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Abstract: Acinetobacter baumannii (A. baumannii) is one of the most common clinical pathogens and
a typical multi-drug resistant (MDR) bacterium. With the increase of drug-resistant A. baumannii
infections, it is urgent to find some new treatment strategies, such as phage therapy. In this paper, we
described the different drug resistances of A. baumannii and some basic properties of A. baumannii
phages, analyzed the interaction between phages and their hosts, and focused on A. baumannii phage
therapies. Finally, we discussed the chance and challenge of phage therapy. This paper aims to
provide a more comprehensive understanding of A. baumannii phages and theoretical support for the
clinical application of A. baumannii phages.
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1. Introduction

Acinetobacter baumannii (A. baumannii) is an essential Gram-negative pathogenic bac-
terium, widespread in nature [1]. A. baumannii can adhere to surfaces easily, as it has pods
and pili [2]. Furthermore, since A. baumannii has strong invasive virulence factors, such
as outer membrane proteins, lipopolysaccharides and phospholipases, the treatment of
A. baumannii infection has been regarded as a great threat to clinical practice [3]. Antibiotics
such as carbapenems, β-lactam antibiotics and polymyxins, are commonly used clinically
to treat A. baumannii infections [4–6]. However, the treatment of multi-drug resistant (MDR)
A. baumannii is further aggravated by the abuse of antibiotics and the evolution of bacteria.
Bacteriophages are bacterial viruses that specifically recognize, infect, and replicate within
the host bacteria [7,8]. Phages have been considered as therapeutic agents since the early
1920s as a result of their unique antibacterial ability. In addition, phages have the advan-
tages of strong antibacterial ability, high quantity (1030–1032 in the earth), and low toxic
side effects to humans, and are considered as one of the most promising drugs to replace
traditional antibiotics [9,10].

2. Antibiotic Resistance in Acinetobacter baumannii

Drug-resistant bacteria continue to emerge, posing a huge challenge to human health
and safety. Some studies have shown that antibiotic resistance genes (ARGs) of bacteria,
such as trimethoprim resistance genes (dfrA), existed long before the clinical application
of antibiotics [11]. A. baumannii is one of the most common opportunistic pathogens in
nosocomial infections. Bacteria can develop antimicrobial resistance (AMR) to a variety of
antibiotics, such as β-lactams [12], quinolones [13] and polymyxin [14], through intrinsic
resistance mechanisms, such as increased efflux pumps [15], decreased outer membrane
proteins (OMPs) [16] and acquired resistance mechanisms [14]. In addition, phages can
also mediate antibiotic resistance in bacteria through transduction.
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2.1. β-Lactam Class

β-lactam antibiotics (BLAs) are widely used in the clinical treatment of A. baumannii
infection because of their ability to act on penicillin-binding proteins (PBPs) and inhibit the
synthesis of cell walls [17]. However, the hydrolysis of BLAs by β-lactamase [18] and the
structural changes of PBPs seriously affect the clinical efficacy of BLAs [19]. Carbapenem an-
tibiotics include imipenem (IPM) and meropenem, of which IPM is the first highly effective
broad-spectrum carbapenem [20]. Carbapenems are atypical BLAs and are considered to be
one of the first choices for the treatment of A. baumannii infection [21]. However, since the
first carbapenem-resistant OXA-type β-lactamase (blaOXA-23-like enzyme) was discovered in
A. baumannii strains, manyβ-lactamases that can hydrolyze carbapenems have continuously
been discovered, such as blaOXA-51-like enzyme and blaOXA-58-like enzyme [22]. In addition,
the reduction of OMPs can also lead to an increase in the resistance of A. baumannii to
carbapenems [23]. With the increasing resistance rate of carbapenem-resistant A. baumannii
(CRAB), how to treat CRAB has become a difficult problem worldwide. Previous stud-
ies have demonstrated that extensively drug-resistant (XDR) or pandrug-resistant (PDR)
CRABs can lead to high morbidity and mortality, and the carbapenem antibiotic resistance
rate has reached 90% in some regions [24]. The World Health Organization has identified
CRAB as a prime pathogen for urgent drug development.

