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Abstract

Background: Acidithiobacillus ferrooxidans is a major participant in consortia of microorganisms

used for the industrial recovery of copper (bioleaching or biomining). It is a chemolithoautrophic,

γ-proteobacterium using energy from the oxidation of iron- and sulfur-containing minerals for

growth. It thrives at extremely low pH (pH 1–2) and fixes both carbon and nitrogen from the

atmosphere. It solubilizes copper and other metals from rocks and plays an important role in

nutrient and metal biogeochemical cycling in acid environments. The lack of a well-developed

system for genetic manipulation has prevented thorough exploration of its physiology. Also,

confusion has been caused by prior metabolic models constructed based upon the examination of

multiple, and sometimes distantly related, strains of the microorganism.

Results: The genome of the type strain A. ferrooxidans ATCC 23270 was sequenced and annotated

to identify general features and provide a framework for in silico metabolic reconstruction. Earlier

models of iron and sulfur oxidation, biofilm formation, quorum sensing, inorganic ion uptake, and

amino acid metabolism are confirmed and extended. Initial models are presented for central carbon

metabolism, anaerobic metabolism (including sulfur reduction, hydrogen metabolism and nitrogen

fixation), stress responses, DNA repair, and metal and toxic compound fluxes.

Conclusion: Bioinformatics analysis provides a valuable platform for gene discovery and functional

prediction that helps explain the activity of A. ferrooxidans in industrial bioleaching and its role as a

primary producer in acidic environments. An analysis of the genome of the type strain provides a

coherent view of its gene content and metabolic potential.
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Background
Acidithiobacillus ferrooxidans is a Gram-negative, γ-proteo-
bacterium that thrives optimally at 30°C and pH 2, but
can grow at pH 1 or lower [1]. It is abundant in natural
environments associated with pyritic ore bodies, coal
deposits, and their acidified drainages [2,3]. It is an
important member of microbial consortia used to recover
copper via a process known as bioleaching or biomining
[4].

In a typical bioleaching operation, copper ore is first pul-
verized and placed in heaps. The heaps are then sprinkled
with sulfuric acid and aerated to promote the microbial
oxidation of iron and sulfur compounds. Some bioleach-
ing heaps are very extensive; for example, the Escondida
mine in northern Chile is putting into operation a heap
that is 5 km long by 2 km wide and 126 m high (David
Dew, personal communication). With a volume of a little
more than one trillion (1012) liters, this bioleaching heap
is arguably the world's largest industrial bioreactor.

Bioleaching of copper ores is a two-step process: first, the
biological oxidation of Fe(II) to produce Fe(III); second,
the chemical oxidation of Cu(I) to the more soluble
Cu(II) by Fe(III) which is reduced to Fe(II) in the process.
A. ferrooxidans plays a key role by reoxidizing the Fe(II) to
Fe(III), thus completing the cycle and allowing bioleach-
ing to continue (Figure 1). The sulfuric acid produced by
the biological oxidation of reduced sulfur compounds
also promotes the solubilization of the Cu(II). Copper is
recovered from this acidic solution using physico-chemi-
cal technologies such as solvent extraction and electro-
plating.

Bioleaching accounts for 10% of the copper production
worldwide and is especially important as a technology for
ores with a low percentage of copper that are otherwise
uneconomical to extract. Another attractive feature of
bioleaching is that it does not produce pollutants such as
sulfur dioxide and arsenic that result from smelting. How-
ever, bioleaching does generate acid mine drainage that
must be managed to prevent its release into the environ-
ment. The importance of bioleaching is likely to increase
in the future as the mineral industry exploits ore deposits
with lower copper content as richer ores become depleted.
The increasing importance of bioleaching as a biotechno-
logical process is stimulating increasing interest in the
biology of A. ferrooxidans and associated bioleaching
microorganisms.

A. ferrooxidans is one of the few microorganisms known to
gain energy by the oxidation of ferrous iron in acidic envi-
ronments, using the low pH of its natural environment to
generate reverse electron flow from Fe(II) to NADH [5-8].
It can also obtain energy by the oxidation of reduced sul-

fur compounds, hydrogen, and formate [9,10]. The
microorganism makes an important contribution to the
biogeochemical cycling of metals in the environment and
has the potential to assist in the remediation of metal con-
taminated sites by its ability to oxidize and reduce metals.
Ferric iron and sulfuric acid are major by-products of its
energy-transducing processes, and these chemicals can
mobilize metals in the environment including toxic met-
als such as arsenic [11]. It can also reduce ferric ion and
elemental sulfur, thus promoting the recycling of iron and
sulfur compounds under anaerobic conditions [12,13].
Since the microorganism can also fix CO2 and nitrogen, it
is thought to be a primary producer of carbon and nitro-
gen in acidic, nutrient-poor environments [14-17].

The study of A. ferrooxidans offers exceptional opportuni-
ties to probe life in extremely acidic environments. It may
also offer insights into ancient ways of life in Archaean,
euxinic, acidic seas [18] and suggest potential biomarkers
to be used when searching for evidence of extra-terrestrial
life [19]. One of its unusual properties is its ability to aer-
obically oxidize solid substrates such as pyrite (FeS2).
Since the substrate cannot enter the cell, initial electron
removal must take place either within the outer cell mem-
brane or completely outside the cell. Although a substan-
tial body of information exists regarding the use of solid
minerals as electron sinks for biological processes (e.g.,
the reduction of ferric iron [20]), considerably less is
known about how microorganisms recognize, attach to,
and extract electrons from solid substrates. Investigations
into the fundamental interactions between bacteria and
mineral surfaces are critical for understanding the intrica-
cies of interfacial biochemistry, biofilm formation, bacte-
rial recognition of mineral surfaces, and the dispersal of
microorganisms in the environment.

A. ferrooxidans thrives in mineral rich, acid environments
where the concentration of dissolved ferrous iron can be
as high as 10-1 M, about 1016 times that found in circum-
neutral environments. The abundance of soluble iron has
the potential to pose severe oxidative stress that could lead
to DNA and protein damage via the Fenton reaction. This
prompts questions as to the mechanisms that A. ferrooxi-
dans employs for iron assimilation and homeostasis
[21,22] and how it balances its use of iron as both a
micronutrient and as a required energy source. In its nat-
ural environment, it must also confront unusually severe
toxicity due to the high concentration of dissolved metals
(e.g., copper, arsenic, mercury).

Although the internal pH of A. ferrooxidans is about pH
6.5, proteins that are either wholly or partially outside the
inner membrane must function at pH 1–2, raising funda-
mental questions regarding how they fold and make pro-
tein-protein contact when confronted with such an
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A. ferrooxidans and its proposed role in bioleachingFigure 1
A. ferrooxidans and its proposed role in bioleaching. The chemolithoautotrophic metabolism of A. ferrooxidans results in 
the oxidation/reduction of iron and sulfur compounds and the solubilization of copper and other commercially valuable metals 
in a process called bioleaching or biomining. It also results in the production of acidified solutions in pristine environments and 
acid mine drainage in bioleaching operations. A) Model of copper bioleaching by A. ferrooxidans. B) Oxidation/reduction reac-
tions carried out by A. ferrooxidans. The scheme provided here presents the basic concepts of bioleaching and further details 
are provided in the review [4]. C) Acid mine drainage in the Rio Tinto, Spain, derived from naturally occurring pyritic ore bod-
ies and abandoned mine workings initiated in pre-Roman times [3]. D) Commercial bioleaching heap for copper recovery, 
Chile. 3PG: 3-phosphoglycerate.
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extremely high proton concentration. It also raises ques-
tions as to how proton-driven membrane transport and
energy processes function in the face of a proton motif
force (pmf) across the inner membrane that is several
orders of magnitude higher than typically found in neu-
trophilic environments.

Unfortunately, the lack of a well-developed system for
genetic manipulation has prevented thorough exploration
of the molecular biology and physiology of A. ferrooxi-
dans. A bioinformatics-based analysis of its genome offers
a powerful tool for investigating its metabolism. How-
ever, many of the earlier investigations of its genetics and
metabolism were carried out on a variety of strains, some
of which may be only distantly (or not at all) related to A.
ferrooxidans. This allows the possibility that some experi-
mental results, including enzyme identifications were not
reliable indicators of the metabolism of the species.
Genomic analysis of the type strain of A. ferrooxidans can
provide a more coherent view of the gene content and
metabolic potential of the species.

