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Acinetobacter species comprise a group of genetically related
non–lactose-fermenting, oxidase-negative gram-negative
coccobacilli. Among them, Acinetobacter baumannii is the
most clinically significant Acinetobacter species that is impli-
cated in nosocomial infections; however, Acinetobacter pittii
and Acinetobacter nosocomialis are also increasingly recog-
nized in these infections. A. baumannii is intrinsically resis-
tant to several classes of antimicrobial agents and also readily
acquires resistance to other classes of agents. It is also
extremely resistant to desiccation and may survive on inani-
mate surfaces for months. These traits make it particularly

successful in the hospital environment and have contributed
to the spread of multidrug-resistant (MDR) A. baumannii
clones worldwide. Infections due to MDR A. baumannii, in
particular carbapenem-resistant strains, have been associat-
ed with substantial mortality and hospital costs.1,2

Classification, Epidemiology, and Clinical
Relevance

There are now more than 20 Acinetobacter species that have
been identified, with A. baumannii being themost commonly
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Abstract The first decade of the 20th century witnessed a surge in the incidence of infections due
to several highly antimicrobial-resistant bacteria in hospitals worldwide. Acinetobacter
baumannii is one such organism that turned from an occasional respiratory pathogen
into a major nosocomial pathogen. An increasing number of A. baumannii genome
sequences have broadened our understanding of the genetic makeup of these bacteria
and highlighted the extent of horizontal transfer of DNA. Animal models of disease
combined with bacterial mutagenesis have provided some valuable insights into
mechanisms of A. baumannii pathogenesis. Bacterial factors known to be important
for disease include outer membrane porins, surface structures including capsule and
lipopolysaccharide, enzymes such as phospholipase D, iron acquisition systems, and
regulatory proteins. A. baumannii has a propensity to accumulate resistance to various
groups of antimicrobial agents. In particular, carbapenem resistance has become
commonplace, accounting for the majority of A. baumannii strains in many hospitals
today. Carbapenem-resistant strains are often resistant to all other routinely tested
agents. Treatment of carbapenem-resistant A. baumannii infection therefore involves
the use of combinations of last resort agents such as colistin and tigecycline, but the
efficacy and safety of these approaches are yet to be defined. Antimicrobial-resistant A.
baumannii has high potential to spread among ill patients in intensive care units. Early
recognition and timely implementation of appropriate infection control measures is
crucial in preventing outbreaks.
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encountered in a clinical setting.3,4 In addition, A. nosoco-
mialis (genomospecies 13TU) and A. pittii (genomospecies 3)
are increasingly implicated in hospital-acquired and health-
care-associated infections.5 In contrast, Acinetobacter calcoa-
ceticus is an environmental pathogen of little clinical
significance. These four species are biochemically indistin-
guishable and often lumped together as “Acinetobacter bau-
mannii complex,” “Acinetobacter-baumannii/calcoaceticus,”
or simply “Acinetobacter baumannii” in clinical practice. A.
baumannii has been associated with a higher degree of
antimicrobial resistance and highermortality among patients
compared with these related non-baumannii species.5

A. baumannii can cause a wide variety of infections. The
majority of the cases involve the respiratory tract, but bacter-
emia, meningitis, and wound infection may also occur, the
last of whichwas prominently observed in the context of war-
related trauma.3 A survey in U.S. hospitals showed that the
majority of the isolates (57.6%) were from the respiratory
tract, followed by bloodstream (23.9%) and skin or wound
(9.1%) in 2010.6 Acinetobacter species ranked fifth as the
causative organism of ventilator-associated pneumonia
(6.6%) and thirteenth as the cause of central line-associated
bloodstream infection (2.1%).7

Acinetobacter used to be susceptible to most antimicrobial
agents ranging from ampicillin to nalidixic acid up to the early
1970s.8 However, rates of resistance increased for many
classes in the 1980s, and by early 1990s reports on imipe-
nem-resistant isolates appeared. This was a concerning de-
velopment because it took away the most reliable treatment
option for Acinetobacter infections. In 2010, 44.7 and 49.0% of
isolates were resistant to imipenem and meropenem, respec-
tively, in the earlier-mentioned U.S. survey.6 A. baumannii
isolates that are resistant to carbapenems are always resistant
to penicillins and cephalosporins and often to aminoglyco-
sides and fluoroquinolones as well. Most isolates remain
susceptible to colistin, but again colistin-resistant isolates
are increasingly reported, especially following treatment of
infection by carbapenem-resistant isolates with this agent.9

The worldwide spread of MDR A. baumannii, in particular
carbapenem-resistant isolates, is understood as a largely
clonal phenomenon.10 In a survey of nearly 500 carbape-
nem–non-susceptible isolates collected globally in the mid-
2000s, about half of them originating from various continents
belonged to European Clone II (also called Worldwide Clone
2) bymolecular typing.11OtherWorldwide Clones (WW1and
WW2 through WW8) have also wide distribution and thus
contribute to the international spread of carbapenem-resis-
tant A. baumannii.

