stationary phases were analyzed (‘MM log’ and ‘MM sta’,
respectively). The phosphorylated and non-phosphorylated forms of NtrX are indicated on the left of the gels. Two
independent experiments were performed and the bands were quantified to calculate mean ± SD, which were plotted
in a graph presented on the right of the figure.

https://doi.org/10.1371/journal.pone.0194486.g005
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maximal extent achieved at pH 4.0 (Fig 5). These findings demonstrate that the triggering of

NtrX phosphorylation by acidic pH observed in C. crescentus also takes place in B. abortus,

pointing out to a potentially conserved role across the alphaproteobacteria class.

Discussion

The NtrY/X TCS is an intriguing signaling pathway in bacteria as it is one of the least charac-

terized systems. It was initially described many years ago [7], and important contributions

were made recently to the general understanding of its regulation and activity [5,6,9–13,21,22].

In the present article we identify a signal that positively regulates the expression of the RR

NtrX, another signal that triggers its phosphorylation, and their relevance in the bacterial

physiology. It is important to highlight that our experiments provide, for the first time, direct

evidence of the in vivo phosphorylation of NtrX.

It has been reported that NtrX expression is regulated by proline and glutamine in E. chaf-

fenssis [10] and our group demonstrated that limited oxygen conditions induce the operon

that codes for the NtrY/X TCS in B. abortus [5]. Herein, we report that the amount of NtrX in

C. crescentus depends on the availability of phosphate in the medium, with high concentrations

of phosphate leading to the accumulation of the RR. This finding is caused, at least in part, by

an upregulation of ntrX transcription under phosphate-replete conditions. In this regard, it

would be interesting to determine the pathway involved in this induction. For example, the

PhoR/B TCS is a conserved signal transduction system that allows bacteria to respond to phos-

phate limitation [23], though ntrX has not been identified as a repressed target within the

PhoB regulon [24] Therefore, the modulation of ntrX transcription by phosphate is not due to

a direct binding of PhoB to the promoter of the NtrY/X operon, but rather through another

transcriptional factor regulated by PhoB, or through a different signal transduction pathway.

On the other hand, even though we determined that the level of the ntrX transcript in M5G

is approximately 30% of that corresponding to M2G, the protein could not be detected by

Western blot under the same phosphate-limited conditions. Besides, the level of the NtrXmyc

protein became undetectable when CC_NtrXmyc was grown in M2G and then incubated in

M5G for 8 h. However, when CC_NtrXmyc was grown in M5G and then incubated in M2G for

the same period of time, the amount of NtrXmyc was not restored to the levels of the protein in

M2G at time zero. All these observations might indicate that the concentration of phosphate

could also modulate the proteolysis rate of NtrX.

One of the most important findings that we present in this article is the triggering of NtrX

phosphorylation when C. crescentus is under acidic conditions, a typical feature of its growth

during stationary phase in M2Gmedium. It remains to be determined if periplasmic protons

per se are the signal involved, but some of our results support this notion. The fact that fresh

acidic M2Gmedium, which contains exclusively glucose and salts and was adjusted with HCl

(not an organic acid), is enough to lead to the phosphorylation of NtrX indicates that the signal

sensed is not an organic molecule produced and secreted by the bacteria during stationary

phase. In fact, the same effect was obtained when the pH of the medium was adjusted with

H2SO4 or HAc. On the other hand, the fact that neutralophilic bacteria generally maintain their

cytoplasmic pH values in a narrow range despite the external pH [25] indicates that it is likely

that the periplasmic pH is the environmental cue relevant to NtrX phosphorylation rather than

the cytoplasmic pH. Nevertheless, the cytoplasm of some bacteria, such as Salmonella enterica,

is acidified upon acid stress [26], but this phenomenon requires several minutes to occur

(approximately 120 minutes to decrease the pH in 0.75 units [26]) in contrast to the fast phos-

phorylation of NtrX that takes place as soon as 1 min after incubation in an acidic medium. Of
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note, we showed that NtrX is rapidly dephosphorylated upon acidification and reincubation in

a neutral-pH medium, indicating that NtrX~P is being the substrate of a phosphatase.

Despite our efforts to obtain a C. crescentus strain with the ntrY gene deleted and coding for

a myc-tagged NtrX, we could not generate this mutant to confirm that NtrY is the sensor

kinase that detects acidic pH and phosphorylates NtrX as a consequence. Other histidine

kinases have been reported to respond to low pH such as PhoQ [27], PmrB [28], ArsS [29] and

EvgS [30]. All of them contain periplasmic domains that allow the detection of an acidic envi-

ronment (although it has been recently proposed that the activation of PhoQ occurs in

response to a reduction in the cytoplasmic pH [31]). NtrY has a periplasmic domain with a

secondary structure prediction [32] that classifies it within the PDC family [33], which groups

extracellular sensor domains from PhoQ, DcuS and CitA. Taking into consideration that NtrY

is a histidine kinase involved in redox sensing through its intracellular PAS domain [5], the

potential role of its periplasmic domain in detecting acidic pH would imply that NtrY is able

to integrate different environmental signals.

