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Acidity promotes tumour progression by altering macrophage

phenotype in prostate cancer
Asmaa El-Kenawi1,2,3, Chandler Gatenbee4, Mark Robertson-Tessi4, Rafael Bravo4, Jasreman Dhillon5, Yoganand Balagurunathan6,

Anders Berglund6, Naveen Vishvakarma3, Arig Ibrahim-Hashim3, Jung Choi7, Kimberly Luddy3, Robert Gatenby4,7, Shari Pilon-Thomas2,

Alexander Anderson4, Brian Ruffell2,8 and Robert Gillies3,7

BACKGROUND: Tumours rapidly ferment glucose to lactic acid even in the presence of oxygen, and coupling high glycolysis with

poor perfusion leads to extracellular acidification. We hypothesise that acidity, independent from lactate, can augment the pro-

tumour phenotype of macrophages.

METHODS: We analysed publicly available data of human prostate cancer for linear correlation between macrophage markers and

glycolysis genes. We used zwitterionic buffers to adjust the pH in series of in vitro experiments. We then utilised subcutaneous and

transgenic tumour models developed in C57BL/6 mice as well as computer simulations to correlate tumour progression with

macrophage infiltration and to delineate role of acidity.

RESULTS: Activating macrophages at pH 6.8 in vitro enhanced an IL-4-driven phenotype as measured by gene expression, cytokine

profiling, and functional assays. These results were recapitulated in vivo wherein neutralising intratumoural acidity reduced the pro-

tumour phenotype of macrophages, while also decreasing tumour incidence and invasion in the TRAMP model of prostate cancer.

These results were recapitulated using an in silico mathematical model that simulate macrophage responses to environmental

signals. By turning off acid-induced cellular responses, our in silico mathematical modelling shows that acid-resistant macrophages

can limit tumour progression.

CONCLUSIONS: This study suggests that tumour acidity contributes to prostate carcinogenesis by altering the state of macrophage

activation.

British Journal of Cancer (2019) 121:556–566; https://doi.org/10.1038/s41416-019-0542-2

BACKGROUND
Cancer initiation and progression involves complex cellular interac-
tions of pre-malignant/malignant cells with immune, stromal cells
and blood vessels. Levels of tissue oxygen, metabolic by-products,
nutrients and hormones modulate these cellular interactions that, in
turn, can regulate tumour progression.1 One important property of
malignant cells is that they preferentially metabolise glucose into
lactate even in the presence of oxygen—known as aerobic glycolysis
or the “Warburg Effect”—which confers on them a growth
advantage.2 Coupling elevated glycolysis with poor tumour perfu-
sion leads to increased pericellular accumulation of organic acids
(e.g. lactic acid) and reduced pH in extracellular spaces.3 Low pH
induces the activity of proteolytic enzymes and can be toxic to
surrounding stromal cells, leading to tissue remodelling and local
invasion.4,5 It is also known to inhibit T cell-mediated immune
surveillance,6 but the effect of tumour acidosis on the myeloid
compartment within tumour is less well studied.
Tumours are infiltrated by populations of myeloid cells that

regulate tumourigenesis through their ability to mediate

immunosuppression, matrix remodelling, angiogenesis, local
invasion and metastasis.7,8 In particular, infiltration by macro-
phages can promote tumour progression and poor outcome in
solid malignancies when their presence is associated with a
tumour-promoting phenotype reminiscent of interleukin (IL)-4-
driven activation.9 The pro-tumour phenotype of these tumour-
associated macrophages (TAMs) can be affected by several
aspects of the tumour microenvironment (TME).10 These include
cytokines and antibodies produced by lymphocytes and tumour-
derived cytokines/chemokines that promote macrophage infiltra-
tion and polarisation.11–13 Abnormal metabolic factors can also
aggravate the phenotype of these cells. For example, hypoxia
augments the immunosuppressive ability of TAMs,14 while lactic
acid induces tissue remodelling though expression of vascular
endothelial growth factor (VEGF) and arginase I.15 Whether acidic
pH, as an independent entity from lactate,16 alters macrophage
polarisation within tumours is not clear, hence, we sought to
investigate the impact of tumour acidosis on the phenotypic
characteristics of macrophages in vitro using zwitterionic organic
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buffering agents. We then used a series of mouse models to
correlate tumour progression with macrophage infiltration and to
delineate the role of acidity in prostate cancer. We then reiterate
our findings using an agent-based mathematical model that
simulate how pH affects the ability of macrophages to control
tumour growth.