The risk factors for acquiring MDR and carbapenem-resis-
tant isolates include recent exposure to antimicrobial agents
(in particular carbapenems), the presence of central venous
catheters or urinary catheters, severity of illness, duration of
hospital stay, location in an intensive care unit (ICU), larger
hospital size, and recent surgery.12–15Mortality from invasive
A. baumannii infection is high, especially when the isolate is
resistant to carbapenems. Crude mortality for carbapenem-
resistant A. baumannii infections ranges from 16 to 76%.16

Risk factors for mortality among patients with carbapenem-

resistant A. baumannii bloodstream infections include the
severity of illness, underlying malignancy, history of trans-
plant, higher age, septic shock, concurrent pneumonia, inap-
propriate antimicrobial therapy, prolonged ICU stay, and
renal failure, among others.17–22 High mortality rates ob-
served in patients with carbapenem-resistant A. baumannii
infection are attributed to greater severity of illness and
higher risk of receiving early inappropriate antimicrobial
therapy.16

A. baumannii Virulence Mechanisms

Despite the increasing importance of MDR A. baumannii
disease, our understanding of mechanisms of pathogenesis
remains in its infancy. An increasing number of A. baumannii
genome sequences have broadened our understanding of the
genetic makeup of these bacteria and highlighted the extent
of horizontal transfer of DNA.23 Animal models of disease
(both mammalian and invertebrate) combined with bacterial
mutagenesis have provided some valuable insights into
mechanisms of A. baumannii pathogenesis. Bacterial factors
known to be important for disease are presented in►Table 1;
these include outermembrane porins,24–26 surface structures
including capsule27 and lipopolysaccharide,28 enzymes such
as phospholipase D,29 iron acquisition systems,30 and regula-
tory proteins.31 The following paragraphs will discuss differ-
ent stages of the infection process and highlight known
virulence factors.

Transmission is the initial step in disease. The propensity
for biofilm formation is likely to contribute to prolonged
survival of A. baumannii on abiotic surfaces, leading to
transmission. However, a definitive link between outbreak
strains, biofilm formation, and adherence to host cells has not
been established.32 A. baumannii biofilm formation on in-
dwelling devices, such as urinary catheters, central venous
catheters, and endotracheal tubes, may seed infection.33

Notably, bacteria in biofilms aremore resistant to desiccation,
immune system clearance, antibiotics, and other antibacterial
agents.34,35 Established factors that contribute to A. bauman-
nii biofilm formation include pili, outer membrane proteins,
and extracellular polysaccharide (►Table 1).

Binding to host structures is necessary for colonization. A.
baumanniihas been shown to adhere to a range of host cells in
vitro including laryngeal, bronchial, and alveolar respiratory
epithelial cells.24,36,37 In vivo, such binding may be the first
stage in the development of pneumonia. The molecular basis
for such interactions is being unraveled; adhesins that medi-
ate binding to host cells include OmpA, Bap, and Omp33–
36.26 While specific host ligands for these interactions have
not been thoroughly investigated, cellular fibronectin is one
adhesin target (►Table 1).38 The autotransporter Ata has also
been found to adhere to numerous host extracellular matrix
proteins, which may also facilitate tissue colonization.39

Binding to host cells is followed by cellular damage and A.
baumannii invasion. While not considered a classical intra-
cellular pathogen, invasion may be a way to avoid immune
recognition. Multiple factors including OmpA, Omp33–36,
and phospholipase D are necessary for A. baumannii cell
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Table 1 Acinetobacter baumannii virulence functions and associated bacterial factors

Virulence function Related protein(s) Protein function/
description

Mutant attenuated in disease
modela

Reference

Biofilm formation AbaI Autoinducer synthase (quo-
rum sensing)

NT 153

Ata Autotransporter Mouse septicemia 39

Bap Biofilm maturation and
maintenance

NT 154,155

BfmS/R Two-component regulator NT 47,156

CsuA/B ABCDE Pilus production (usher
chaperone)

NT 157

GacS Sensor of two-component
regulator

Mouse septicemia 31

H-NS Transcriptional regulator
(suppressor)

C. elegans 48

OmpA Outer membrane porin Mouse pneumonia 24,37

PgaABC Production of poly-β-1,6-N-
acetylglucosamine (PNAG)

NT 158

PglC Protein glycosylation, cap-
sule production

Mouse septicemia 159

PglL Protein O-glycosylation Mouse septicemia 160

Adhesion to extra-
cellular matrix

Ata Autotransporter See above 39

Adhesion to host
cells

Bap Biofilm maturation and
maintenance

NT 154,155

BfmS/R Two-component regulator NT 47,156

H-NS Transcriptional regulator
(repressor)

See above 48

OmpA Outer membrane porin See above 37

Invasion and intra-
cellular survival

BasD, BauA Siderophore synthesis (iron
acquisition)

Mouse septicemia 30

Omp33–36 Outer membrane porin
(perturbation of autophagy)

Mouse septicemia 25,26

OmpA Outer membrane porin See above 24

Pld Phospholipase D Mouse septicemia 29

Cytotoxicity/induc-
tion of apoptosis/
cellular necrosis

BasD, BauA Siderophore synthesis (iron
acquisition)

Mouse septicemia 30

OmpA Outer membrane porin See above 37,40,41

Omp33–36 Outer membrane porin See above 26

PaaE Production of toxic epoxide
compounds

Mouse septicemia 31

Serum resistance BfmS/R Two-component regulator NT 47

LpsB LPS synthesis Rat soft tissue 28

OmpA Outer membrane porin See above 44

PglC Protein O-glycosylation and
capsule production

See above 159

Pld Phospholipase D See above 29

Ptk, EpsA Capsule production Rat soft tissue 27

Abbreviation: NT, not tested.
aCaenorhabditis elegans, nematode model of disease.
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invasion.24,25,29,37 Once inside host cells, BasD and BauA
(involved in the synthesis and transport of small, iron chelat-
ing molecules called siderophores) are required for surviv-
al.30 Omp33–36 also interferes with autophagy, which may
promote survival of A. baumannii in host cells.25 It has been
shown that cellular damage can be mediated by A. baumannii
outer membrane proteins, more specifically OmpA and
Omp33–36, which both contribute to apoptosis.25,37,40,41