An analysis of amino acid metabolism based on the draft
genome sequence of A. ferrooxidans ATCC 23270 was pre-
viously reported [23]. Here we present a complete,
genome-based blueprint of the metabolic and regulatory
capabilities of A. ferrooxidans and relate these findings to
its unique lifestyle. This analysis will add to our under-
standing of the biochemical pathways that underpin the
biogeochemical processes, metabolic functions, and evo-
lution of microbial communities in acidic environments.
This information also advances our understanding of the
role of A. ferrooxidans in industrial bioleaching.

Results and discussion
1. Genomic properties

The genome of A. ferrooxidans ATCC 23270 (type strain)
consists of a single circular chromosome of 2,982,397 bp
with a G+C content of 58.77%. No plasmids were
detected in the type strain, although they occur in several
other strains of [24]. A total of 3217 protein-coding genes
(CDSs) were predicted, of which 2070 (64.3%) were
assigned a putative function (Table 1 and Figure 2). The
genome encodes two ribosomal operons and 78 tRNA
genes. A putative origin of replication (Figure 2) has been
identified from marginal GC skew variations in the
genome and by the localization of the dnaN and dnaA
genes (AFE0001 and AFE3309).

2. Chemolithoautotrophy

A. ferrooxidans has a complete repertoire of genes required
for a free-living, chemolithoautotrophic lifestyle, includ-
ing those for CO2 fixation and nucleotide and cofactor
biosynthesis (Additional file 1). Analysis of an earlier
draft genome had predicted genes for the pathways for

synthesis of most amino acids, although ten genes were
missing [23]. Seven of these missing assignments have
now been detected: a potential 6-phosphofructokinase in
the glycolysis pathway (EC 2.7.1.11; AFE1807), pyruvate
dehydrogenase (EC 1.2.4.1; AFE3068-70); shikimate
kinase in the chorismate synthesis pathway and required
for tryptophan, phenylalanine and tyrosine biosynthesis
(EC 2.7.1.71; AFE0734); homeserine kinase in the threo-
nine biosynthesis pathway (EC 2.7.1.39; AFE3097); N-
acetyl-gamma-glutamil-1-phosphate reductase in the
ornithine biosynthesis pathway and required for proline
biosynthesis (EC 1.2.1.38; AFE3073); pirroline-5-carboxi-
late reductase involved in proline biosynthesis (EC
1.5.1.2; AFE0262); and asparagine synthase (EC 6.3.5.4:
AFE1353). The three genes identified in E. coli which have
not been found in A. ferrooxidans encode ornithine cycl-
odeaminase (EC 4.3.1.12) involved in proline biosynthe-
sis, aromatic-amino-acid transaminase (EC 2.6.1.57), and
arogenate dehydrogenase involved in tyrosine biosynthe-
sis (EC 1.3.1.43).

A. ferrooxidans has two glutamyl-tRNA synthetases: a more
discriminating one (D-GluRS, AFE0422) that charges only
Glu-tRNA(Glu) and a less discriminating one (ND-GluRS,
AFE2222) that charges Glu-tRNA(Glu) and Glu-
tRNA(Gln). The latter one is a required intermediate in
protein synthesis in many organisms [25]. An indirect reg-
ulation of glutamyl-tRNA synthetase by heme status sug-
gests a potential metabolic connection between heme
requirements, nitrogen, and central carbon metabolism
[26].

Bioinformatic analysis supports prior experimental evi-
dence that A. ferrooxidans has a versatile aerobic metabo-
lism, capable of providing energy and reducing power
requirements from inorganic compounds by the oxida-
tion of Fe(II), reduced sulfur compounds, formate, and
hydrogen. In addition, gene function predictions suggest
that the microorganism is capable of anaerobic or micro-
aerophilic growth using Fe(III) or elemental sulfur as
alternative electron acceptors [27]. Many of the predic-
tions were experimentally validated in a piece-meal fash-
ion in a number of diverse strains of A. ferrooxidans, some
of which may not belong to the same species [28]. Herein,
we describe a coherent view of the metabolic potential of
the type strain that will now allow a systematic appraisal
of the diversity of the metabolic capacity of the A. ferrooxi-
dans pangenome.

2.1 CO2 fixation

A. ferrooxidans fixes CO2 via the Calvin-Benson-Bassham
reductive pentose phosphate cycle (Calvin cycle) using
energy and reducing power derived from the oxidation of
iron or sulfur [29]. Early studies showed a relationship
between the rate of iron and sulfur oxidation and the rate
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Circular representation of the A. ferrooxidans ATCC 23270 genome sequenceFigure 2
Circular representation of the A. ferrooxidans ATCC 23270 genome sequence. The two outer circles represent pre-
dicted protein encoding-genes on the forward and reverse strands, respectively. Functional categories are indicated by color, 
as follows: energy metabolism (green), DNA metabolism (red), protein synthesis (magenta), transcription (yellow), amino acid 
metabolism (orange), central intermediary metabolism (dark blue), cellular processes (light blue), nucleotide metabolism (tur-
quoise), hypothetical and conserved hypothetical proteins (grey), mobile and extra-chromosomal elements (black), and general 
functions (brown). The third and fourth circles (forward and reverse strands) indicate major transposases and mobile elements 
(orange), plasmid-related genes (red), and phage elements (blue). The fifth and sixth circles (forward and reverse strands) indi-
cate tRNA genes (gray). The seventh and eighth circles (forward and reverse strands) show genes predicted to be involved in 
sulfur (purple), iron (red), and hydrogen (orange) oxidation. The ninth and tenth circles show genomic GC bias and GC skew, 
respectively.
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of CO2 fixation in A. ferrooxidans (no strain designated)
[30]. Several enzymes of the Calvin cycle have been
described in A. ferrooxidans, including the key D-ribulose-
1,5-bisphosphate carboxylase/oxygenase (RuBisCO) [29].
Two structurally distinct forms of RuBisCO (I and II), with
different catalytic properties, are typically present in
autotrophs [31]. Genes encoding Form I (AFE3051-2)
have been cloned and characterized from A. ferrooxidans
[32,33]. Gene clusters potentially encoding a second copy
of Form I (AFE1690-1) and a copy of Form II (AFE2155)
were predicted and shown to be differentially expressed
depending on whether A. ferrooxidans was grown on iron-
or sulfur-containing medium. [34]. A gene predicted to
encode a novel Rubisco-like protein known as Form IV
[35] was recently identified in the genome (AFE0435) and
is suggested to be involved in stress response (Esparza-
Mantilla, personal communication) (Additional file 2).

The genomic organization of the three gene clusters
encoding the Rubisco type I and II enzymes in A. ferrooxi-
dans is similar to that found in Hydrogenovibrio marinus
strain MH-110, an obligate chemolithoautotrophic,
hydrogen-oxidizing, marine bacterium. In H. marinus,
these three-gene clusters are regulated in response to CO2

concentration, suggesting the ability to adapt to environ-
mental conditions with different levels of CO2 [36].

2.2 Energy metabolism

2.2.1 Aerobic Iron oxidation

Since ferrous iron [Fe(II)] is rapidly oxidized by atmos-
pheric oxygen at neutral pH, iron exists primarily in the
oxidized form [Fe(III)] in aerobic environments. There-
fore, ferrous iron is available for microbial oxidation prin-
cipally in acidic environments where chemical oxidation
is slow and Fe(II) is soluble, in anoxic conditions such as
in marine sediments and at the interface between aerobic
and anaerobic atmospheres [37]. In anoxic conditions,
phototrophic bacteria can use light energy to couple the
oxidation of Fe(II) to reductive CO2 fixation. Although lit-
tle is known about the mechanisms involved, this process
has been postulated to be an ancient form of metabolism
and to represent a transition step in the evolution of oxy-
genic photosynthesis [38,39].

The bioinformatics analysis of the genome sequence of A.
ferrooxidans has permitted the identification of the main
components of the electron transport chain involved in
iron and sulfur oxidation (Figure 3). Genes encoding iron
oxidation functions are organized in two transcriptional
units, the petI and rus operons. The petI operon (petC-1,
petB-1, petA-1, sdrA-1, and cycA-1; AFE3107-11) encode
the three subunits of the bc1 complex (PetCAB), a pre-
dicted short chain dehydrogenase (Sdr) of unknown func-
tion, and a cytochrome c4 that has been suggested to

Table 1: General features of the A. ferrooxidans ATCC 23270 genome.