METHODS
Animal models
All mice were maintained in accordance with Institutional Animal
Care and Use Committee (IACUC) standards followed by the
Moffitt Cancer Research Center (Tampa, FL). Mice have free access
to water and food, housed in pathogen-free cages containing
wood shavings and bedding in a 12-h light/dark cycle, with
controlled room temperature (RT). All animals and cell lines were
male or male derived, respectively, since this study is mainly
investigating prostate cancer. For bone marrow isolation, C57BL/
6N (C57BL/6NHsd), aged 8–12 weeks, male mice were purchased
from Envigo. For the subcutaneous prostate cancer model, mice
were randomly assigned to experimental groups and then
provided with 200 mM sodium bicarbonate in their drinking
water (oral administration, mice have free access to water in their
cages) starting on the fourth day prior to subcutaneous injections
with 5 × 105 TRAMP-C2 cells. This concentration of sodium
bicarbonate in drinking water is well tolerated and provides the
required buffering effect as described earlier.17 No anaesthesia,
analgesia or surgical procedure were needed to administer the
sodium bicarbonate solubilised in water. To ensure the health
status of animals, mice weight and water consumption were
monitored twice a week (data not included). Tumour growth was
evaluated weekly by measurement of two perpendicular dia-
meters of tumours with a digital calliper. Individual tumour
volumes were calculated as volume= [π/6 × (width)2 × length]. To
collect tumours, mice were euthanised using carbon dioxide
inhalation in their home cages, followed by cervical dislocation to
ensure death on the 35th–42nd day tumour cell postinjection.
Solid tumours were then excised and processed for flow
cytometric analysis and immunohistochemistry (IHC) as will be
described later. Male transgenic adenocarcinoma of the mouse
prostate (TRAMP) mice was obtained from The Jackson Labora-
tory. Male TRAMP spontaneously develops autochthonous pros-
tate tumours following the onset of puberty due to the expression
of the oncoprotein SV40 T antigen (TAg) under transcriptional
control of the rat probasin promoter.18

Cell lines
Male-derived murine TRAMP-C2 and TRAMP-C3 prostate cancer
cell lines were purchased from ATCC, maintained and cultured
according to their suggested protocols.

Macrophage isolation, activation and cell culture protocols
Bone marrow-derived macrophages (BMDMs) were generated as
described previously.19,20 In brief, bone marrow was flushed from
femurs and tibias of male C57BL/6N mice and cultured for
6–7 days in complete macrophage medium (Dulbecco modified
Eagle’s minimal essential medium supplemented with 10% foetal
calf serum, 2% penicillin/streptomycin–glutamine) and 20 ng/ml
macrophages colony-stimulating factor (M-CSF) at 37 °C. Pro-
inflammatory macrophages were induced by exposing BMDMs to
50 ng/ml interferon (IFN)-γ and 10 ng/ml lipopolysaccharide (LPS)
in complete macrophage medium. Anti-inflammatory macro-
phages were stimulated by exposure to 10 ng/ml IL-4 in complete
macrophage medium.19,21 Control macrophages (M0) were
cultured for the same period in medium alone. Prostate cancer-
associated macrophages were induced by incubating BMDMs with
30% 72 h-conditioned medium from either TRAMP-C2 or TRAMP-
C3 cell lines. To detect the effect of tumour microenvironmental

acidity, macrophages were induced according the previous
protocol but with further supplementation of media with the
zwitterionic organic buffers PIPES and HEPES (25 mM each) and
adjustment of the pH to either 7.4 or 6.8.22

Antibodies, chemicals and kits
Recombinant mouse IFN-γ, M-CSF and IL-4 were obtained from
R&D Systems. Sources of conjugated antibodies were as follows:
inducible nitric oxide synthase (iNOS)-Alexa Fluor 488
(eBioscience), CD206-Alexa Fluor 647 (AbD Serotec), CD45-APC
and MHCII-BV21 (BD Biosciences), and F4/80-PE, Ly6C-APC/Cy7
and CD11b-PE/Cy7 (BioLegend). Sources of unconjugated anti-
bodies were as follows: anti-MRC1 (CD206) and anti-iNOS (Abcam).
Source of chemical was as follows: Rhodamine Phalloidin (Life
Technologies). Griess reagent (Promega) was used to measure
nitrite level. Click-iT 5-ethynyl-2′-deoxyuridine (EdU) pacific blue
flow cytometry assay kit (Life Technologies) was used to measure
cell proliferation. Proteome profiler mouse cytokine array panel A
or XL Cytokine Array ARY028 (R&D Systems) were used to detect
change in level of cytokines in culture media. All reagents, kits and
chemicals, unless otherwise stated, were used according to the
manufacturers’ instructions. Other chemicals unless specified were
purchased from Sigma-Aldrich.