These proteins have also been shown to play a role in
virulence in mammalian infection models.24,26

Bloodstream infection is a common complication of A.
baumannii infection; accordingly, most clinical isolates are
resistant to the bactericidal activity of serum complement.42

Complement evasion strategies may prevent direct lysis of
bacteria by the membrane attack complex, reduce opsoniza-
tion for phagocytes, and blunt production of complement
inflammatory mediators. As with other pathogens, A. bau-
mannii serum resistance ismultifactorial, conferred in part by
lipopolysaccharide and capsule.27,28,42 LPS is also necessary
for defense against antimicrobial peptides such as LL-37.43

Many bacteria also evade complement activity by binding to
soluble mediators of complement regulation such as factor H
of the alternative pathway. One study indicated that A.
baumannii co-opts factor H via several proteins including
OmpA.44 Consistent with this finding, mice infected with an
OmpAmutant had 1,000-fold lower burdens of bacteria in the
blood consistent with a role in serum resistance.24However, a
second study found no evidence for factor H binding on the
surface of clinical isolates of A. baumannii.45 Proteases can
also mediate immune evasion by degrading bound comple-
ment molecules and antibodies. Consistent with this, the
secreted protease dubbed PKF also contributes to serum
resistance.46

Regulation of the expression of virulence traits is essen-
tial for pathogens. Several regulators of A. baumannii viru-
lence have been identified. GacSA is a two-component global
virulence regulator essential for disease.31 Mutation of the
sensor kinase gene gacS altered the expression of genes
involved in pili synthesis, motility, and biofilm formation;
there was a consistent defect in the corresponding in vitro
phenotypes, in addition to reduced growth in human serum.
GacSA was also found to regulate components of a pathway
for aromatic amino acid metabolism; mutation of paaE from
this system confirmed a role in virulence. The BfmRS two-
component regulator also controls multiple phenotypes,
including biofilm formation, adherence to host cells, and
resistance to human serum.47 The bacterial histone-like
nucleoid structuring protein (H-NS) may have a role in
regulating hydrophobicity, biofilm formation, adherence
to host alveolar macrophages, and motility in A. baumannii.
An hns mutant had significantly increased virulence toward
the nematode Caenorhabditis elegans, potentially a result of
upregulation of the type VI secretion system and a
known virulence factor, the ata autotransporter.48 Further
study of these and other virulence regulators will facilitate
identification of novel virulence factors of A. baumannii,
thereby broadening our understanding of host–pathogen
interactions.

It is likely that many mechanisms of disease pathogenesis
remain undiscovered, and are sufficiently novel to evade
identification by “genome browsing.” Broad-based method-
ology for identification of factors by screening of transposon
mutant libraries has been successfully applied in various
model systems. A screening of 1,324 transposon mutants
for virulence against the nematode C. elegans and amoeba
Dictyostelium discoideum identified 14 genes that may have a
role in virulence (absent in the environmental organism
Acinetobacter baylyi).23 However, the role of these factors in
disease has not been verified by complementation with a
functional copy of the gene, nor confirmed in a mammalian
host. In vivo analysis of a library of 150,000 unique transpo-
son insertion mutants in a high throughput sequencing
strategy found 157 genes necessary for persistence in the
mouse lung, including previously identified virulence factors
OmpA, LPS, BfmRS, and GacA.49 Several mutants were indi-
vidually analyzed and found to be attenuated in the mouse.
Further validation of these results through mutagenesis and
complementation may reveal novel virulence mechanisms.
Given the lack of new antimicrobials in the pipeline for
problematic MDR organisms, virulence factors constitute
novel therapeutic targets for rational drug design.

Host Immune Responses

Neutrophils play an important role in the immune response
to A. baumannii infection. In mice, neutrophils are rapidly
recruited to lungs during infection, and after clearance of
bacteria, neutrophil numbers return to normal.50 Neutrophil
depletion exacerbated disease in systemic and pulmonary
models of mouse infection.50,51 In the study of Breslow et
al,51 increased burdens of bacteria in the lung, decreased
production of proinflammatory cytokines, and enhanced
bacterial dissemination to extrapulmonary sites were ob-
served. Macrophages also appear to play a significant, but
less important, role in the early phase of lung infection
through phagocytosis, release of cytokines, and neutrophil
recruitment.52

Toll-like receptor 4 (TLR4) and CD14 are important for the
detection of A. baumannii LPS; mice lacking these receptors
were more susceptible to pulmonary disease and exhibited
delayed lung inflammation and reduced cytokine produc-
tion.53 In vitro, TLR4-deficient murine bone-marrow–derived
macrophages had reduced ability to kill A. baumannii.54 A.
baumannii LPS is also a potent stimulator of human THP-1
monocytes in vitro; signaling via TLR4, LPS stimulated the
production of IL-8 and TNF-α. TLR2 may also play a role in
response to whole A. baumannii cells.55 Recently, it has been
shown that during the intracellular phase of A. baumannii
infection, the intracellular pattern recognition receptors
Nod1 and Nod2 are stimulated in airway epithelial cells,
resulting in the production of cytokines, chemokines, and
β-defensin 2.56

It is clear that immunity to A. baumannii can be conferred
by antibodies. Vaccination with an outer membrane complex
of proteins and LPS protected mice against challenge, and
animals that received a passive infusion of immune serum
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were also protected against disease.57 Although the specific
antigens responsible for protectionwere not identified in this
study, a survey of immunostimulatory antigens of A. bau-
mannii in sera from 50 patients identified six dominant outer
membrane proteins that were immunogenic.58 In another
study, vaccinationwith OmpA alone protected a proportion of
animals from infection, as did a passive infusion of vaccinate
sera, and immune sera increased opsonophagocytosis of A.
baumannii.59 In addition to furthering knowledge of mech-
anisms of immunity toward A. baumannii, these studies show
the promise of active vaccination and passive immunothera-
py (through infusion of antibodies) against A. baumannii
disease.