Characteristic Value

Complete genome size, bp 2,982,397

G+C percent (%) 58.77

Total number of CDSs 3,217

Coding density (%) 97.45

No. of rRNA operons (16S-23S-5S) 2

No. of tRNA genes 78

Proteins with known function 2,070

Conserved hypothetical proteins 388

Hypothetical proteins 759

Most represented functional categories (%)

Cell envelope 7.8

Transport and binding proteins 7.61

Energy metabolism 6.52

Best BLASTP comparisons against complete proteomes Number of best blast hits

γ-proteobacteria 899

β-proteobacteria 791

α-proteobacteria 271

δ-proteobacteria 103

Cyanobacteria 73

Archaea 41
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Genome-based models for the oxidation of ferrous iron and reduced inorganic sulfur compounds (RISCs)Figure 3
Genome-based models for the oxidation of ferrous iron and reduced inorganic sulfur compounds (RISCs). Sche-
matic representation of enzymes and electron transfer proteins involved in the oxidation of (A) ferrous iron and (B) reduced 
inorganic sulfur compounds (RISCs). Proteins and protein complexes are described in the text.
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receive electrons from rusticyanin and pass them to the bc1

complex [5]. The petI operon has been analyzed experi-
mentally in A. ferrooxidans strain ATCC 19859 [5] and
recently in strain ATCC33020 [8].

The rus operon (cyc2, cyc1, hyp, coxB, coxA coxC, coxD, and
rus; AFE3146-53) encodes two c-type cytochromes (Cyc1
and Cyc2), components of the aa3-type cytochrome oxi-
dase (CoxBACD), and rusticyanin, respectively [40]. Cyc2
has been shown to accept electrons directly from Fe(II)
and, given its location in the outer membrane, may carry
out the first step in Fe(II) oxidation [41]. These proteins
are thought to form a "respiratory supercomplex" that
spans the outer and the inner membranes and transfers
electrons from iron (or pyrite) to oxygen [40,42,43].
Based on transcriptional, biochemical, and genetic studies
[28], it was proposed that electrons from ferrous iron oxi-
dation flow through Cyc2 to rusticyanin. From there,
some of the electrons feed the "downhill electron path-
way" through c-cytochrome Cyc1 to aa3 cytochrome oxi-
dase, some the "uphill electron pathway" that regenerates
the universal electron donor NADH by the reverse elec-
tron flow through c-cytochrome CycA1--> bc1 complex--
>ubiquinone pool-->NADH dehydrogenase (Figure 3a).

Genome analysis suggests a solution to a long-standing
controversy. A HiPIP (high potential iron-sulfur protein)
encoded by iro has been postulated to be the first electron
acceptor from Fe(II) [44,45]. However, transcriptional
studies of iro in A. ferrooxidans ATCC33020 suggested that
it may be involved in sulfur oxidation. In our analysis of
the type strain, iro (AFE2732) was found to be associated
with the petII gene cluster thought to be involved in sulfur
oxidation [46,47], thus making it unlikely that Iro is the
key iron-oxidizing enzyme.

2.2.2 Aerobic oxidation of reduced inorganic sulfur compounds 

(RISCs)

Genes encoding enzymes and electron transfer proteins
predicted to be involved in the oxidation of reduced inor-
ganic sulfur compounds (RISCs) were detected in the
genome (Figure 3b). The oxidative and electron transfer
pathways for RISCs are more complicated than those for
Fe(II) oxidation, making their prediction and elucidation
more difficult [48]. To add further complication, some
steps occur spontaneously, without enzymatic catalysis.
Previous experimental studies in various strains of A. fer-
rooxidans detected several enzymatic activities involved in
the oxidation of RISCs [1,28], but some of these activities
had not been linked to specific genes. Based on genome
analysis, some of these missing assignments are predicted
and also some novel genes involved in the oxidation of
thiosulfate, sulfide, and tetrathionate are suggested.

Experimentally validated components of RISC metabo-
lism include: the pet-II operon (AFE2727-31) and alterna-
tive quinol oxidases of the bd (AFE0954-5) and bo3

families (AFE0631-4) [7,8]; a sulfide/quinone oxidore-
ductase encoded by sqr (AFE0267) suggested to be
involved in the oxidation of sulfide to sulfur [49,50]; and
a tetrathionate hydrolase encoded by tetH (AFE0029)
thought to be involved in the oxidation of tetrathionate
[51].

The two homologs of doxDA (AFE0044; AFE0048) present
in the genome are predicted to encode a thiosulfate/qui-
none oxidoreductase. Both appear to be a fusion of the
separate doxD and doxA genes that are found in other
organisms such as A. ambivalens [52,53]. Both are located
in a major gene cluster composed of two divergent gene
clusters. The first region (AFE0050-47) encodes a protein
with TAT-signal peptide (IPR006311, TIGR01409), a peri-
plasmic solute-binding protein, the first doxDA gene, and
a conserved hypothetical protein. The second region
(AFE0046-42) encodes a conserved hypothetical protein,
a rhodanese enzyme that splits thiosulfate into sulfur and
sulfite [54], the second copy of doxDA, a periplasmic sol-
ute-binding protein, a second copy of a gene encoding a
protein with TAT-signal peptide (IPR006311,
TIGR01409), and a gene encoding a putative carboxylate
transporter. We have detected a similar organization in
the Gluconobacter oxydans genome.

Five genes, predicted to encode thiosulfate sulfur trans-
ferase (rhodanese) proteins (AFE2558, AFE2364,
AFE1502, AFE0529 and AFE0151) are dispersed in the
genome [55] but their roles in sulfur oxidation remain to
be firmly established. Notably, some of these predictions
are based on the presence of the rhodanese PFAM00581
motif associated with phosphatases and ubiquitin C-ter-
minal hydrolases, in addition to sulfur oxidation. Genes
were not detected for several enzymatic functions that
have been experimentally demonstrated in other strains
of A. ferrooxidans including the sulfur dioxygenase that
oxidizes persulfide-sulfur to sulfite in A. ferrooxidans strain
R1 [1,56] and the sulfite oxidase that oxidizes sulfite to
sulfate in Ferrobacillus ferrooxidans [1,57].

2.2.3 Hydrogen and formate utilization

Hydrogen utilization has been demonstrated experimen-
tally in A. ferrooxidans ATCC 23270 [9] and a group 2
hydrogenase from A. ferrooxidans ATCC 19859 has been
characterized [58], but there were no previous reports
describing the hydrogenase genes and their genetic organ-
ization or their potential diversity. The A. ferrooxidans
genome encodes four different types of hydrogenases
based on the 2001 classification by Vignais et al. [59] (Fig-
ure 4, Additional file 3). Group 1 [NiFe]-hydrogenases are
membrane-bound respiratory enzymes that enable the
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Diversity and genomic organization of predicted hydrogenasesFigure 4
Diversity and genomic organization of predicted hydrogenases. A) Schematic representation of the four predicted 
types of hydrogenase. B) Organization of the predicted operons encoding the four types of hydrogenase. C) Schematic repre-
sentation of similarity between the group 4 hydrogenase genes in M. barkeri with the A. ferrooxidans group 4 hydrogenase 
(above) and NADH dehydrogenase subunits (below).
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cell to use molecular hydrogen as an energy source. A. fer-
rooxidans has both the predicted structural (AFE3283-86)
and the maturation-related genes (AFE3281-2; AFE3287-
90) required for production of a functional respiratory
hydrogenase of this type. In addition, the small subunit of
this predicted complex has the characteristic TAT-signal
peptide used to target the full heterodimer to the periplas-
mic space [60]. The genomic arrangement of the structural
genes (hynS-isp1-isp2-hynL) is identical to that found in a
thermoacidophilic archaeon (Acidianus ambivalens), a
hyperthermophilic bacterium (Aquifex aeolicus), a denitri-
fying bacterium (Thiobacillus denitrificans), and two pho-
totrophic sulfur bacteria (Thiocapsa roseopersicina and
Allochromatium vinosum). Like A. ferrooxidans, all of these
bacteria are chemoautotrophs that live in extreme envi-
ronments, use inorganic energy sources, and have an
active sulfur metabolism that oxidizes and reduces inor-
ganic sulfur compounds [61].