The blaOXA gene is widely spread around the world. Kusradze Ia et al. conducted
molecular tests on 12 A. baumannii isolates obtained from different countries, and the
results showed that six strains containing the ISAba1 and blaOXA-51 genes were resistant
to the carbapenem antibiotic IPM. Moreover, it was found that the blaOXA-23 gene from
the Iraqi isolates was located on the plasmid, while the blaOXA-24 gene from the Georgian
isolates was located on the chromosome [12]. Horizontal transfer is an important way for
A. baumannii to rapidly acquire antibiotic resistance genes, which is mainly mediated by
transfer plasmids. Many plasmid-dif (pdif) sites were found in the plasmids of clinical
isolates of A. baumannii, which are the targets of XerC and XerD recombinases and are
believed to be conducive to the transfer of drug resistance genes [25]. Plasmids < 20 kb
account for 56% of Acinetobacter plasmids, and plasmids > 20 kb carry ARGs that are
usually encoded in other mobile genetic factors (MGEs), such as transposons, and it has
been demonstrated that some plasmids > 20 kb contain genes related to phages [26]. This
means that phage-mediated transduction is also one of the ways to obtain ARGs. In
addition, ARGs such as carbapenemases also play a role in studying the evolution of the
A. baumannii clade. For example, Hamidian M et al. used carbapenem resistance and
aminoglycoside resistance genes to study the evolution of the clade of global clone 1 (GC1)
lineage 1 [27].

2.2. Quinolone Class

Fluoroquinolone antibiotics inhibit DNA replication by targeting DNA gyrase and
topoisomerase IV, thereby impeding bacterial growth. Through mutation analysis of
fluoroquinolone-resistant A. baumannii, Geisinger E et al. proved that the mutation of
gyrA and parC encoding DNA gyrase and topoisomerase IV, respectively, resulted in a
change in the phenotype of the two enzymes, thus reducing the affinity of fluoroquinolone
antibiotics for enzymes [13]. In addition, they found that the SOS response may enhance
the fluoroquinolone resistance of A. baumannii by increasing the horizontal spread of ARGs
or promoting the expression of genes, such as DNA repair and mutation.

2.3. Polymyxin Class

Polymyxin B (PMB) is considered to be the last line of defense against drug-resistant
A. baumannii [28]. It changes the bacterial outer membrane (OM) charge by interacting
with lipid A, causing an increase in the permeability of the OM and a disruption of the
OM structure, thereby achieving the purpose of sterilization [29]. However, modification
of lipid A by positively charged phosphoethanolamine (PetN) transferase and 4-amino-4-
deoxy-l-arabinose (L-Ara4N) transferase can prevent the positively charged cationic region
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of PMB from binding to negatively charged lipopolysaccharide, resulting in resistance to
PMB. Kim M et al. screened 40 clinical isolates of A. baumannii and found four anti-PMB
strains with point mutations in the pmrB gene, leading to a high expression of the pmrC
gene encoding PetN transferase [14]. In addition, they found that NCCP 16,007, which is
more resistant than other PMB-resistant strains, obtains more ARGs from other pathogens
through horizontal gene transfer. Moreover, A. baumannii can cause lipopolysaccharide
loss and outer membrane remodeling by mutating the gene encoding lipid A and result
in point mutations in the pmrA and pmrB genes of the two-component system pmrAB,
respectively, and thus develop resistance to polymyxin [30]. Zhao et al. demonstrated
that the level of resistance evolution of A. baumannii to PMB is related to the concentration
of PMB, and that higher concentrations of PMB are more favorable for the evolution of
bacterial resistance [31].

2.4. Phage-Mediated Antibiotic Resistance

Acquired resistance of A. baumannii is usually achieved by bacterial conjugations. In
addition, phage-mediated transduction is an important way to obtain ARGs. By analyzing
the genomes of 177 prophage strains of A. baumannii, Loh B et al. found that some prophages
carried resistance genes, such as blaOXA-23 and blaNDM-1 [32]. It has been demonstrated
that phages can introduce ARGs through transduction. The plasmid pABTJ2 of MRAB
MDR-TJ has been detected to contain many phage-like elements [33]. Some resistance
genes have been found to be integrated into chromosomes. In this regard, Wachino JI
et al. proved that drug resistance genes in A. baumannii could be transmitted by prophages
without direct interaction between cells [34]. To explore the intraspecies transmission of the
carbapenemase gene blaNDM-1, Krahn T et al. paired an A. baumannii donor strain R2090
with recipient strain CIP 70.10, to obtain a carbapenem-resistant derivative [35]. Moreover,
it was confirmed that R2091 received the transposon Tn125 containing the blaNDM-1 gene,
and it was speculated that the activation of a prophage in the genome of strain R2090 could
promote the transduction of the carbapenem gene blaNDM-1.