Antimicrobial Resistance Mechanisms

Owing to a propensity for acquisition of foreign DNA, A.
baumannii can assemble andmodulate a host of antimicrobial
resistance mechanisms to survive the selective pressure they
encounter, providing them with a strong ecological advan-
tage in the hospital environment (►Table 2).

Cephalosporins

Amajority of A. baumannii clinical isolates are now resistant to
cephalosporins, including third-generation (e.g., ceftazidime)
and fourth-generation (e.g., cefepime) agents. A. baumannii
naturally produces AmpC β-lactamase (called ADC [Acineto-
bacter-derived cephalosporinase]).60,61 Unlike other gram-
negative organismswhere production of AmpC can be induced
or permanently de-repressed, the ADC β-lactamase in A.
baumannii is not considered inducible.61 However, expression
of ADC β-lactamase is enhanced when certain insertion se-
quences are acquired upstream of the gene and provides a
strong promoter activity, leading to a clinically relevant level of
resistance.62,63 In addition to ADC β-lactamase, A. baumannii
may also produce extended-spectrum β-lactamase (ESBL),
which also leads to cephalosporin resistance.64–67

Carbapenems

The most significant mechanism of carbapenem resistance in
A. baumannii is the production of carbapenemases, which can

Table 2 Mechanisms of antimicrobial resistance in Acinetobacter baumannii

Agents Related protein(s) Protein function/description Reference

Cephalosporins ADC Intrinsic AmpC β-lactamase 60,61

CTX-M Acquired extended-spectrum β-lactamase 64–67

PER

GES

VEB

Carbapenems OXA-51-group Intrinsic serine carbapenemase 68,69

OXA-23/40/58/143/235-group Acquired serine carbapenemase 70,71

NDM Acquired metallo-β-lactamase 72,73

KPC Acquired serine carbapenemase 77

Sulbactam TEM Acquired serine β-lactamase 80

PBP2 Penicillin-binding protein (reduced expression) 79

Rifampin RpoB RNA polymerase β-subunit (amino acid changes) 81

Unknown Efflux pump 81

Arr ADP-ribosyltransferase 82

Aminoglycosides AAC Aminoglycoside acetyltransferase 83–85

APH Aminoglycoside phosphotransferase

AAD Aminoglycoside adenylyltransferase

ArmA 16S ribosomal RNA methyltransferase 86–88

RmtB 16S ribosomal RNA methyltransferase 161

Fluoroquinolones GyrA DNA gyrase (amino acid changes) 67

ParC DNA topoisomerase IV (amino acid changes)

AdeFGH RND efflux pump 89

Colistin PmrCAB Two-component regulatory system (amino acid changes) 90–92

LpxA/C/D Lipopolysaccharide (complete loss) 93

Tetracyclines Tet(30)/(39)/(A)/(B) MFS efflux pump 162

AdeABC/FGH/IJK RND efflux pump 95
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be either intrinsic or acquired. A. baumannii naturally pro-
duces chromosomally encoded OXA-51-group carbapene-
mase at a low level, and acquisition of a stronger promoter
by transposition of an insertion sequence, analogous to the
case with ADC, upstream of the OXA-51-group genemay lead
to elevation of carbapenem MICs.68,69 A. baumannii also
becomes resistant to carbapenems when they acquire certain
OXA-group β-lactamase genes on plasmids. There are five
major groups of acquired OXA-group carbapenemases in A.
baumannii, including OXA-23, -40, -58, -143, and -235
groups.70 Among these, OXA-23 group is the most prevalent,
often produced by Worldwide Clone 2 isolates.71

Recently, non-OXA group carbapenemases that have
spread in Enterobacteriaceae are also being acquired by A.
baumannii. The most concerning among these is the metallo-
β-lactamase NDM-1. Carbapenem-resistant A. baumannii
producing NDM-1 has been identified worldwide since
2011.72,73 Other acquired metallo-β-lactamases have also
been reported on rare occasions.74–76 Finally, A. baumannii
producing KPC-group carbapenemase has been reported in
Puerto Rico, but there is no evidence that it has spread beyond
this island.77

Sulbactam

Sulbactam is a β-lactamase inhibitor which is usually com-
bined with ampicillin or cefoperazone to mitigate their
hydrolysis by class A β-lactamases, but it also has intrinsic
activity against Acinetobacter species including A. baumannii,
presumably by binding to penicillin-binding protein PBP2.78

Reduced expression of PBP2 and production of TEM-1 β-
lactamase have been associated with resistance to sulbactam
in A. baumannii.79,80

Rifampin

Rifampin exerts its activity by binding to the bacterial RNA
polymerase and inhibiting transcription initiation. The major
mechanism underlying rifampin resistance is amino acid
substitutions in the β-subunit of this target protein.81 Since
this can occur through a single mutation to the rpoB gene
encoding this subunit, monotherapy with rifampin is contra-
indicated in any bacteria, and A. baumannii is no exception.
Besides this mechanism, enzymatic modification of rifampin
and active efflux have also been associated with resistance to
rifampin.81,82