Real-time quantitative PCR (RT-qPCR) and NanoString profiling
RNA was extracted using the RNeasy Isolation Kit (Qiagen). RT-
qPCR was then carried out using the iTaq Universal SYBER Green
One-Step Kit (Bio-Rad) using primers specific for macrophage
activation markers selected according to a previously published
lists.23–25 Primers sequences are provided in (Supplemental
Table S1). Results were normalised using 36B4 then expressed
as fold change (FC)= 2−ΔCt, where ΔCt= (CtTarget− Ct36B4).

24 For
gene expression analysis by NanoString nCounter, cell lysates
were hybridised to the 770-gene murine PanCancer Immune
Profiling Panel according to the manufacturer’s protocol (Nano-
String Technologies). Briefly, 10 µl of Ambion Cells-to-Ct buffer
(Thermo Fisher Scientific) was added to a cell pellet and a 5.0-µl
volume of lysate was hybridised to the NanoString reporter and
capture probes in a thermal cycler for 16 h at 65 °C. Washing and
cartridge immobilisation were performed on the NanoString
nCounter PrepStation, and the cartridge was scanned at 555
fields of view on the nCounter Digital Analyser. The resulting RCC
files containing raw counts were reviewed for quality and
normalised in the NanoString nSolver analysis software v3.0,
followed by exportation and analysis.

Flow cytometry and sorting protocol
Cells were collected, washed and incubated at 4 °C in staining
buffer (phosphate-buffered saline (PBS), 2% bovine serum albumin
(BSA)) containing the indicated surface antibodies. For intracellular
staining, cells were fixed, permeabilised and stained using the BD
Cytofix/Cytoperm Fixation/Permeabilisation Kit (BD Biosciences)
according to the manufacturer’s instructions. Cells were then
washed with staining buffer and subsequently analysed. Data
were recorded on a LSR II Flow Cytometer (BD Biosciences) and
analysis completed using the FlowJo software. Additional details
are included in supplemental materials and methods.

Western blotting
Cell lysates with equal amounts of proteins (20–35 μg) were
electrophoresed through 4–15% TGX Gel, then electrophoretically
transferred to nitrocellulose membrane (Bio-Rad Laboratories).
Membranes were then incubated with the specified antibodies
diluted according to the manufacturer’s instructions. Membranes
also were incubated with anti-α-tubulin or anti-glyceraldehyde 3-
phosphate dehydrogenase as loading controls. Immunoreactive
proteins were visualised with an appropriate peroxidase-
conjugated secondary antibody.
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Confocal immunofluorescence
Macrophages cultured on chamber slides were washed twice with
PBS, fixed in 3.8% formaldehyde for 20 min and permeabilised
with 0.1% Triton X-100 for 5 min. Cells were washed twice with
PBS, blocked with 2% BSA in PBS for 1 h and subsequently
incubated with CD206 antibody (1:800) overnight at 4 °C. Cells
were washed 3 times with PBS and incubated with appropriate
fluorescent-labelled secondary antibodies at RT for 1 h. Images
were visualised using Leica TCS SP8 laser scanning microscope
(Leica Microsystems).

Histology and IHC
The histological specimens were embedded in paraffin, sectioned
(4-μm slices) and stained with haematoxylin & eosin. For IHC,
slides were stained using a Ventana Discovery XT automated
system (Ventana Medical Systems). Briefly, slides were deparaffi-
nised on the automated system with EZ Prep solution (Ventana).
Enzymatic retrieval method was used in Protease 1 (Ventana). The
rabbit primary antibodies that react to F4/80, α-smooth muscle
actin (α-SMA) and CD206 (all purchased from Abcam) were used at
1:400, 1:250 and 1:1200 dilutions, respectively, in Dako antibody
diluent (Agilent) and incubated for 60 min. The Ventana OmniMap
Anti-Rabbit Secondary Antibody was used for 8 min. The detection
system used was the Ventana ChromoMap Kit, and slides were
then counterstained with haematoxylin, followed by dehydrated
and cover-slipping.