3. Acquisition and Characterization of the A. baumannii Phage

The isolation, identification and characterization of A. baumannii phage biology is the
first step in phage therapy, and related research is summarized below.

3.1. Source

Bacteria are the most numerous biological entities on Earth, which outnumber their
hosts. Phages are widely distributed in a variety of ecosystems. The number of phages
in the aquatic environment is approximately 104–108 PFU/mL. The highest abundance
of phages is found in coastal waters, at approximately 106~107 PFU/mL [36]. Phages are
present in both animals and humans, with over 108 phages per gram of feces [37]. Sources
of A. baumannii phages include hospital effluent, lesions and the sputum of patients and
birds from free-range farms. Hospital effluent is the main source.

3.2. Structure and Genomics

Normally, the head of the phage is prismatic, and the single genetic material (DNA/RNA)
is contained, enveloped by protein. Attached below the head is the neck or collar region
of the elongated sheath (sometimes called the tail). The DNA/RNA is injected into the
host cell through its internal hollow structure and is surrounded by protective sheath
proteins [38]. The base of the sheath is a baseplate to which the tail fibers are attached,
which is a key structure for the attachment and infection of host cells, and its function
is primarily to recognize the surface receptor of the host cell and complete the infection
process by binding to the host cell receptor. The tail fiber protein is typically composed of
multiple subunits and has high variability, which allows the formation of diverse tail fiber
structures by different combinations of subunits [39], enabling the infection of different host
cells, thereby tail fiber proteins can be used in the detection of A. baumannii [40–42]. The
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special cases include filamentous phage [43] and barely non-tailed phage [44]. At present,
there are no definite reports that the host of filamentous phage is A. baumannii.

The viral nature of phages was controversial until the early 1940s, when they were
observed by electron microscopy, confirming their particulate nature and enabling them to
be classified based on morphology [45]. Classic electron microscopy images are formed
by atoms of heavy metals such as uranium, which evaporate in a vacuum and allow for
the sample to be struck at an angle. The introduction of negative stains (heavy metal salts
that dry in thin layers, do not form crystals and can embed small particles, such as phages)
in electron microscopy has resulted in more detailed images than earlier methods and
revealed the complexity and diversity of phage morphology [46]. Assigning phages to
different taxonomies is a fundamental step in phage research. As more and more new
phages are discovered, ICTV’s classification criteria are constantly changing. The most
recent standard is the August 2022 phage classification system, which removes several
major families in the order Siphoviridae, Podoviridae and Myoviridae. However, the
classical description of its morphology as belonging, such as “podovirus”, “myovirus”, or
“siphovirus”, remains. The order “Caudovirales” was also deleted and replaced by the class
Caudoviricetes, and a binomial system of nomenclature for species was established [47].

Genome sequencing revealed the abundance of the prophage. Comparative genomics
showed the co-evolutionary relationship between phages and their host bacteria as an
essential tool to reveal phage diversity [48] and provide the strategy of therapy [49]. The
framework of the A. baumannii phage genome is mainly composed of genes from other
phages, with a relatively small proportion of genes from the host A. baumannii [50]. Morpho-
genesis of the tail occurs frequently, the mutant Ab105-2phi∆CI404ad, genomic rearrange-
ment increases the host range of the phage nearly 3-fold [51]. There is no genome similarity
of vB_AbaS_TCUP2199 to other known phages [52]. It has been documented that most of
the genes of bacteriophages are unknown [53]. Their genome size range is wide, and the
structure of their genome is linear or circular [54]. The most common type of genome is
dsDNA among known phages. The genome size of phage KARL-1 was determined to be
166,560 bp. A total of 253 ORFs were identified, involved in the replication, maturation
and release of phage progeny. Whereas some encoded structural proteins, most ORFs
encoded hypothetical phage-like proteins, and the rest are hypothetical proteins [55]. The
genome of A. baumannii phage Abp9 contains 80 ORFs, but lacks any known virulence
genes or lysogen-forming genes [56]. The two phage strains, WCHABP1 and WCHABP12S,
contain seven structural proteins. In addition, both encode a gene for a protein-containing
lysozyme that is also possessed by other phages of the genus Ap22virus [57].

3.3. Life Cycle and Biological Properties of Phages

Phage growth is determined by many parameters, namely, the phage bacterial ad-
sorption rate constant, burst size, latent period, bacterial growth rate, phage and bacterial
elimination rates, and the effect of controlled release of the phage [58,59].