Aminoglycosides

Aminoglycosides bind to the 16S ribosomal RNA of the 30S
ribosomal subunit and inhibits protein synthesis. A. bauman-
nii produces various aminoglycoside-modifying enzymes to
acquire aminoglycoside resistance.83–85Another aminoglyco-
side resistance mechanism that is emerging is production of
16S ribosomal RNA methyltransferase, especially ArmA.
ArmA methylates a guanine residue in the aminoglycoside-
binding site (A-site) of 16S rRNA and protects it from binding
aminoglycosides.86 ArmA-producing A. baumannii are highly

resistant to gentamicin, tobramycin, and amikacin, and are
commonly seen among Worldwide Clone 2 isolates.87,88

Fluoroquinolones

Fluoroquinolones bind to the DNA gyrase and topoisomerase
IV and interfere with DNA synthesis leading to cell death. The
primary mechanism of resistance to fluoroquinolones is
amino acid substitutions in the quinolone resistance deter-
mining region of the genes that encode these target pro-
teins.67 This mechanism results in high-level fluoroquinolone
resistance. In addition, A. baumannii may overexpress active
efflux pumps to gain moderate level of fluoroquinolone
resistance.89

Colistin

Colistin is a cyclic cationic antimicrobial peptide that binds to
lipid A to initiate its bactericidal activity. Resistance to colistin
arises due to modifications of this target in clinical isolates.
The addition of phosphoethanolamine to the hepta-acylated
lipid A is the commonly reported modification associated
with colistin resistance.90–92 Complete loss of lipopolysac-
charide is also proposed as a mechanism leading to colistin
resistance, though this phenomenon is mostly observed in
laboratory isolates rather than clinical isolates.93

Tetracyclines

Tetracyclines bind to the 30S ribosomal subunit for its
activity. Resistance develops by active efflux or target protec-
tion by production of Tet proteins that bind to the 70S
ribosome.94 Tigecycline was designed to resist the majority
of these mechanisms, but is still prone to efflux by Ade-type
efflux pumps in A. baumannii, especially when these pumps
are overexpressed.95

Prevention of A. baumannii Colonization and
Infection

A. baumannii, in particular carbapenem-resistant or other
highly resistant strains, have a propensity to cause out-
breaks when they enter the hospital environment. Both
antimicrobial and desiccation resistances play an impor-
tant role in this phenomenon. A. baumannii is highly
resistant to desiccation and can survive on inanimate
surfaces for at least 1 month.96 Environmental sites may
be contaminated with MDR A. baumannii in almost half of
the hospital rooms accommodating patients with a history
of these bacterial infection or colonization.97 Therefore,
transmission occurs both through direct patient contact
and contact with the environment of the patient’s room. In
one study, the gloves and/or gowns of caregivers were
contaminated after 39% of all encounters with patients
colonized with MDR A. baumannii, suggesting that these
contact precaution measures are essential in preventing
the organism from being transmitted to another patient by
healthcare workers.98
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Once an outbreak is identified, the infection control meas-
ures require a bundled approach that typically includes
implementation of strict contact precaution, educational
activities, enhanced terminal cleaning procedures, and inves-
tigation of environmental sources. In addition, molecular
typing of the relevant A. baumannii isolates should be con-
sidered to define the extent of the outbreak, using techniques
such as pulsed-field gel electrophoresis ormultilocus variable
number of tandem repeats analysis. As a case in point, an
outbreak of extensively drug-resistant A. baumannii at an ICU
in a Virginia hospital was brought under control after an
interventionwas implemented consistingofweeklymeetings
with the unit personnel, reinforcement of contact precautions
and hand hygiene, cohorting of infected patients and their
nursing and respiratory care staff, daily chlorhexidine bath-
ing, preemptive contact precaution until negative surveil-
lance culture was obtained, and restriction of carbapenem
use.99

Unlike other MDR organisms such as methicillin-resistant
Staphylococcus aureus or vancomycin-resistant enterococci,
active surveillance or screening for A. baumannii is not
conducted routinely at most institutions because of the low
sensitivity of screening, which ranges between 55 and 90%
depending on themethods.100,101Nonetheless, active screen-
ing was estimated to reduce A. baumannii transmission,
infections, and deaths by 48 to 78% depending on the
screening methods and to be cost-effective when the carrier
prevalence exceeds 2%.102

Treatment Options for A. baumannii Infection

Carbapenems have generally been considered the agents of
choice for treatment of infections caused by A. baumannii,
owing to their intrinsic activity against this organism and
their favorable safety profile. However, the declining suscep-
tibility to carbapenems has forced clinicians and researchers
to explore alternative therapeutic approaches. Adding to the
challenge is that by the time A. baumannii acquires resistance
to carbapenems, there are often resistant to all other com-
monly used agents as well. Strains that are extensively drug
resistant (XDR, resistant to all classes except up to two)
usually remain susceptible to polymyxins (colistin or poly-
myxin B) and tigecycline. Therefore, regimens will include at
least one of these two classes of agents with or without a
second agent.