Overall, our results lead us to postulate that C. crescentus NtrX orchestrates an adaptive

response to acidic pH that initially requires the phosphorylation of the RR but is sustained

over the time without NtrX~P, given that the protein is phosphorylated upon entry to station-

ary phase and it becomes dephosphorylated after several hours. This initial response would

allow the bacteria to survive for a prolonged period under stationary phase, since deleting ntrX

produces a decreased viability after 5 h at this phase. Also, this response would be responsible

for the acquisition of the characteristic acid-stress resistance observed in C. crescentus at sta-

tionary phase [18], given that the mutant strain CC_ΔntrX does not present this phenotype.

We did not observe differences between the mutant and wild-type strains when the experiment

of acidic resistance was performed with bacteria at log phase, possibly because the stress is very

drastic and the bacteria at this stage are too susceptible and die before the adaptive mecha-

nisms are activated.

In spite of our progress, it still remains to elucidate which are the molecular mechanisms

involved in the response to acidic pH in C. crescentus and the role that NtrX has in their regula-

tion. It has been proposed that glutamate, arginine and lysine decarboxylases contribute to pH

homeostasis in E. coli [34], but these enzymes are not encoded in C. crescentus genome. Also,

under conditions of acid challenge E. coli increases the expression of other cytoplasmic

enzymes that catalyze reactions that consume protons and of respiratory chain complexes that

pump protons out of the cell [25]. It is possible that the role of NtrX in the adaptation to acidic

pH is linked to those strategies, since we have described that the NtrY/X TCS of B. abortus acti-

vates the expression of denitrification enzymes (which catalyze reactions that require protons)

[5] and of the ccoN cytochrome oxidase (that pumps protons out) [6].

Our approach to study C. crescentus using defined minimal media proved to be very useful

to dissect different components that promote NtrX expression and phosphorylation. However,

ntrX is essential for growth in rich media (PYE) [3], where we determined that the pH is neu-

tral and no acidification is produced during bacterial growth. Therefore, unphosphorylated

NtrX must have a key role in the bacterial physiology that still has to be discovered.

Another highlight of our work is that we demonstrate that acidic pH is also capable of trig-

gering NtrX phosphorylation in the pathogenic bacterium B. abortus. Since C. crescentus and

B. abortus belong to the same class but are not closely related (rhizobial and caulobacteral

orders, respectively), our results could indicate that the phosphorylation of NtrX upon acidifi-

cation, and its role in the adaptation to low pH, are conserved across the alphaproteobacteria

class. Given that low pH acts as an intracellular signal for the expression of genes involved in

survival and multiplication of B. abortus within the phagocytic cell [35], it would be interesting

to determine if NtrX is involved in the regulation of this virulence-related transcriptional
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network. Also, some mechanisms have been proposed to protect Brucella against the adverse

effects of acidification (such as the expression of urease) [36] and it would be important to

prove if NtrX is required for their induction.

In conclusion, we have contributed to deepen the knowledge on the NtrY/X pathway by

identifying the phosphate concentration as a signal that is necessary for the expression of NtrX

in C. crescentus, and acidic pH as a trigger of NtrX phosphorylation in two different species of

alphaproteobacteria. We also demonstrate that NtrX has an important role in the adaptation

to environments with low pH. It is noteworthy that we used a direct approach to detect

NtrX~P, which led us to postulate that the environmental pH acts as a switch capable of regu-

lating the phosphorylation status of NtrX. Therefore, we have outlined an experimental set-up

with the RR in two defined states (unphosphorylated in M2G at pH 7.0, and phosphorylated in

M2G at pH 5.0) that will be valuable to engage the elucidation of the poorly-characterized

NtrX regulon.

Supporting information

S1 Fig. Levels of the ntrX transcript in the engineered strain CC_NtrXmyc and loading con-

trols of Fig 1. (A) The strains CC_WT and CC_NtrXmyc were grown until stationary phase in

M2G andM5G. Total RNA was extracted and the levels of the ntrX transcript were determined

in both strains and media by qRT-PCR. The data represent the mean ± standard deviation of

an experiment performed in triplicate. (B and C) The same volumes of the samples analyzed in

Fig 1B and 1C (Results) were loaded in SDS-PAGE gels that were stained with Coomassie Bril-

liant Blue. MWM: molecular weight marker.

(TIF)

S2 Fig. Phos-tagTM gels separate phosphorylated NtrX. A C. crescentus ΔntrX mutant

strain that had been transformed with the plasmid pMR10 coding for NtrXmyc_D53A

(CC_ ΔntrX-NtrXmyc_D53A) and the strain CC_NtrXmyc were grown until stationary

phase in M2G, and samples were subjected to Phos-tagTM electrophoresis and Western

blot analysis.

(TIF)

S3 Fig. NtrX is phosphorylated under acidic pH regardless of the acid used to adjust the

pH of the medium. CC_NtrXmyc was grown in M2G until logarithmic phase and it was resus-

pended in fresh M2G with the pH adjusted to different values (indicated in the figure) with

acetic acid (HAc, upper panel) or sulfuric acid (lower panel). After a 30 min incubation ali-

quots were removed and analyzed by Phos-tagTM gels andWestern blot.

(TIF)
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