Phages can be divided into temperate phages and lytic phages, which have different
life cycles (Figure 1). Infection begins with the adsorption of phage, which interacts with
specific receptors on the surface of host cells, and then the phage injects its DNA into the
cytoplasm of the host, next, transcription and replication occur. Subsequently, once the
synthesis and assembly of viral proteins are complete, the phage DNA is packaged into the
capsid. Phage-encoded depolymerase hydrolyses the peptidoglycan layer of bacterial cells,
leading to cell lysis and the release of mature virions. The phage progenies are released into
the environment and they can then infect the next phage-sensitive receptor [60]. Temperate
phages can enter either lytic or lysogenic cycles [61], for example, λ phage, after the injection
of DNA into the cytoplasm. The temperate phage could choose to initiate a lytic cycle,
which would be consistent with the virulent phage. It integrates its DNA into the host
bacterial chromosome. At the same time, the viral genome is named a prophage. This phage
expresses a specific phage repressor that represses transcription factors, including lytic
cycle genes, and thus the phage enters a dormant state [62]. The integrated phage dsDNA
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replicates with the bacterial chromosome during cell division, and is thus passed down
through generations in bacteria. When the phage is excised from the host chromosome, it
exits the lysogenic cycle [63].
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Figure 1. The life cycle of a phage can be cellular or lysogenic. The lytic cycle comprises: (1) the
attachment of phage to the receptors on the cell membrane of host bacteria, (2) the import of its
genome, (3) replication in the interior of the host cell, (4) subsequent transcription and translation,
(5) assembly and (6) the release of phage progeny. Lysogenic phages enter the (3’) stage, are integrated
into the bacterial chromosome and then start to replicate with the host cell.

The biological properties of different phages differ. vB-AbaM-IME-AB2 was able to
adsorb host cells within 9 min with >99% adsorption, a 20 min latency period and a small
outbreak size (62 PFU/cell) [64]. Two phages (WCHABP1 and WCHABP12) were obtained
from hospital sewage, with different lysis ranges and burst sizes of 136 and 175 PFU/cell,
respectively, with 99% adsorption within 10 min, and the MOIs of both were 0.1 [57].
Phage PD-6A3 had better activity at temperatures of 4–50 ◦C and from pH 5 to 10, with
90% adsorption within 5 min [65]. The clinical isolate PlyF307 is the first highly active
therapeutic-specific A. baumannii phage against a Gram-negative bacterium, and rescued
50% of mice in a mouse animal model [66]. For Gram-positive bacteria, the rescued rates
are usually higher [67,68].

4. Action of A. baumannii Phage on A. baumannii
4.1. Phage Recognition

The phage life cycle consists of five stages: adsorption, infestation, replication, as-
sembly and release, the most important of which is the adsorption process [69] (Figure 2).
Phage tail recognition sites are abundant and diverse, such as lipopolysaccharides, lipopro-
teins and capsules of A. baumannii, which are potential phage recognition sites. Phages
expressing depolymerase degrade bacterial outer polysaccharides and promote phage
recognition and initial adsorption to the host [70–72].

The capsule is an important recognition site for A. baumannii phage and consists
of capsular polysaccharide that wraps around A. baumannii and provides protection at
the periphery [73–78]. Fernando et al. found that 24 strains of A. baumannii developed
resistance to A. baumannii phage through evolution, and 20 of the phage-resistant strains
showed capsule defects. Genetic comparison of the two resistant strains (AB900 and A9844)
with the wild type, that both phage-resistant strains had a base deletion at the K site,
resulting in a code-shifting mutation. The results showed that the gtr29 gene (encoding
glycosyl transferase) was affected in AB900, and that the gpi gene (glucose-6-phosphate
isomerase) was affected in A9844, causing capsule deletion [79]. Popova et al. used tail
spike depolymerase to degrade capsular polysaccharide layers surrounding A. baumannii
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host cells and observed that specific phages could not adsorb to the cells. The results
obtained confirm that the capsular polysaccharides are the primary receptors for the phages
and that tails pike depolymerase plays a crucial role in the initial step of phage–bacterial
cell interaction [80]. There is no doubt that phage infestation of A. baumannii inevitably
disrupts the capsule, regardless of whether the phage receptors are capsules. In basic
research data on the mechanism of phage-specific recognition and hydrolysis of capsules,
studies on A. baumannii phages emphasize the type of capsule of A. baumannii that can be
lysed [76,77,80–83].
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rectangle. (A) Classic holin–endolysin pathway: holin proteins (blue ovals) and endolysin (green
ovals with open active sites). (B) SAR endolysin and pinholin pathway: pinholin (blue rectangles)
and SAR-endolysin (green ovals with SAR domains). In the phage synthesis stage, holin or pinholin
proteins are continuously synthesized and accumulate in the cytoplasm and IM in the form of a dimer.
At the same time, endolysin protein is folded to form peptidoglycan-lytic enzymes and accumulates
in the cytoplasmic matrix. SAR endolysin accumulates in the cytoplasm and IM without activity.
When those proteins accumulate to a critical value, endolysin is released to lyse the peptidoglycan
layer, and SAR endolysin refolds its conformation to obtain the active enzyme.