Polymyxins

Polymyxins are amphipathic polypeptides that interact with
lipid A of the gram-negative bacterial outer membrane and
cause rapid cell death in a concentration-dependent manner.
Of the two polymyxins, colistin is administered intravenously
as its inactive prodrug colistin methanesulfonate (CMS),
whereas polymyxin B is administered as an active drug.
CMS is the more commonly used polymyxin formulation
worldwide, and thus has more cumulative clinical experience
accompanying it. Polymyxin resistance remains relatively
rare in A. baumannii, though it can develop after treatment

with CMS.6,9,103 The killing activity of colistin is best corre-
lated with the free area under the curve/MIC (fAUC/MIC).104

In time–kill studies, colistin exerts a rapid bactericidal effect,
but regrowth can occur at colistin concentrations exceeding
the MICs.105 It has been hypothesized that subpopulations
with increased tolerance to colistin concentrations higher
than the MICs exist in clinical strains and that killing of the
susceptible population results in the amplification of these
hetero-resistant subpopulations.106 Also, because CMS has to
be converted to colistin in the plasma, patients are exposed to
suboptimal concentrations of colistin for 2 to 3 days before
the concentrations reach the steady state with an average
maximum concentration of approximately 2.3 μg/mL, with
large individual variations.107,108 To mitigate these concerns
of inadequate plasma levels of colistin and potential for
development of resistance, the use of a loading dose is now
advocated for colistin,107,109 and combination therapy with a
second active agent or an agent that is inactive by itself but
demonstrates synergy with colistin is widely adopted. An-
other implication is that, based on these pharmacokinetic
properties, the current susceptibility breakpoint of 2 μg/mL,
defined by both the Clinical Laboratory Standards Institute
(CLSI) and European Committee on Antimicrobial Suscepti-
bility Testing (EUCAST), may not be adequate and a lower
breakpoint may be needed. However, nephrotoxicity limits
the dosingof intravenous CMS,with approximately 50% of the
patients manifesting variable degrees of nephrotoxicity due
to this agent.104 This is a reversible process in most instances.

While clinical data regarding the efficacy of intravenous
CMS for A. baumannii infection when used alone are scarce, a
retrospective study of 35 patients with ventilator-associated
pneumonia caused by A. baumannii who were treated with
either colistin or imipenem according to actual susceptibility
has shown comparable clinical cure and in-hospital mortality
rates at 57% each and 62 versus 64%, respectively, suggesting
that colistin may be as efficacious as imipenem when the
latter cannot be used due to resistance.110 In this study,
colistin was dosed at 2.5 to 5 mg/kg/d but without a loading
dose.

Given the less than ideal pharmacokinetics of colistin and
concerns over nephrotoxicity, direct administration of CMS to
the site of infection has been explored. Nebulized CMS is
routinely used in themanagement of chronic airway infection
in cystic fibrosis patients, and more recently also for ventila-
tor-associated pneumonia in conjunction with intravenous
CMS. Nebulized CMS results in minimal plasma levels of
colistin.111 Observational studies generally suggest that the
addition of nebulized CMS to intravenous CMS may expedite
clearance of A. baumannii from the airway but do not result in
survival gain.112,113 Likewise, a randomized, open-label trial
comparing the efficacy of nebulized CMS for 100 patients
with gram-negative ventilator-associated pneumonia, 60% of
which were caused by A. baumannii, also showed favorable
microbiological outcome in 60.9% of the nebulized plus
intravenous CMS group and 38.2% of the intravenous CMS
only group (p ¼ 0.03), but the study did not show difference
in the rates of favorable clinical outcome (51.0 vs. 53.1%;
p ¼ 0.84).114 However, more bronchospasm events were
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observed in the nebulized CMS group (7.8 vs. 2.0%; p ¼ 0.36).
Overall, the clinical benefit of nebulized CMS has not been
definitively established.

Colistin has very low penetration into the cerebrospinal
fluid, thus intravenous CMS therapy is not expected to be
effective for infection of the central nervous system.115,116

Patients with severe and/or resistant A. baumannii CNS
infections have been treated with intrathecal or intraventric-
ular colistin.117 In one recent case series, intraventricular CMS
therapy led to cure of ventriculitis and meningitis in all six
patients, with sterilization of the cerebrospinal fluid in a
median of 2.5 days.118 Therefore, intrathecal or intraventric-
ular administration of CMS should be considered along with
intravenous CMS for central nervous system infection due to
A. baumannii that is resistant to agents with good cerebro-
spinal fluid penetration, including carbapenems.

The concerns over the unique pharmacokinetics of CMS
and colistin have led to renewed interest in polymyxin B,
which is given as the active drug and possesses more predict-
able pharmacokinetic properties.119 Furthermore, several
observational studies have reported lower nephrotoxicity
rates with polymyxin B compared with CMS.120,121 However,
studies comparing the clinical efficacy of these two agents are
lacking.

Tigecycline

Tigecycline is a semisynthetic derivative of minocycline that
inhibits protein synthesis by binding to the 30S ribosomal
subunit. It is stable against manyof the tetracycline resistance
mechanisms including efflux pumps, such as Tet(A-E) and Tet
(K), and also ribosomal protection, such as Tet(O) and Tet(M),
thus has a broader spectrum of activity compared with the
earlier tetracyclines.122 Resistance to tigecycline is relatively
rare in A. baumannii, but it may develop through overexpres-
sion of efflux pumps.123–125

The killing activity of tigecycline is predicted by fAUC/MIC
as with colistin.126 Tigecycline has unique pharmacokinetics
with a large volume of distribution resulting in a low serum
peak concentration of up to 0.8 μg/mL after the standard
loading dose of 100 mg.127 Suboptimal clinical outcome (56%
infection-related mortality) has been reported for patients
with carbapenem-resistant A. baumannii bloodstream infec-
tion who were treated with tigecycline despite in vitro
susceptibility,128 and breakthrough bacteremia during ther-
apy has also been observed.125 The use of tigecycline alone in
the treatment of bacteremia is not recommended for these
reasons. In addition, a phase 3 trial reported a lower clinical
response rate in comparison with imipenem among patients
with ventilator-associated pneumonia by A. baumanniiwhen
the standard approved dose was used.129 When higher doses
of tigecycline (100 mg twice a dayor 75 mg twice a day)were
used for hospital-acquired pneumonia, they achieved com-
parable clinical response rate as with imipenem (85, 70, 75%,
respectively).130 These data suggest that the currently ap-
proved dose may not be sufficient for the treatment of
bacteremia and hospital-acquired pneumonia when used
alone.