Quantitative image analysis
Histology slides were scanned using the Aperio™ ScanScope XT
with a ×200 (0.8 NA) objective lens at a rate of 5 min per slide via
Basler tri-linear-array. For TRAMP-derived prostate tissue analysis,
images and their meta-data were then imported into the
Definiens Tissue Studio v4.0 suite. Each slide was then segmented
into several tissue regions with stroma and gland being the main
point of interest using the composer function in the software. The
individual marker areas were then scored in terms of the intensity
of F4/80, α-SMA and collagen. A pathologist (J.D.) was consulted to
quality control that each tissue was correctly segmented into the
regions of interest as shown in Supplemental Fig. S4F. For CD206
frequency, images and their meta-data were imported into the
Definiens Tissue Studio v4.2 suite. Slides were then analysed by
identifying individual cells using haematoxylin stain threshold and
grown out to 2 μm. Cells were then identified by the expression of
IHC markers CD206 and F4/80. The segmented images were
imported in Definiens Developer v2.4, and image contrast was
used first to separate the tumour section from the background.
Next, a 25-pixel ring was segmented around the periphery of the

tumour to represent the edge of the tumour. Finally, the distance
(in μm) to the nearest edge of tumour pixel was calculated for
each cell in the image. Since each tissue section is a different size
and shape, each distance to the edge value was normalised per
mm2 of tissue. The normalised distances were then subjected to
histogram analysis to determine the percentage of cells that fall
into 10 µm/mm2 bins representing areas of high macrophage
abundance and higher acidity.

The Cancer Genome Atlas (TCGA) Prostate Adenocarcinoma Data
Set (PRAD) analysis
The correlation of macrophage-related genes and glycolysis-
related genes in a prostate cancer cohort was computed using
level 3 gene expression estimates from the RNA-Sequencing in the
TCGA PRAD database, extracted and hosted by Firehose DB
(BROAD Institute, https://gdac.broadinstitute.org/). The expression
estimates were derived using RSEM (Accurate transcript quanti-
fication from RNASeq) method.26 In Fig. 1a and S1A, the original
level 3 Illumina HiSeq RNAseqV2 RSEM gene-level normalised
mRNA expression data for TCGA PRAD was downloaded from the
TCGA data portal in March of 2016 and log2 transformed, log2(x
+ 1). The 333 primary prostate tumours and associated clinical
information, including reviewed Gleason score, were retrieved
from the TCGA PRAD333 publication.27 Box and scatter plots were
generated in MATLAB R2017a (MathWorks Inc.).

Agent-based model
To examine the dynamics governing the interactions of macro-
phages and a metabolically aggressive tumour, we extended our
previously published multiscale mathematical model that captures
the complex spatiotemporal interactions of competing tumour
cell phenotypes and microenvironmental selection forces, such as
oxygen, glucose and acidosis.28,29 Macrophages were added to
this model to explore their ability to control tumour growth within
this complex and dynamic environment. While TAMs are often
assumed to have an M2-immunosuppressive phenotype, in their
M1 state they are able to phagocytise opsonised tumour cells and
release inflammatory cytokines, thus potentially playing a role in
tumour eradication.30,31 These in silico macrophages can consume
tumour and necrotic cells, as well as release and bind
macrophage-derived cytokines. Macrophage behaviour is mod-
elled as a continuous phenotype from antitumour to pro-tumour
like behaviours, determined by the local concentration of pH, pro-
and anti-inflammatory cytokines and the number of tumour and
necrotic cells being digested. Although T cells are a major
component of the immune response in many solid tumours,
prostate cancer tends to be immunologically cold and have
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minimal T cell infiltration.32 In the mathematical model, we do not
include T cells in order to investigate the direct effects of
macrophages on the tumour system in isolation.
To calibrate the macrophage behaviour, we used the statistical

package R33 to fit a linear model to specific gene expression data,

in different ecological conditions, collected in the in vitro
experiments described in Fig. 2h. Each linear model takes the
form:

yi ¼ αi þ βipþ γieþ δipe; (1)
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where yi is the observed expression level of gene i, p is the pH, e
represents the ecological conditions and αi, βi, γi and δi are
determined during the fitting. In the model, the value of e for each
cell at each time point is calculated using the equation

e ¼ �0:5a� 0:5bþ 0:5c þ 0:5d; (2)

where a is the local inflammatory cytokine concentration, b is the
number of tumour cells phagocytised, c is the local anti-
inflammatory cytokine concentration and d is the number of
necrotic cells being phagocytised. During the fitting process, e is
set to −1 for the inflammatory environment that promotes the
extreme antitumour phenotype, while e is set 1 for the anti-
inflammatory environment that induces the extreme pro-tumour
phenotype. Thus each macrophage checks the local extracellular
pH, pro- and anti-inflammatory cytokine levels and number of
tumour and necrotic cells being digested and then adjusts each of
the i phenotypic behaviours as dictated by the respective linear
model. Further details are provided in supplemental materials and
methods.