A. ferrooxidans also encodes a group 2 cytoplasmic uptake
[NiFe]-hydrogenase (AFE0701-2). Group 2 hydrogenases
are induced during nitrogen fixation to utilize the molec-
ular hydrogen generated [62]. The cyanobacterial-like
hydrogenase in A. ferrooxidans exhibits the characteristic
features of uptake hydrogenases as determined by EPR
and FTIR [63]. Divergently oriented from the group 2
hydrogenase gene cluster is a predicted σ54-dependent
hydrogenase transcriptional regulator (hupR) (AFE0700).
HupR together with a histidine kinase forms part of a two-
component regulatory system in R. eutropha [64], but the
histidine kinase appears to be absent from the A. ferrooxi-
dans genome. Despite that, HupR is able to activate tran-
scription in the non-phosphorylated form [65-67],
indicating that HupR is still able to regulate transcription
of the group 2 hydrogenase system in A. ferrooxidans.

Adjacent to the group 2 hydrogenase gene cluster and
transcribed in the same direction is a predicted cysteine
regulon transcriptional activator cysB (AFE0699). This is
followed by a cluster of genes potentially involved in fer-
mentation, including a predicted σ54-dependent tran-
scriptional regulator and a group of isc-like genes
(AFE0672-78). The latter gene group is thought to be
involved in assembling the iron-sulfur cluster of the nitro-
genase used in nitrogen fixation, thus suggesting a con-
nection between hydrogen production by the group 2
hydrogenase and nitrogen fixation [68]. The close proxim-
ity of the fermentation gene cluster suggests an additional
metabolic coupling with fermentative metabolism, per-
haps as part of a σ54 regulatory cascade operating in anaer-
obic or microaerophilic conditions.

The third predicted hydrogenase encodes a sulfhydroge-
nase, a group 3b cytoplasmic, bidirectional, heterotetra-
meric hydrogenase. This hydrogenase, in association with

other proteins, binds soluble cofactors such as NAD,
cofactor 420, and NADP [59]. Domain analysis predicts
an F420 binding site in the α subunit (large hydrogenase
subunit; AFE0937) and NAD- and FAD-binding sites in
the γ subunit (AFE0939). The predicted NAD-binding site
suggests that A. ferrooxidans can use NADPH as an electron
donor, as has been shown for Pyrococcus furiosus [69]. A
possible role for this hydrogenase could be the recycling
of redox cofactors using protons or water as redox coun-
terparts, as has been suggested for Alcaligenes eutrophus,
thus serving as an electron sink under high reducing con-
ditions [66].

The gene organization and amino acid sequence of a six-
gene cluster (AFE2149-54) (Figure 4c) shows significant
similarity to the group 4 H2-evolving hydrogenase com-
plex found in several organisms (e.g., Methanococcus bark-
eri [70]). In M. barkeri, this cluster encodes a six-subunit
complex that catalyzes the energetically unfavorable
reduction of ferrodoxin by H2, possibly driven by reverse
electron transport. The reduced ferrodoxin produced then
serves as a low-potential electron donor for the synthesis
of pyruvate in an anabolic pathway [71]. Reverse electron
flow for the production of NADH via the oxidation of
Fe(II) in A. ferrooxidans has been shown to be driven by
the proton motif force (PMF) across its membrane that
results from the acidity of its environment [72]. The pre-
dicted activity of the group 4 hydrogenase complex may
exemplify another where A. ferrooxidans exploits the natu-
ral PMF to generate reducing power and couple it to redox
reactions.

Another possible role for the group 4 hydrogenase com-
plex involves the oxidation of formate. Two clusters of
three genes (AFE1652-4 and AFE0690-2) potentially
encode a formate dehydrogenase complex consisting of a
formate dehydrogenase accessory protein FdhD-1, a
hypothetical protein, and a molybdopterin formate dehy-
drogenase. The second cluster is divergently oriented from
a gene encoding a predicted σ54-dependent transcrip-
tional regulator. It has been reported that this complex
associates with a hydrogenase group 4 complex in E. coli
to create a formate hydrogenase supercomplex [73]. We
propose a similar model for A. ferrooxidans, thus offering
a biochemical basis for its ability to oxidize formate [10].

2.2.4 Anaerobic metabolism

Several strains of A. ferrooxidans have been reported to use
electron acceptors other than O2, including the use of fer-
ric iron for the oxidation of sulfur and hydrogen and the
use of sulfur for the oxidation of hydrogen by A. ferrooxi-
dans JCM 7811 [74]. In that strain, the reduction of ferric
iron was accompanied by the increased expression of a 28
kDa c-type cytochrome that was suggested to be responsi-
ble for this activity [74]. The reduction of ferric iron dur-
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ing sulfur oxidation was also shown for the type strain
ATCC 23270 [75]. However, a gene potentially encoding
this cytochrome could not be identified in A. ferrooxidans
ATCC 23270 [76]. A candidate iron reduction complex
has been investigated in A. ferrooxidans AP19-3 by electro-
phoretic purification and enzymatic assays [77,78]. How-
ever, potential genes encoding this complex could not be
detected in our genome analysis.

The use of sulfur as an electron acceptor was investigated
in A. ferrooxidans NASF-1 where aerobically grown cells
were found to produce hydrogen sulfide from elemental
sulfur using NADH as electron donor via a proposed sul-
fur reductase [79]. However, the observed molecular
weights of the subunits of this sulfur reductase do not cor-
respond to those predicted from an analysis of the group
3b hydrogenase genes in the type strain genome, with the
caveat that post-translational modifications could explain
the differences in molecular weights. However, a gene
cluster (AFE2177-81) was detected in the type strain that
is predicted to encode a sulfur reductase enzyme with sig-
nificant similarity of amino acid sequence and gene order
to the cluster suggested to be responsible for sulfur reduc-
tion in Acidianus ambivalens [80]. We hypothesize that this
enzyme could associate with the predicted group 1 hydro-
genase to form a supercomplex, facilitating the use of
hydrogen as an electron and energy source with sulfur
serving as the final electron acceptor.

2.3 Nitrogen metabolism

A. ferrooxidans can meet its nitrogen needs by either nitro-
gen fixation or ammonia assimilation. Diazotrophic
growth of A. ferrooxidans was first demonstrated in early
studies of acetylene reduction and 15N2 assimilation [15]
and the structural genes for the nitrogenase complex were
later sequenced [81-83].

2.3.1 Ammonia uptake and utilization

The A. ferrooxidans genome contains genes predicted to be
involved in ammonia uptake (amt1, amt2 and amtB;
AFE2916, AFE2911, and AFE1922). Amt1 and amt2 are
located in a gene cluster that includes a gene potentially
encoding a class-I glutamine amidotransferase (AFE2917)
that has been shown in other organisms to transfer
ammonia derived from the hydrolysis of glutamine to
other substrates. GlnK-1 (AFE2915) is also present in this
cluster and is predicted to encode a P-II regulatory protein
involved in the regulation of nitrogen metabolism in
response to carbon and glutamine availability [84]. A glnA
homolog (AFE0466) is predicted to encode a type I
glutamine synthase that would permit the incorporation
of ammonia directly into glutamine, completing the
inventory of genes necessary for ammonia uptake and uti-
lization.

2.3.2 Nitrogen Fixation

A putative nitrogenase gene cluster (nifH-D-K-fer1-fer2-E-
N-X; AFE1522-AFE1515) (Additional file 4) was previ-
ously reported in the type strain [68]. These genes poten-
tially encode the nitrogenase complex and proteins
involved in the synthesis of the nitrogenase MoCo cofac-
tor. In other organisms, nitrogenase has been shown to be
oxygen sensitive and its expression and activity are regu-
lated at both the transcriptional and post-translational
levels [84]. Divergently oriented from the nif operon is a
cluster of genes involved in the regulation of nitrogenase
activity. The first gene of this cluster is a putative σ54

response regulator (AFE1523). This is followed by the
draT and draG genes (AFE1524, AFE1525) that encode a
dinitrogen-reductase ADP-D-ribosyltransferase and a
ADP-ribosyl-[dinitrogen reductase] hydrolase, respec-
tively. These two are involved in the post-translational
modulation of nitrogenase activity in response to ammo-
nium and oxygen concentrations [84]. NifA (AFE1527) is
also present in the same gene cluster. NifA potentially
encodes an enhancer binding protein that, together with
σ54, is involved in the transcriptional activation of the nif
operon in response to the redox, carbon, and nitrogen sta-
tus. This ensures that nitrogen fixation occurs only under
physiological conditions that are appropriate for nitroge-
nase activity [85].