With the invention and development of protein expression technologies and modern
detection techniques, studies on phage and host recognition have been continuously re-
ported. The tail fiber proteins gp52 and gp53 of A. baumannii phage AbTJ, labeled with
fluorescein isothiocyanate, were combined with magnetic beads and the BL method for
A. baumannii detection. The tail fiber proteins were observed to be bound to the surface of
A. baumannii under fluorescence microscopy, but did not have a lytic function [84].

Arms races between bacteria and their phages promote each other to evolve for sur-
vival. Bacteria are forced to pay a price for phage threat evolution, especially when phage
recognition sites are important to them. Phage-resistant strains are shown to suffer from
adverse conditions, such as weakened metabolism, reduced virulence (capsule, virulence
factors) and restored susceptibility to antibacterial substances (antibiotics) [79].
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4.2. Phage Lyse Bacteria

Another critical stage of phage growth and reproduction is release. Phage synthesis
of lysis-related functional proteins causes bacterial cells to rupture, thereby releasing the
offspring. Phage therapy is a promising alternative route against the growing backdrop
of severe global antibiotic resistance, but rapid bacterial resistance to phages limits the
development of phage treatment. In the search for a breakthrough, the associated phage
releases phase proteins that destroy bacteria and are considered to be a highly promising
AMR agents. Therefore, the study of phage lysis bacterial pathways is imperative. This
section focuses on the phage lysis pathway of A. baumannii.

In 1992, the classic holin–endolysin theory proposed that bacteriophages mainly rely
on the synergistic cleavage of holin and endolysin proteins [60]. Holin protein is a kind of
small molecular membrane protein that is synthesized in large quantities in the process of
bacteriophage synthesis, to control the time of cleavage. Endolysin protein is a protease that
hydrolyses peptidoglycan, which destroys the membrane structure of bacteria. Because of
the comprehensive characterization of the lambda phage, the cleavage model is based on the
lambda phage [85]. In the phage synthesis stage, holin protein is continuously synthesized
and accumulates in the cytoplasm and intima in the form of a dimer. At the same time,
endolysin protein is folded to form peptidoglycan-lytic enzymes and accumulates in the
cytoplasmic matrix. When the holin and endolysin proteins accumulate to a critical value,
holin “triggers” are triggered (in the lambda system, 50 min is triggered after the synthesis
of holin and endolysin begins) [86,87]. The holin protein inserted into the intima randomly
forms a nonspecific channel or hole that allows for the endolysin protein to pass through to
cleave the peptide polysaccharide layer (Figure 2A). A sufficient amount of holin protein
destroys the electrochemical balance of the membrane and causes local depolarization to
form channels or pores. Studies by Gründling [88] have shown that the holin system can be
triggered in advance by dinitrophenol (DNP) or sudden hypoxia, but premature cleavage
is accompanied by a significant decrease in phage titer [89]. Due to the local action of the
holin protein, the protuberance of bacterial cells at the action site of the holin protein was
observed under a video microscope, followed by rupture that released substances in the
cytoplasmic matrix [90]. A great deal of evidence shows that the holin proteins P2 Y and T4
T are different from the lambda system [91], the time of the holin “trigger” is determined
by the holin protein itself [92–96].