Quantification and statistical analysis
Unless otherwise indicated, we used unpaired t test assuming
Gaussian distribution and with Welch’s correction, where neces-
sary. For multiple comparisons, two-way analysis of variance was
used with Tukey’s correction, as appropriate. Unless otherwise
reported, GraphPad PRISM 7 software was used for statistical
analysis. In TCGA data analysis, a two-sided Mann–Whitney U test
was used and median log2 fold change between the two groups
was calculated. A significant change was defined when p < 0.05
and log2 fold change >0.585 (1.5× change). For the mathematical
model, Mantel–Haenszel test in the R package “survival” was
used.34 To identify changes in macrophage phenotype using
NanoString, differentially expressed genes with p < 0.05 were
ranked by fold change with a cut-off of 1.5 or 2.35 Statistical
parameters, including the value of n, mean ± SEM and statistical
significance, and the tests used are reported in the figures and/or
figure legends.

RESULTS
Macrophage infiltration correlates with MCT4 expression
Advanced stages of prostate cancer adopt a high glycolytic
phenotype that correlated with poor prognosis.36 The consequent
lactic acid production was shown to aggravate highly immuno-
suppressive microenvironment through shaping macrophage
phenotype in lung cancer and melanoma.15 Based on that, we
questioned whether highly glycolytic phenotype correlates with
macrophage infiltration or phenotype in late-stage prostate
cancer. Interestingly, analysing publicly available data of human
prostate cancer revealed that CSF1R is expressed at higher levels
in intermediate- and late-stage prostate cancers (Fig. S1A). In
addition, CSF1R and the macrophage activation marker CD206
correlated with the monocarboxylate lactate transporter MCT4
(SLC16A4) in late-stage prostate cancer (Gleason score 3+4, 4+3
and ≥8), as shown in Fig. 1a and Supplemental Fig. S1B, C. Of note,
MCT4 facilitates lactate efflux and preserves intracellular pH by co-
transporting lactate and protons across the plasma membrane of
highly glycolytic and/or acid-resistant cells.16,37 It is unknown
whether the change in extracellular pH independent from
changes in extracellular lactate concentration can modulate
macrophage polarisation in prostate cancer.

Extracellular acidosis alters macrophage activation in vitro
Macrophages are highly plastic immune cells that display a range of
phenotypic and functional properties.7,38 To test whether an acidic
tumour milieu can influence macrophage phenotype, we used
zwitterionic buffer-based medium to stimulate BMDMs using IFN-γ/
LPS and IL-4 for 24 h at pH 7.4 or 6.8. Under these conditions, acidic

pH did not affect viability of stimulated macrophages at 24 h post-
activation (Supplemental Fig. S2A). As seen in Fig. 2a, b, acidosis
decreased the gene expression of the pro-inflammatory markers
Nos2, Ccl2 and Il-6 in IFN-γ/LPS-polarised macrophages, while it
increased the expression of anti-inflammatory markers Cd206, Arg1
and Reltna in IL-4-polarised macrophages. Reduced iNOS protein
levels were confirmed by flow cytometry and western blot (Fig. 2c, d).
In line with the mRNA and protein expression data of iNOS, the level
of nitrite in the culture media decreased, as shown in Fig. 2e.
Enhanced Cd206 expression in IL-4-polarised BMDMs was also
confirmed by immunofluorescence and western blot (Fig. 2f, g).
Multi-analyte profiling in culture medium from these incubations also
revealed significant alterations in the release of many inflammatory
cytokines and chemokines (Supplemental Fig. S2B, C). To expand
these findings to other genes potentially involved in macrophage
activation, we used NanoString profiling to assess the relative
abundance of 770 cancer-and immune-related mRNAs. We observed
that acidic pH increased the expression of a range of TAM-related
genes (e.g. Arg1, Cd14, Il1b) as well as angiogenesis-associated genes
(e.g. Vegfa, Txnip, Thbs1) in IFN-γ/LPS activated macrophages, in
addition to a global decrease in the inflammation score (Fig. 2h,
Supplemental Fig. S2D, E, and Supplemental Table S2). These results
demonstrate that extracellular acidosis alters macrophage activation
towards a phenotype reminiscent of TAMs in vitro.