Using this genomic information, a gene network for the
regulation of nitrogen fixation and ammonia uptake can
be suggested for A. ferrooxidans that is consistent with sim-
ilar models derived from other organisms (Figure 5) [84].
In this model, NifA (AFE1527) is the transcriptional acti-
vator of the nitrogenase operon and its expression is regu-
lated by a two-component regulatory system encoded by
ntrB and ntrC (AFE2902, AFE2901) that measure oxygen
and nitrogen levels. These signals are integrated by the P-
II proteins (glnK-1, AFE2915; glnB-1, AFE2462; glnK-2,
AFE2240; and glnB-2, AFE0429) with additional meta-
bolic signals, such as fixed carbon and energetic status
[86]. Two additional copies of ntrC and ntrB, termed ntrY
and ntrX (AFE0024, AFE0023) have been detected in the
genome that could allow cross talk between the sensor/
regulator pairs NtrY/X and NtrB/C, as described in Azos-
pirillum brasilense [87]. The redundancy of the regulatory
genes responsible for nitrogen fixation and assimilation
suggests the presence of a flexible mechanism that is
responsive to environmental changes.

3. Nutrient uptake and assimilation systems

A. ferrooxidans has 72 genes (2.23%) predicted to be
involved in nutrient uptake (Additional file 3) whereas
most heterotrophic γ-proteobacteria typically dedicate
about 14% of their genome information to transport
functions [88]. The potential substrates incorporated
include phosphate, sulfate, iron, ammonia, organic acids,
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amino acids, and sugars. This repertoire, especially the
low representation of predicted carbohydrate uptake sys-
tems, is a signature of obligate autotrophic bacteria [88].

3.1 Inorganic ion assimilation

3.1.1 Sulfate

A gene for a predicted sulfate permease (AFE0286) of the
SulP family is present in the genome adjacent to a poten-

tial carbonic anhydrase gene (AFE0287). This linkage has
been observed in many bacteria [89], suggesting that the
gene pair forms a sulfate/carbonate antiporter system. Sul-
fate taken up from the environment is thought to be
reduced to sulfide for cysteine biosynthesis by a group of
genes belonging to the cys regulon [68].

Predicted regulatory models for inorganic ion uptake and assimilationFigure 5
Predicted regulatory models for inorganic ion uptake and assimilation. A) Phosphate and phosphonate. B) Nitrogen 
and ammonia. C) Ferric and ferrous iron. D) Sulfate. Proteins and protein complexes are described in the text.
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3.1.2 Phosphate

Previous investigations of phosphate metabolism in A.
ferrooxidans provided evidence for a phosphate starvation
response [90] and for a relationship between polyphos-
phate degradation and heavy metal resistance and efflux
[91]. However, we still lacked a comprehensive under-
standing of all the potential components involved in
phosphate metabolism, as well as their integration and
regulation. Our genome analysis identified a complete
repertoire of the genes necessary for phosphate uptake by
the high affinity Pst-transport system. These predicted
genes are arranged in two similar clusters. The first cluster
(AFE1939-41) includes two genes (pstC-1 and pstC-2) that
encode a phosphate permease and a third gene (pstS-1)
that encodes a periplasmic phosphate binding protein.
The second gene cluster (AFE1441-1434) includes a gene
encoding a exopolyphosphatase (ppx, AFE1441) previ-
ously described to be involved in heavy metal resistance
and efflux [91], phoU (AFE1440) predicted to encode a
phosphate transport regulatory protein, pstB encoding an
ATP binding protein, and pstA coding for the permease
component. In addition, there are genes encoding a third
homolog of the phosphate permease PstC-3, a second
homolog of the periplasmic phosphate binding protein
PstS-2, and the two-component response regulator PhoR/
PhoB.

The predicted phosphonate utilization gene cluster
(AFE2278-86) contains genes for C-P cleavage and an
ATP-binding protein for the ABC phosphonate transport
system. In spite of the experimental evidence reported
about the utilization of phosphonate in this bacterium
[92], the typical permease subunit that is required to com-
plete phosphonate uptake was not found in the genome.

The genome does contain a gene (AFE1876) for a pre-
dicted polyphosphate kinase (Ppk) involved in polyphos-
phate storage. It has been suggested to be part of a pho
regulon whose expression is activated during phosphate
starvation [89] and in response to heavy metal toxicity
[91].

3.1.3 Iron

Genomic evidence indicates that A. ferrooxidans relies on
diverse standard iron uptake mechanisms to obtain both
Fe(II) and Fe(III) (93). The type strain has candidate genes
(AFE2523-AFE2525) potentially encoding the FeoABC
Fe(II) inner-membrane transport system and an NRAMP
dual Mn(II)/Fe(II) MntH-like transporter (AFE0105). Pre-
viously reported gene context analysis indicated that feoA,
feoB, and feoC form part of an iron-regulated operon,
along with an ORF (AFE2522) encoding a putative porin
(designated feoP) that could facilitate entrance of Fe(II)
into the periplasm [93].

A. ferrooxidans is typically confronted with an exception-
ally high concentration of soluble iron in its acidic envi-
ronment, as high as 10-1M compared to 10-16 M in typical
neutrophilic environments. This raises questions as to the
mechanisms it uses for iron assimilation and homeostatic
control of internal iron concentrations. Given the abun-
dance of both Fe(II) and Fe(III) in its environment, A. fer-
rooxidans has a surprisingly large number of iron uptake
systems, including eleven distinct putative genes encoding
TonB-dependent outer membrane receptors (tdr) for high
affinity uptake of siderophore-chelated Fe(III) (tdrA,
AFE2935; tdrC, AFE1483; tdrD, AFE1492; tdrE, AFE2040;
tdrF, AFE2998; tdrG, AFE2302; tdrH, AFE2298; tdrI,
AFE2292; tdrJ, AFE2288; tdrK, AFE0763; tdrL, AFE3229).
Also, it has a number of copies of all the accessory genes
needed to transport iron into the cytoplasm, including
seven different copies of the energy transduction genes
tonB (AFE3002, AFE2304, AFE2301, AFE2275, AFE2268,
AFE1487, AFE0770) and exbB (AFE3003, AFE2299,
AFE2273, AFE2270, AFE1485, AFE0768, AFE0485) and
six copies of exbD (AFE3004, AFE2300, AFE2269,
AFE1486, AFE0769, AFE0486), as well as the genes encod-
ing two different ABC iron transporters (AFE1489-
AFE1491, AFE1493-AFE1495). No genes were detected
that might be involved in standard mechanisms of
siderophore production. However, its multiple
siderophore uptake systems suggest that it is nonetheless
capable of living in environments where iron is scarce
(perhaps at higher pH values) and in which other organ-
isms capable of producing siderophores are present.

For Fe(III) uptake, all the genes involved are organized in
seven gene clusters, some of which include additional
gene functions [22]. One cluster encodes a complete suite
of proteins necessary for Fe(III) uptake (AFE1482-
AFE1495) that includes not only two outer membrane
receptors (OMRs) of different predicted siderophore spe-
cificities, but also three different ABC solute-binding pro-
teins with affinity for iron and molybdenum and may be
a dedicated iron-molybdenum transport system that is
present in a genomic island [94]. This predicted operon
also includes a putative gene (gloA, AFE1482) predicted to
encode a globin-like protein that has been suggested to be
an oxygen sensor regulating the expression of Fe-Mo
uptake [94]. GloA is also associated with an upstream Fur
box, indicating possible regulation via the master iron reg-
ulator Fur [21].

3.2 Carbon compound uptake

3.2.1 Amino acids

Among the predicted nutrient transport genes in the A. fer-
rooxidans genome are five amino acid permeases of
unknown specificity (AFE2659, AFE2457, AFE1782,
AFE0719, and AFE0439) (the same number as found in
the chemolithoautotroph T. crunogena) and one complete
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ABC system for dipeptide uptake (AFE2987-92). The addi-
tion of leucine to solid media has been reported to
improve the yield of A. ferrooxidans ATCC 33020 during
the first ten days of growth, whereas the addition of
cysteine or methionine inhibits growth [95]. More
recently, the addition of minimal concentrations of gluta-
mate to liquid media was found to accelerate the growth
rate of A. ferrooxidans ATCC 23270 (Omar Orellana, per-
sonal communication).