The largest case series on the use of tigecycline for XDR A.
baumannii infections described 266 patients who were
treatedwith tigecycline alone or in combinationwith another
agent (a carbapenem, expanded-spectrum cephalosporin, or
piperacillin-tazobactam) and 120 patients who were treated
with imipenem and sulbactam.131 In both arms, the isolates
were resistant to all antibiotics tested, except tigecycline and
colistin. The patients who received tigecycline were signifi-
cantly less likely to be in an ICU, less likely to be febrile, had
lower serum creatinine, less likely to have sepsis, more likely
to have pneumonia (64.7 vs. 31.7%), and less likely to have
bacteremia (18.0 vs. 43.3%) compared with those who re-
ceived imipenem and sulbactam. There was no difference in
30-day mortality between the two groups (44.7 vs. 46.7%),
whereas favorable clinical outcomewas more common in the
tigecycline group (69.2 vs. 50.0%, p < 0.001). The latter
finding needs to be interpreted with caution, however, as
the patients in the tigecycline group were generally less ill,
the majority of them also received other agents in addition to
tigecycline, and the patients in the non-tigecycline group
were not on any active agents in vitro.

Sulbactam

Sulbactam is a β-lactamase inhibitor and also has affinity for
penicillin-binding proteins of A. baumannii and is active against
this species.132,133 Ampicillin-sulbactam susceptibility of 63.6%
has been reported for Acinetobacter spp. isolates collected
from U.S. hospitals in the early 2000.134 However, a steady
decline in the susceptibility rate of A. baumannii from 89% in
2003 to 40% in 2008 was reported from hospitals in Michigan,
raising concerns for development of resistance as more sulbac-
tam is used for treatment of A. baumannii infections.135

The bactericidal activity of A. baumannii correlates best
with the time that the free drug concentration remains above
the MIC (fT > MIC).136While the standard dose of ampicillin-
sulbactam is 12 g a day, it has been suggested that a dose as
high as 27 g of ampicillin-sulbactam (i.e., 9 g of sulbactam) a
day using extended infusion may be needed to achieve
adequate exposure for treatment of infection due to less
susceptible strains (MICs, 32/16 to 64/32 μg/mL).137,138

A small controlled study was conducted in Greece to
determine the efficacy of ampicillin-sulbactam in 28 patients
with ventilator-associated pneumonia due to XDR A. bau-
mannii.139 All isolates were resistant to ampicillin-sulbactam
and susceptible to colistin. The patients were randomized to
receive either ampicillin-sulbactam (9 g of sulbactam/day) or
colistin (270 mg/day). The clinical response rates were com-
parable with 76.8% for ampicillin-sulbactam versus 73.3% for
colistin. Bacteriological success rates, 14- and 28-day mortal-
ity rates, and the rates of adverse events were also compara-
ble between the two groups. The study suggested that,
consistent with the pharmacokinetic data, a high dose of
ampicillin-sulbactam may be efficacious in the treatment of
invasive A. baumannii infection.

Several observational studies have attempted to explore
the efficacy of ampicillin-sulbactam. In a series of A. bauman-
nii ventilator-associated pneumonia from the United States,
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14 patients were treated with ampicillin-sulbactam and 63
with imipenem.140 The percentages of successfully treated
episodes were similar in the two groups (93 vs. 83%). There
were also no differences in the rates of microbiological
clearance and mortality. Dosing information was not provid-
ed in either of these studies. A study fromBrazil examined the
efficacy of ampicillin-sulbactam and polymyxins (colistin or
polymyxin B) against invasive carbapenem-resistant A. bau-
mannii infections, where 85 patients received ampicillin-
sulbactam and 82 received polymyxins.141 Almost 30% also
received a carbapenem in both groups, despite all isolates
demonstrating carbapenem resistance in vitro. Clinical re-
sponse was observed in 60% of the ampicillin-sulbactam
group and 39% of the polymyxin group, and treatment with
polymyxins was an independent risk factor for in-hospital
mortality (odds ratio, 2.07; p ¼ 0.04). However, the median
daily dose of colistin was approximately 150 mg, which is
substantially lower than the currently recommended dose of
up to 300 mg a day.107 The median daily dose of ampicillin-
sulbactam was 9 g.

These data suggest that the use of sulbactam-containing
regimens may have a role in the treatment of infections
caused by XDR A. baumannii, with efficacy that is at least
comparable with polymyxins.