Extracellular acidosis enhances a tumour-promoting macrophage
phenotype
To examine whether extracellular acidity could alter activation
status of TAMs, we first activated BMDMs with tumour cell-
conditioned medium at either pH 7.4 or 6.8. At pH 7.4, TRAMP-C2-
conditioned medium significantly increased the expression of
Arg1. However, this effect was dramatically enhanced when the
cells were activated at pH 6.8 (Fig. 3a). Similarly, co-culturing
BMDMs with TRAMP-C2 and TRAMP-C3 at pH 6.8 augmented
Cd206 mRNA expression and protein levels in macrophages as
measured by RT-PCR and flow cytometry, respectively (Fig. 3b, c,
Supplemental Fig. S3A, B). BMDMs activated in acidic pH also
increased the uptake of fluorescently labelled ovalbumin, a
mannosylated ligand endocytosed mainly through CD206 (Fig. 3d).
In addition, macrophage co-culture with TRAMP-C2 cells at acidic
pH was associated with an increase in the release of inflammatory
and angiogenic cytokines/chemokines (e.g. VEGF, CD14, M-CSF)
known to be involved in tumour progression (Fig. 3e).
We next evaluated whether the phenotypic shift in macrophages

would alter their function in vitro. TRAMP-C2 cells were incubated in
acidic or neutral media in the presence or absence of non-polarised
macrophages for 24 h, and tumour cell proliferation was measured via
EdU uptake after gating out F4/80+CD11b+ macrophages. As shown
in Fig. 3f, either acidic conditions or co-culture with unstimulated
macrophages (pH 7.4) reduced tumour cell proliferation. In contrast,
co-culturing with macrophages reversed the negative effect of acidic
pH, resulting in a two-fold increase in proliferation. The total number
of cells was unchanged during the relative short period of the
experiment (Supplemental Fig. S3C). IFN-γ/LPS-stimulated macro-
phages are cytotoxic due to NO release; however, they lose their
cytotoxic ability when activated at low pH (Fig. 3g). Acidic conditions
therefore enhance a range of functions associated with the tumour-
promoting phenotype of TAMs, at least in vitro.

Buffering tumour-secreted acids alters TAM phenotype in vivo and
reduces tumour progression
To determine whether tumour acidity was a contributing factor to
the phenotype of TAMs in vivo, we treated TRAMP-C2 subcuta-
neously injected mice with 200mM ad lib NaHCO3 as an accepted
experimental approach to neutralise tumour acidity. As shown in
Supplemental Fig. S4A–C, systemic sodium bicarbonate raised the
intratumoural pH but with no effect on the growth of the
established tumours. This provided us the opportunity to evaluate
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whether tumour acidity had a direct impact macrophage
phenotype under constant tumour volume. In addition, analysis
of myeloid cell infiltration by flow cytometry revealed no
significant differences (Supplemental Fig. S4D). This provided

another opportunity to test the polarising effect of acidity
independent from changes in the number of immune cells.
Accordingly, we then analysed the impact of buffering tumour
acidity on macrophage activation using NanoString profiling and
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RT-PCR quantification of the selected genes in sorted TAMs.
As shown in Fig. 4a, buffering tumour acidity increased the
NanoString-derived “inflammation score”, denoting a shift towards
a pro-inflammatory phenotype. There were also decreases in the
expression of major TAMs markers, including Arg1 and Fcgr2b
(Fig. 4b, Supplemental Table S3). In a separate set of experiments,
we also observed a significant reduction in Cd206 and Arg1 by
single reaction RT-PCR (Fig. 4c). In agreement with this,
quantitative image analysis of formalin-fixed sections showed a
significant drop in the density of CD206 positivity in bicarbonate-
treated tumours compared to untreated controls (Supplemental
Fig. S4E). We second examined the TRAMP transgenic prostate
model, which allowed us to test the effect of buffering tumour
acidity over extended timescale (32 weeks). In this model,
macrophage infiltration but not SMA+ fibroblasts corresponded
with tumour progression, with the highest infiltration coincident
with loss of fibromuscular tunica, disease progression from
prostatic intraepithelial neoplasia lesions to high-grade adenocar-
cinomas and invasion (Fig. 4d–f). Algorithm-generated segmenta-
tion used to quantify those cell types is shown in Supplemental
Fig. S4F. In addition, representative images are shown in
Supplemental Fig. S4G. To investigate the role of pH, we treated
TRAMP mice with 200mM ad lib NaHCO3 for 28 weeks, starting at
4 weeks of age. Prostate tissue isolated from buffered TRAMP mice
showed lower infiltration of F4/80+ macrophages into the stromal
compartment compared to controls (Fig. 4g and Supplemental
Fig. S4H). Furthermore, increasing tumour pH normalised prostate
interglandular structure, decreased the relative percentage of the
stromal compartment and reduced tumour incidence as com-
pared with control (Fig. 4h, i). Together these results indicate that
the acidic microenvironment contributes to the pro-tumour
polarisation state of TAMs as well as tumour progression.