3.2.2 Carbohydrate uptake

The suite of genes for carbohydrate transport appears to be
limited, as has been found in most obligate autotrophs
(e.g., T. denitrificans [96], T. crunogena [88], M. capsulatus
[97], N. europea [98], and N. oceanii [99]). This suite of
predicted genes includes two outer membrane carbohy-
drate selective porins of the OPRB family (AFE2522,
AFE2250), one carbohydrate transporter of unknown spe-
cificity (AFE2312) that is related to the major facilitator
superfamily (PF00083, PS50850) and very similar to
xylose and galactose proton symporters [100], and an
MFS transporter (AFE1971) with marginal similarity to
sugar/nucleoside symporters. It also includes genes for an
incomplete PTS system for carbohydrate uptake
(AFE3018-23) potentially encoding EII-A, a kinase/phos-
phatase HprK, an ATPase, an IIA component, a phos-
phocarrier protein Hpr, and a phosphoenolpyruvate
phosphotransferase. However, we could not identify a
gene encoding the IIC sugar permease component, thus
making it unlikely that A. ferrooxidans has a functional
sugar-transporting PTS system. Instead, we suggest that
this PTS system could be involved in molecular signaling
as part of a regulatory cascade involving RpoN, as
described in other proteobacteria [101]. In this model, a
decrease of fixed carbon leads to low levels of phosphoe-
nolpyruvate and cyclic-AMP that in turn maintain most
PTS proteins in the dephosphorylated form. This pro-
motes the utilization of glycogen as a carbon source to
replenish the phosphoenolpyruvate levels, thus restoring
the levels of phosphorylated PTS proteins [102].

4. Central carbon metabolism

It has been shown in many organisms that the 3-phos-
phoglyceraldehyde generated by CO2 fixation via the
Calvin cycle enters the Embden-Meyerhof-Parnass path-
way, thus providing fixed carbon that can be channeled in
either of two directions: for glycogen biosynthesis and
storage, or to provide carbon backbones for anabolic reac-
tions. The genes predicted for these two pathways in A. fer-
rooxidans, together with their reactions and potential
interconnections with other biosynthetic pathways, are
shown in Figure 6.

4.1 Carbon storage and utilization

The genome also contains genes predicted to encode the
five enzymes required for glycogen biosynthesis from

fructose-6P. As has been shown in other organisms, glu-
cose-1P-adenylyltransferase (glgC, AFE2838) is predicted
to synthesize ADP-glucose. A specific glycogen synthase
(glgA, AFE2678) would then transfer the glucosyl moiety
of ADP-glucose to a glycogen primer to form a new 1,4-
glucosidic bond. Subsequently, a branching enzyme
(glgB, AFE2836) is predicted to catalyze the formation of
branched 1,6-glucosidic linkages.

The carbon stored in glycogen is thought to be released by
glucan phosphorylase (glgP1, AFE1799; glgP2, AFE0527),
thus regenerating glucose-1P from the non-reducing ter-
minus of the 1,4 chain. The pathway for the conversion of
glucose-6P to 2-dehydro-3-deoxy-gluconate is also pre-
dicted to be present, except for the last step that replen-
ishes the levels of pyruvate and 3P-glycerate. In addition,
a gene encoding phosphoribulokinase was not detected,
thus suggesting that either alternate genes encode the
missing functions or else that A. ferrooxidans regenerates
pyruvate and 3P-glycerate from stored glycogen by alter-
nate pathways. Expression data obtained from A. ferrooxi-
dans growing with sulfur and iron as energy sources have
shown that genes involved in glycogen synthesis and uti-
lization are differentially expressed [103]. Specifically,
growth in sulfur-containing media preferentially activates
genes involved in glycogen biosynthesis, whereas growth
on iron-supplemented media upregulates genes involved
in glycogen breakdown. This suggests that A. ferrooxidans
channels fixed carbon to glycogen when sulfur is available
as an energy source and uses glycogen as a reserve carbon
donor when iron is the energy source.

4.2 Carbon backbone formation

The genome contains three genes (AFE1802, AFE1676
and AFE3248) that are predicted to encode fructose
biphosphate aldolase (EC. 4.1.2.13), the enzyme that cat-
alyzes the formation of fructose-1,6-bP. The interconver-
sion of fructose-1,6-bP to fructose-6P in most
heterotrophic bacteria is carried out by fructose biphos-
phatase and phosphofructokinase enzymes. In A. ferrooxi-
dans, a gene encoding a fructose biphosphatase enzyme
was found (AFE0189) that we suggest allows a direct flux
of fixed carbon to glycogen storage. A potential phosphof-
ructokinase candidate gene (AFE1807) was also found, a
member of the PfkB family of sugar kinases (cd01164). It
is located near putative genes involved in glycolysis/glyco-
neogenesis (e.g., phosphoglycerate mutase and phos-
phoenolpyruvate synthase), thus generating a
bidirectional metabolic path for the utilization/genera-
tion of glycogen.

Putative genes for all the enzymes involved in the conver-
sion of glyceraldehyde-3-P to pyruvate and acetyl-coA, as
well as for the citric acid (TCA) cycle, were detected with
the exception of genes encoding the E1-3 subunits of α-
ketoglutarate dehydrogenase. Thus, the TCA cycle is
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Predicted pathways (pentose phosphate pathway, glycolysis, glycogen and interrupted TCA cycle) for central carbon metabo-lismFigure 6
Predicted pathways (pentose phosphate pathway, glycolysis, glycogen and interrupted TCA cycle) for central 
carbon metabolism.
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incomplete, as has been described in a number of obligate
autotrophic bacteria and archaea – a likely hallmark of
this lifestyle [104].

5. Heavy metal resistance

Bioleaching microorganisms, such as A. ferrooxidans, typi-
cally live in environments that have high concentrations
of soluble heavy metals (e.g., arsenic, mercury, and silver),
as well as unusually high concentrations of potentially
toxic metals (e.g., copper and iron). This has prompted
numerous studies of the mechanisms employed by A. fer-
rooxidans for metal resistance [105]. In contrast to the
genomic perspective presented herein, those investiga-
tions were conducted on multiple strains and thus do not
provide a coherent view of the repertoire of heavy metal
resistance genes present within one strain.

Our genome analysis confirmed the presence of a diver-
gent gene cluster (AFE2857-60) previously identified as
involved in arsenic resistance. The cluster includes genes
encoding an arsenate reductase (ArsC), the arsenate
repressor (ArsR), the divergently-oriented arsenate efflux
pump (ArsB), and a hypothetical protein (ArsH). The
arsCRB gene cluster was shown to confer resistance to
arsenate, arsenite, and antimonium in E. coli, but the func-
tion of arsH is unknown [106,107].

Mercury resistance has been investigated in several strains
of A. ferrooxidans [108-110]. Genome analysis of the type
strain identified three genes potentially encoding the well-
described Mer components, i.e., the repressor accessory
protein (MerD, AFE2483), the mercury reductase (MerA,
AFE2481), and the mercuric ion transporter (MerC,
AFE2480). Four candidate genes potentially encoding
members of the family of MerR-like transcriptional regu-
lators were also found (AFE2607, AFE2509, AFE1431, and
AFE0373).

The A. ferrooxidans genome also contains several genes
(Additional file 3) predicted to be part of heavy metal tol-
erance systems [111], including genes for the copCD cop-
per extrusion system, ten clusters of genes predicted to
belong to the resistance-nodulation-cell division (RND)
family of transporters, three genes encoding cation diffu-
sion facilitator (CDF) proteins, three genes encoding cop-
per translocating P-type ATPases, and two genes encoding
other P-type ATPases of unknown specificity. These
genome-based predictions offer new opportunities for
experimental validation of heavy metal resistance in A.
ferrooxidans and also provide new markers for detecting
similar genes in other microorganisms

6. Extrusion of toxic organic compounds

The ability to extrude toxic organic compounds is wide-
spread, and our inspection of the A. ferrooxidans genome

suggests that this bacterium is well equipped to deal with
toxic organic molecules. Its genome contains a gene pre-
dicted to encode the toluene tolerance protein TtgD
(AFE1830) as well as a cluster of proteins often associated
with toluene resistance that includes a Tol-Pal-associated
acyl-CoA thioesterase (AFE0063) and TolBARQ
(AFE0064-67).