Rifampin

A potential benefit of adding rifampin to colistin has been
demonstrated for A. baumannii in multiple in vitro and in vivo
studies.142–145 Two prospective clinical trials have been con-
ducted to test the clinical efficacy of this combination. In
Turkey, 43 patients with ventilator-associated pneumonia
due to carbapenem-resistant A. baumannii were randomized
to colistin alone or colistin and rifampin.146 These two groups
were comparable except for the highermean Sequential Organ
Failure Assessment score in the combination group. The crude
in-hospital mortality and pneumonia-related mortality were
higher for the colistin-alone group (72.7 and 63.6%, respec-
tively) comparedwith the combination group (61.9 and 38.1%,
respectively), but the differences were not statistically signifi-
cant. Twenty-three percent developed nephrotoxicity, but
none had hepatotoxicity from rifampin. The other study was
conducted in Italy comparing the same regimens.147 A total of
210 patients with life-threatening infection due to XDR A.
baumannii were enrolled. The study was powered to detect
20% absolute difference in 30-day mortality. The baseline
characteristics were comparable, with most patients located
in ICUs. There was no mortality difference between the two
groups (43.4% for the combination group, 42.9% for the colistin
group). This was the case even when patients who had
rifampin-resistant isolates were excluded. However, the mi-
crobiologic eradication rate was significantly higher in the
combination group (60.6 vs. 44.8%, p ¼ 0.034). On the other
hand, therewas a trend for a higher rate of hepatic dysfunction
in the combination group (20.8 vs. 11.9%). Notably, merope-
nem was added in the colistin group more frequently than in
the combination group (15.9 vs. 3.9%), which may have
improved the outcome in the colistin group.

Overall, the beneficial effect of adding rifampin to colis-
tin in the treatment of XDR A. baumannii infection has
been suggested by in vitro and in vivo studies, but has
not been demonstrated in two randomized, controlled
trials.

Fosfomycin

Fosfomycin, a peptidoglycan biosynthesis inhibitor, is not
active against A. baumannii, but in vitro synergy has been
reported between fosfomycin and colistin or sulbactam
among carbapenem-resistant A. baumannii.148,149 Based on
these observations, a randomized trial of colistin alone and
colistin plus fosfomycin was conducted for infections caused
by carbapenem-resistant A. baumannii in Thailand.150 In this
study, 99 patients were enrolled and 94 were included in the
analysis, 47 in each group. Fosfomycin was given at 4 g every
12 hours intravenously to patients in the combination arm,
and colistin was given at 5 mg/kg/d to both groups for 7 to
14 days. The combination and colistin-only groups did not
differ in favorable clinical outcomes (59.6 vs. 55.3%) or
mortality at 28 days (46.8 vs. 57.4%). However, microbiolog-
ical eradication rates at the end of treatment were signifi-
cantly higher in the combination group (100 vs. 81.2%,
p ¼ 0.01). The study was underpowered to detect a relevant
difference in mortality, but given the trend for lower mortali-
ty with the addition of fosfomycin, this combination may
merit further investigation.

Combination Therapy

Several retrospective studies have documented lower mor-
tality rates after XDR A. baumannii infection when more than
one agent was given for therapy. In a large retrospective study
from Turkey, the clinical outcome of patients with XDR A.
baumannii bloodstream infections was investigated.18 Thir-
ty-six of them received colistin monotherapy, whereas 214
received various agents in addition to colistin (102 with a
carbapenem, 69with ampicillin-sulbactam or sulbactam, and
43 with other agents). The baseline characteristics were
comparable among the groups, and all isolates were suscep-
tible to colistin. The in-hospital mortality rate was signifi-
cantly lower in the combination group than in the
monotherapy group (52.3 vs. 72.2%, p ¼ 0.03), and the rate
of microbiological eradicationwas also significantly higher in
the combination group than in the monotherapy group (79.9
vs. 55.6%, p ¼ 0.001). In another observational study of 69
patients with solid organ transplantation who developed
invasive XDR A. baumannii infection, treatment with a com-
bination of colistin and a carbapenem was an independent
predictor of survival.151 On the contrary, in a recent multi-
center prospective study of 101 patients with MDR A. bau-
mannii sepsis from Spain, there was no difference in the all-
cause 30-day mortality between those who received combi-
nation therapy (24.2%) and monotherapy (23.5%).152 The
combinations used in this study included, but were not
limited to, colistin plus tigecycline and carbapenem plus
tigecycline. Therefore, it is not yet clear if any specific
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combinations of agents would provide survival benefit for
those with XDR A. baumannii infection.

Conclusion

A. baumannii has become one of the most problematic
hospital-acquired pathogens in the last two decades, helped
by its extraordinary ability to accumulate antimicrobial resis-
tance and survive in the modern healthcare environment. An
increasing number of A. baumannii genome sequences, animal
models of disease combined with bacterial mutagenesis, have
provided some valuable insights into mechanisms of A. bau-
mannii pathogenesis. Early detection and implementation of
rigorous infection control measures is a key in preventing
major outbreaks due to this organism. Carbapenems havebeen
considered the agents of choice for infections caused by
susceptible pathogens, but the rapid increase in carbapenem
resistance rates has complicated this issue. The backbone
agents when treating carbapenem-resistant cases include
polymyxins, tigecycline, and sulbactam. Among these, colistin
is the best studied to date, particularly in terms of its pharma-
cokinetics and pharmacodynamics. Therefore, the most stan-
dard approach currently is to treat these infections with
pharmacokinetically optimized doses of colistin (including a
loading dose), with or without a second agent, particularly a
carbapenem, tigecycline, or sulbactam. Nonetheless, there is
still a dearth of clinical data to guide clinicians and many
questions remain unanswered. It is hoped that ongoing clinical
trials and high-quality prospective observational studies will
address these questions and improve the care of patients
affected by this difficult-to-treat pathogen.
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