Acid-responsive macrophages promote tumour growth in silico
Despite the effect of neutralising tumour acidity on prostate
carcinogenesis and its impact on the phenotype of TAMs, it was
unclear whether these were functionally related, as acidic pH is
thought to impact a range of other biological processes within
tumours. To test whether acid-responsive macrophages can
enhance tumour progression, we developed an in silico agent-
based model (Fig. 5a) that allowed us to turn off macrophage acid-
induced responses regardless of the underlying mechanisms and
compare the responses in a heterogeneous microenvironment.
To our knowledge, this experiment can only be conducted in

silico, as it is not possible to experimentally “turn off” a
macrophage’s response to extracellular pH. The model comple-
ments the in vitro experiments, which were conducted in extreme
and constant conditions. However, in this model, the changes in
pH, cytokine concentrations and spatial co-localisation of macro-
phages with tumour cells creates a dynamic environment in which

macrophages change phenotypes over time. This ever-changing
environment thus determines macrophages’ ability, or lack
thereof, to control or eradicate the tumour. Given that the model
was parameterised using the experimental data, these simulations
simulate the interactions in a way that is not feasible with in vitro
techniques at present.
In this model, tumour acidity emerges from increased glycolytic

metabolism in combination with poor perfusion, and it affects
macrophage phenotype as modulated between two extremes
states (Fig. 5b). Two scenarios were imposed in order to determine
the impact of pH on the ability of a constant number of
macrophages to modulate tumour growth. In the first scenario,
macrophages behave phenotypically as if they are in pH 7.4
regardless of the actual local pH value (i.e. the value of p in Eq. 1 is
set to 7.4 regardless of the actual local pH). In the second scenario,
macrophage behaviour is modulated by setting p in Eq. 1 to the
local pH calculated at that position in the model. Simulations were
run until either the tumour took >90% of the domain or ten
simulated years had elapsed, indicating that the tumour had
successfully been eradicated or controlled. Each scenario was run
100 times, and the time of 90% takeover was recorded at the end
of each run. As shown in representative simulation images
(Fig. 5c), the extracellular acidosis, created by excess tumour
glycolysis, dynamically changes the macrophage phenotype
represented by the Arg1 and Ccl2 expression. The time to tumour
takeover can be visualised using Kaplan–Meier curves (Fig. 5d).
The tumours grew much more rapidly in the simulations where
acidosis was actively modulating macrophage behaviour. The
difference in these survival curves was significant, with p < 0.001,
as calculated using Mantel–Haenszel test. The results from these
simulations suggest that acid released by tumour cells can create
a protective niche capable of directing the functional role of
macrophages, thereby increasing tumour growth and decreasing
time to progression.

DISCUSSION
Tumours undergo metabolic transformation that rewires cellular
metabolism to promote tumourigenicity, immune evasion and
disease recurrence.39 One of these metabolic abnormalities is
upregulation of glycolysis, even under aerobic conditions. High
rate of glycolysis provides malignant cells with proliferative
privilege by facilitating uptake and incorporation of nutrients into
the growing biomass.40 Metabolic by-products of glycolysis, such
as lactic acid, also cause a heterogeneous acidification of the
extracellular space, which can results in immunosuppressive
nature of the TME.6,41 Unlike studies that combine lactate and H
+ ions as single functional entity named “lactic acid”, we identified
an independent role of tumour-generated acidity in driving TAMs
phenotype, which in turn can contribute to tumour progression.