The genome also includes a predicted complete ABC gene
cluster (AFE0158-63) involved in drug extrusion that has
significant similarity to the toluene ABC resistance pro-
teins reported in other organisms. Resistance to toluene/
xylene and related aromatic hydrocarbons and organic
solvents may be needed by A. ferrooxidans when growing
in runoff from coal wastes where it might encounter aro-
matic hydrocarbons [112] or in bioleaching operation
heaps that are irrigated with recycled water containing car-
boxylic acids and other organic compounds from solvent
extraction operations [113].

An alternative hypothesis for the role of drug-related com-
pound extrusion mechanisms present in microbes associ-
ated with biogeochemical cycles has been proposed [114].
A homolog of TolC has been shown in Shewanella oneiden-
sis MR-1 to excrete anthraquinone-2,6-disulfonate
(AQDS) that is used as an extracellular electron shuttle. It
has been proposed that AQDS may be particularly impor-
tant to transfer electrons from cells embedded in the inte-
rior of biofilms to reduce Fe(III) present in the solid
substrate to which the biofilm is attached. It is possible
that a similar mechanism may be used by A. ferrooxidans
in the reverse process, namely, to convey electrons from
the oxidation of Fe(II) present in solid minerals to cells
not in contact with the substrate.

Two additional ABC systems potentially involved in drug
extrusion are also predicted in the genome, each associ-
ated with a HlyD secretion protein family (AFE2861-64,
AFE1603-7). The first is directly downstream from the ars
genes; the second cluster may have originated through lat-
eral gene transfer since it is flanked by truncated trans-
posases and hypothetical genes and it also exhibits
anomalous G+C content.

A. ferrooxidans may also be resistant to some antibiotics
due to the presence of a two-gene cluster (AFE1977-78)
potentially encoding a fosfomidocyn resistance protein
and a TonB-family protein, respectively, and also a gene
potentially encoding an AmpG permease protein
(AFE1961).

7. Stress responses

For aerobically growing bacteria, the autooxidation of oxi-
dases in the respiratory chain is the main source of endog-
enous reactive oxygen species (ROS). Increased levels of
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ROS can also result from exposure to redox active metals,
including iron. Aerobic biomining microorganisms such
as A. ferrooxidans that thrive in iron-rich environments are
thus expected to be well equipped to deal with distur-
bances in oxidant-antiooxidant balance. Surprisingly, an
unexpectedly low number of genes encoding known ROS
detoxification functions were identified in the genome.
These genes include a Mn-superoxide dismutase encoded
by sodA (AFE1898), two non-identical copies of ahpC-like
(AFE1468, AFE0985) and ahpD-like (AFE02014,
AFE1814) members of the alkylhydroperoxidase family,
and nox, (AFE1803) potentially encoding a NADH oxi-
dase (FAD-dependent pyridine nucleotide-disulfide oxi-
doreductase family protein). This latter is considered to be
important in oxygen scavenging in anaerobes because of
its potential to reduce oxygen to water [115]. No genes
coding for known catalases were detected.

On the other hand, A. ferrooxidans is predicted to have a
complete set of components needed for non-enzymatic
neutralization of ROS. This mechanism maintains high
levels of low molecular weight thiols in the cytoplasm
that, in combination with specific disulfide reductases,
provide a reducing intracellular environment and main-
tain the thiol/disulfide balance of other molecules
(unpublished results). Seven distinct thioredoxins (txr;
AFE2867, AFE2848, AFE2590, AFE2362, AFE1979,
AFE0657, AFE0047) and one thioredoxin disulfide
reductase (trxB, AFE0375) are present. Also present are the
genes of the glutathione system necessary for glutathione-
tripeptide synthesis from the amino acids L-cysteine, L-
glutamate, and glycine (gshA, AFE03064; gshB,
AFE03063), four distinct glutaredoxins (gxr; AFE3038,
AFE2449, AFE2263, AFE0367), and the glutathione
reductase gorA (AFE0366).

In some bacteria, when basic protection is not sufficient,
e.g., when sudden large increases in ROS occur, rapid glo-
bal responses are induced to cope with the oxidative stress
[116]. Often survival during the period of stress is aided
by the simultaneous employment of multiple strategies.
The strategies predicted to be available to A. ferrooxidans
include repair of oxidative damage (e.g., nfo), bypassing of
damaged functions (e.g., resistant isozymes acnA, fumC),
and the exclusion of oxidative stress agents (e.g., acrAB
multidrug efflux pump). Typically, many of these func-
tions are coordinately regulated in response to superoxide
by the SoxRS two-component regulator, and in response
to peroxide by OxyR in Gram-negative bacteria or by PerR
in Gram-positive bacteria. A. ferrooxidans lacks oxyR, soxR,
and soxS orthologs, but has a Fur family regulator similar
to PerR (AFE1467). The role of PerR in the control of A.
ferrooxidans inducible stress response has not been inves-
tigated, but could include regulation of the divergently-

transcribed AhpC family peroxidase (AFE1468). This
arrangement is conserved in other microorganisms [117].

Other antioxidant defenses that are not controlled by the
major oxidative stress regulators include the DNA repair
enzyme endonuclease III (nth, AFE2682), glycoylases
(mutM, AFE2758; mutY, AFE3015), DNA polymerase I
(polA, AFE3094), recombinase protein A (recA, AFE0932),
and other defenses including a peptide methionine sul-
foxide reductase (msrAB, AFE2946-45) and a molecular
chaperone (hlsO, AFE1408).

8. Flagella formation and chemotaxis

Conserved fla or fla-related genes that could encode flag-
ella were not identified in the genome, nor were che genes
that encode classic chemotaxis functions. These observa-
tions conflict with Ohmura et al. (1996) [118] who pro-
posed that the formation of flagella was a major factor
mediating the adhesion of A. ferrooxidans ATCC 23270 to
solid sulfur surfaces. This discrepancy could be explained
if the fla genes have been lost in the particular culture used
for sequencing. Since flagella genes are encoded in a mul-
tigene operon in many bacteria, their complete loss might
require only one or a small number of excision events. In
contrast, the multiple che genes are usually widely dis-
persed in bacterial genomes and their collective loss in A.
ferrooxidans ATCC 23270 would presumably require mul-
tiple excision events. Alternative hypotheses to explain
this discrepancy include (i) contamination of the A. fer-
rooxidans ATCC 23270 culture used by Ohmura et al.
(1996) by a flagella-bearing microorganism, and (ii) sig-
nificant differences between the culture used by Ohmura
et al. (1996) and that used for our genome sequencing
despite their identical designation (ATCC 23270).

9. Adhesion and biofilm formation

For mineral-associated bacteria, adhesion and biofilm for-
mation are critical steps for colonization and subsequent
mineral solubilization [119]. Cell surface structures such
as pili have been shown to play a critical role in auto-
aggregation of microbial cells involved in biogeochemical
processes [120]. A. ferrooxidans contains several gene clus-
ters potentially involved in the formation of a type IV
pilus (AFE0967-73, AFE0735-39, AFE0416, AFE0183-6,
and AFE0006-7). Some of the relevant genes identified
include those for the σ54-dependent transcriptional regu-
lator pilR (AFE0185) and for the signal transduction histi-
dine kinase pilS (AFE0184). In addition, candidate tad
(tight adherence) genes (AFE2699-AFE2708) were also
detected (Additional file 5). These genes are responsible
for the secretion and assembly of bundled pili. In A. actin-
omycetemcomitans, they are essential for tight adherence,
autoaggregation, and pili formation during colonization
of dental surfaces [121]. They are also present in Thiomi-
crospora crunogena [88], a RISCs-oxidizing, chemoau-
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totrophic bacterium found in thermal vents. The multiple
copies of genes for pili biosynthesis and adhesion in A.
ferrooxidans could enable attachment and colonization on
various mineral surfaces, such as pyrite, chalcopyrite, and
solid sulfur. The redundancy of related regulatory genes
could allow A. ferrooxidans to respond successfully to envi-
ronmental changes.

Genes involved in quorum sensing that were previously
identified and characterized include those that encode the
classical autoinducer-binding transcriptional regulator
LuxR (AFE1997) and the autoinducer synthesis protein
LuxI (AFE1999) [122]. In addition, a second route for the
production of homoserine lactones using the act system
was predicted based on the presence of a gene encoding
an acyltranferase (act, AFE2584) that was shown to be
involved in the production of homoserine lactones of C14
length [123].