Fig. 3 Extracellular acidosis enhances a tumour-promoting macrophage phenotype. a Relative mRNA level of Arg1 in macrophages treated
with 30% TRAMP-C2, TRAMP-C3 conditioned medium at either pH 7.4 or 6.8 or left untreated as control (M0). Data are presented as mean ±
SEM. Two-way analysis of variance was utilised for statistical analysis; *p < 0.05, ****p < 0.0001. b Relative mRNA level of Cd206 in macrophages
directly co-cultured with TRAMP-C2 for 4 days at pH 7.4 or 6.8, then sorted and processed for RNA extraction. Data are presented as mean ±
SEM. Student’s t test was utilised for statistical analysis; **p < 0.01. c Flow cytometric analysis of CD206 expression in macrophages incubated
at pH 7.4 or 6.8 for 24 h, then either cultured alone or with TRAMP-C2 at pH 7.4 for another 24 h. F4/80 staining was used to gate out tumour
cells. d Flow cytometric quantification of fluorescently labelled ovalbumin uptake in lipopolysaccharide (LPS)/interferon (IFN)-γ activated
macrophages at either pH 7.4 or 6.8 for 24 h. Graph represents relative increase in fluorescently labelled ovalbumin uptake (n= 5). Data are
presented as mean ± SEM. Student’s t test was utilised for statistical analysis; ****p < 0.0001. e Conditioned media from macrophage–tumour
co-culture at pH 7.4 or 6.8 were processed for cytokine determination using the mouse XL cytokine array. Densitometric analysis was then
done using the Image J software and pixel density was graphed as heatmap (n= 2). f TRAMP-C2 cells were co-cultured with or without
macrophages in neutral or acidic medium for 24 h. Cells were then labelled with 5-ethynyl-2′-deoxyuridine (EdU) for 2 h, collected and
processed for flow cytometric analysis. SSC vs. EdU fluorescence of TRAMP-C2 tumour cells in each culture condition was plotted. Fold change
was calculated by dividing the EdU-incorporating cell count with macrophages by the corresponding values of tumour cells alone (n= 6).
g Macrophages were activated with LPS/IFN-γ (M1) at pH 7.4 or 6.8 for 24 h or left unstimulated as M0. Differentially activated macrophages
were then co-cultured with TRAMP-C3 cells and lactate dehydrogenase in the supernatants was measured 24 h later to estimate cytotoxicity.
Data are presented as mean ± SEM. Two-way analysis of variance was utilised for statistical analysis; **p < 0.01
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In the current investigation, we propose a scenario in which
acids generated by glycolytic cells alter the phenotype of TAMs,
creating a permissive niche for cancer progression in prostate
cancer. Using zwitterionic organic chemical buffering system, our
data show that acidic pH alter the activation state of macrophages
incubated under polarising conditions, directing the cells towards

a functional state similar to the pro-tumour phenotype often
ascribed to TAMs. Furthermore, we demonstrate that buffering
tumour acidosis alters the activation state of TAMs, with a
significant reduction in genes such as Arg1 and Cd206 that are
usually associated with a tumour-promoting role for this popula-
tion. Finally, we noted an association between tumour
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progression, acidosis and the presence of macrophages in
prostate cancer progression in mice and human disease and
utilise an in silico agent-based model to delineate a role for
acidosis in regulating macrophage phenotype and tumour
progression. Cumulatively, these results suggest that tumour
acidosis is an important factor that dictates the pro-tumour
functionality of macrophages in prostate cancer.

Lactic acid produced by tumour cells was reported earlier to
polarise macrophages into an M2-like phenotype, with Arg1
expression by macrophages essential for lung cancer and
melanoma growth.15 In addition, Carmona-Fontaine et al. have
demonstrated that lactate cooperates with hypoxia to induce the
expression of ARG1 in macrophages. Through the employment of
an agent-based model, they also showed that hypoxia-responsive
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macrophages induce faster tumour growth.42 However, there is
limited information regarding how acidity, independent from
those metabolic factors, can influence properties of macrophages
in TME. Only recently, Toszka et al. identified a role of tumour
acidity independent from lactate in driving growth of melanoma
cell line B16 in cAMP-dependent manner.43 In the current study
that investigates prostate cancer, we also provide evidence that
acidic pH, independent from lactate, can promote the pro-tumour
polarisation of macrophages, including enhanced tumour cell
proliferation, loss of cytotoxicity and release of angiogenic factors.
In silico modelling also demonstrated that modulation of the
macrophage phenotype by acidity was a significant driver of
tumour progression and immune suppression.

Future directions and translational impact
Acidic TME is a promising target for tumour-specific imaging and
therapy. For example, pH-responsive peptides and pH-sensitive
nanotechnology-based systems were shown to improve the efficacy
and specificity of cancer therapeutics and diagnostics.44–46 An
immuno-conjugate that integrates urease enzyme with the ability of
pH alkalisation in TME is currently undergoing clinical trials in lung
cancer but has not been tested in prostate cancer.47,48 Despite the
efficacy of those modalities evident in preclinical studies, no studies
had been conducted to investigate their impact on TME. Among the
many future therapeutic applications of the current study is to test
whether pH-sensitive macrophage-specific immuno-conjugates or
nano-systems that specifically target acidic areas rich in macro-
phages can reduce immunosuppression and increase T cell
infiltration. Those approaches hold the promise of improving
efficacy of T cell immunotherapeutic strategies in prostate cancer.
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