A five gene operon, containing luxA-galE-galK-pgm-galM,
was assigned gene numbers AFE1341-45, respectively.
This operon has been proposed to be involved in the for-
mation of extra-cellular polysaccharide (EPS) precursors
via the Leloir pathway [100]. GalU (AFE0445) and galT-
like (AFE1237) have also been predicted to form part of
the Leloir pathway and genes rfbA, B, C and D (AFE3295,
AFE0441, AFE3294 and AFE0442, respectively) have been
proposed to be involved in the biosynthesis of the EPS
precursor dTDP-rhamnose. These groups of genes have
been postulated to be involved in biofilm formation in A.
ferrooxidans and their patterns of transcription were char-
acterized in growth media with and without organic car-
bon supplementation [100].

10. Genetic transfer

A region of the genome (AFE1013-AFE1387, Figure 2) is
enriched (84% versus 54% for the rest of the genome) in
putative genes encoding hypothetical proteins, genes for
DNA metabolism and sequences related to mobile ele-
ments such as transposases, plasmids, and bacteriophage
(phage), and pseudogenes. The presence of site-specific
recombinases and phage integrases in this region, as well
as in other regions such as AFE2397-99, AFE0833-35 and
AFE0507-9, indicates that A. ferrooxidans has been the tar-
get of phage infection. Although no phages are currently
known to infect A. ferrooxidans, this finding suggests that
further searching might be fruitful. Such phage could
facilitate study of the mechanisms of viral infection in
extremely acidic conditions, as well as serve as useful
transducing agents for the genetic manipulation of A. fer-
rooxidans, as have been shown for the acidophilic
archaeon, Sulfolobus spp. [124,125].

The genome contains clusters of genes whose sequence
and gene order show significant similarity to both the Trb
system of the Ri plasmid from Rhizobium rhizogenes and
the Ti plasmid from Agrobacterium tumefaciens [126]. Most
of these predicted genes potentially encode structural pro-
teins of the type IV secretion system involved in conjuga-
tive DNA transfer. However, missing from the genome are
the trbC, trbH, and trbK genes that encode an inner mem-
brane lipoprotein, a pili structural protein, and a protein
involved in plasmid immunity, respectively. Notably, one
of two copies of a trbG-like gene is located within a highly
conserved cluster in a position usually occupied by trbH,
and it may assume the role of this missing gene. The
absence of critical components of the conjugation system
suggests that A. ferrooxidans ATCC 23270 has lost the
capacity to carry out conjugation via the Trb mechanism.
The question arises as to the origin of the Ti plasmid-like
sequences in A. ferrooxidans. One possibility is that it was
acquired from an Agrobacterium-related microorganism or
an ancestor of such through conjugation. A. ferrooxidans
and a free-living or plant root-associated Agrobacterium
might share the same environment at the interface of
acidic drainages and anaerobic soils/water.

Ten proteins predicted to be involved in plasmid stability
and maintenance are present in the genome. This discov-
ery, coupled with the detection of an extensive suite of
predicted conjugation-related genes, provides additional
evidence that A. ferrooxidans was capable of undergoing
conjugation. Even though no natural conjugation part-
ners are known, conjugation between E. coli and A. fer-
rooxidans has been achieved in the laboratory. The
frequency of detectable marker transfer has been very low
[95,127,128], and must be increased before this tech-
nique can be used for widespread genetic manipulation of
A. ferrooxidans. Our finding of conjugation-related genes
could stimulate further attempts.

Forty-one IS elements were identified, of which thirty-
three could be classified as members of nine families
according to the scheme of Mahillon and Chandler [129]
(Additional file 3). The largest groups, designated here as
ISafe3 (8 copies) and ISafe4 (3 copies), belong to the
IS110 and IS3 families, respectively [129]. ISafe1, which is
associated with phenotypic switching in A. ferrooxidans
ATCC 19859 [130], was not detected in the genome of the
type strain. Two non-identical copies of a Tn5468 trans-
poson (family Tn7-like) were detected, each containing
tnsABCDorf5 (AFE1201-AFE1205, AFE3199-95). The first
copy is embedded in a suite of genes encoding hypotheti-
cal proteins; the second is associated with the atp operon
and the glmSU as described for A. ferrooxidans ATCC
33020 [131].
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11. Predicted osmotic balance and potential pH tolerance 

mechanisms

Acidophiles exhibit functional and structural properties
that allow them to survive and proliferate in extremely
acidic environments (pH 3 or below) [reviewed in 132].
These include: a) impermeable cell membranes (mostly in
archaea); b) selective outer membrane porins; c) the gen-
eration of positive internal potential (Δψ) to create a
chemosmotic barrier inhibiting proton influx; and d) the
removal of excess internal protons by active proton
pumping.

A putative gene (omp40, AFE2741) was identified that had
significant similarity to an outer membrane porin found
in A. ferrooxidans strain ATCC 19859 (133, 134). A large
external, positively-charged loop has been predicted in
Omp40 that may control pore size and ion selectivity at
the porin entrance and may constitute a potential proton
barrier [133,134].

In addition, the following related functions were pre-
dicted (Additional file 3): several potassium transporters
including one K+ channel, one K+ uptake protein and one
K+ efflux transporter; two copies of an ABC potassium
import system that could be involved in the generation of
a positive internal potential inhibiting proton influx; four
Na/H+ antiporters and two proton P-type ATPases that

could extrude excess internal protons. These predictions
suggest specific areas for future experimental validation.

Conclusion
• Bioinformatics analysis of the complete genome of the
type strain of A. ferrooxidans (ATCC 23207) provides a val-
uable platform for gene discovery and functional predic-
tion that is especially important given the difficulties in
carrying out standard genetic research in this microorgan-
ism. The models presented herein should facilitate the
design and interpretation of future experiments and ena-
ble the experimental investigator to focus on important
issues.

• An analysis of the genome of the type strain provides a
coherent view of the gene content and metabolic potential
of this species (Figure 7).

• Metabolic models support the key capabilities of A. fer-
rooxidans that pertain to its use in industrial bioleaching,
including its ability to oxidize both sulfur and iron, to
resist low pH, and to live in environments with poten-
tially toxic organic and inorganic chemicals. They also
suggest that it has the ability to precipitate metals in
anaerobic environments, which would be deleterious to
copper bioleaching activity.

Whole-cell model for A. ferrooxidans ATCC 23270Figure 7
Whole-cell model for A. ferrooxidans ATCC 23270. Genome-based model of the cellular metabolism of A. ferrooxidans 
including predicted transport systems; chemolithoautotrophic components; carbon, nitrogen and sulfur metabolism; and bioge-
ochemical cycling.
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• Our analysis also prompts several unexpected predic-
tions, some of which could potentially be useful in bio-
mining such as the proposed connection between biofilm
formation and central carbon metabolism and the pres-
ence of several predicted quorum sensing mechanisms.
Indications of past phage infection and conjugation
events suggest potentially fruitful approaches for the
development of efficient methods for genetic manipula-
tion of this microorganism.

• Metabolic models also indicate how this microorganism
could play an important role as a producer of fixed carbon
and nitrogen and as a recycler of metals in bioleaching
operations as well as in natural environments.

Methods
Genome sequencing and assembly

The genome was sequenced and assembled using the
whole genome shotgun method as previously described
[135-137].

Sequence annotation

Gene modeling was performed using CRTICA [138] and
GLIMMER [139]. The lists of open reading frames (ORFs)
generated by both strategies were merged using CRITICA
start sites when models were identical. The translated
ORFs were submitted to BLAST analysis against the UNI-
PROT database to evaluate overlaps and alternative start
sites. The final list of coding sequences (CDSs) was trans-
lated, and these amino acid sequences were then used to
query the following databases (August-December, 2007):
National Center for Biotechnology Information (NCBI)
nonredundant database, UniProt, TIGRFam, Pfam,
PRIAM, KEGG, COG, and InterPro. Manual functional
assignments were performed gene-by-gene, when needed.
Comparative genome analyses were also performed using
the Comprehensive Microbial Resource [140].

Nucleotide sequence accession numbers

The sequence and annotation of the complete A. ferrooxi-
dans strain ATCC 23270 genome is available at the Com-
prehensive Microbial Resource (CMR) (J. Craig Venter
Institute, http://www.jcvi.org) and in GenBank/EMBL/
DDBJ accession number CP001219.
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