With the deepening of molecular-level research, a new cleavage pathway, namely,
the SAR endolysin and pinholin pathways, has been found [97]. The infiltration of SAR
endolysin into the intima is not dependent on holin protein: it permeates the intima in the
form of a membrane plug. SAR endolysin accumulates in the intima, but is not released,
and the membrane plug form does not have the enzymatic activity to avoid premature
opening and cleavage, leading to a low phage titer. When the molecular dynamic potential
of the intima changes, such as in depolarization, SAR endolysin can be released from the
intima to the peptidoglycan layer, and the enzyme active center can be constructed by
folding, to catalyze the hydrolysis of the peptidoglycan layer [98,99]. The role of changing
the dynamic potential of membrane molecules and control of the timing of cleavage could
occur via a kind of holin protein that is not directly involved in the output and is only
used as a timer [100]. To distinguish it from the holin protein with an output function
in the classic holin–endolysin pathway, this kind of protein is called pinholin. Pinholin
accumulates in the intima, and when the time for cleavage comes, it polymerizes into
regular heptamer channels, destroys the membrane dynamic molecular potential, and
promotes SAR endolysin to obtain activity and cleave peptidoglycan [101] (Figure 2B).
In addition, studies have shown that pinholin cannot release classic endolysin, which
further proves that holin–endolysin and SAR endolysin/pinholin are two different cleavage
pathways [102]. Both pathways lead to bacterial lysis, but different rupture processes were
observed under the video microscope, and the two can be clearly distinguished. As
mentioned above, there are significant local protuberances in the holin–endolysin pathway,
which is due to the massive release of local endolysin, due to the formation of channels
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or holes by holin. SAR endolysin is uniformly distributed on the intima. When pinholin
triggers the cleavage cycle, SAR endolysin releases and cleaves peptidoglycan from all
directions. Therefore, the gradual contraction and final cleavage of bacteria can be observed
under a video microscope.

Before 2012, based on the study of the above two pathways, it was speculated that
the outer membrane is not a barrier blocking the release of the progeny phage. However,
Berry et al. described a class of cleavage proteins called spanins, indicating that for most
Gram-negative bacteria, the peptidoglycan layer and outer membrane are barriers that
bacteriophages need to break through [90]. In their study, a mutant without spanin function
was constructed. The morphological protuberance of the bacteria was observed and spread
around, finally forming a ball that did not release intracellular material. At present, the
characterized spanin systems are divided into two categories: (i) i-spanin and o-spanin
two-component systems and (ii) u-spanin single-component systems [103]. The action
mechanism of spanins is still in the exploratory stage. Young R provides a reasonable
mode of action [104]. He proposed that spanins lead to the final lysis of bacterial cells
through membrane fusion. The most suggestive elements for a membrane fusion model,
besides the possible fusogenic character of purified Rz1 reported previously, are the primary
structure of the Rz periplasmic domain and the conformational dynamics attendant to
spanin complex formation [105]. Based on the results of Bryl et al., the binding of the
Rz1 protein to the Rz homodimer leads to a substantial increase of alpha helix as well
as the formation of coiled-coil oligomers, which evokes the coiled-coil dynamics of the
SNARE system that is integral to trans-Golgi vesicle fusion [106,107]. SNARE proteins
undergo coiled-coil oligomerization to bring the vesicle membrane and cell membranes
into contact [108]. In the hypothesis of Young, in the two-component system, i-spanin is
connected to the intima, o-spanin is tied to the adventitia, and the peptide polysaccharide
layer is clamped to prevent folding and contraction. When endolysin or SAR endolysin
releases cleavage peptidoglycans, their conformations change, and folding contraction may
bring the intima and adventitia closer and lead to membrane fusion. Membrane fusion
could destroy the molecular potential of the inner and outer membranes, leading to the
collapse of the inner and outer membranes. Based on the data by Bryl et al., it is speculated
that the factor promoting membrane fusion may be o-spanin [105]. These hypotheses do
not seem to be suitable for the one-component system of u-spanin, but membrane fusion is
the preferred model for u-spanin at present (Figure 3).
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Generally, the phage cleavage process of Gram-negative bacteria needs to break
through three barriers: the intima, peptidoglycan layer and outer membrane. The cleavage
of the intima and peptidoglycan layer is accomplished by two groups of matching pro-
teins, namely, classical holin–endolysin and SAR endolysin/pinholin [104]. On this basis,
the cleavage of the outer membrane at the spanin protein is an essential step [105]. At
present, the characterized spanin system is divided into a u-spanin one-component system,
and an i-spanin and o-spanin two-component system. In theory, there are four different
combinations of bacteriophages in the cleavage of Gram-negative bacteria.

4.3. Phages Affect Bacterial Genomes

Bacteriophages have been widely recognized as natural and efficient carriers of certain
bacterial toxins or resistance genes, including classic type I membrane-acting superantigens,
type II porogenic lysin and type III exotoxins, such as diphtheria and botulinum toxin. In
addition, there is a kind of effector protein encoded by bacteriophage in Gram-negative
bacteria, which is a new type of bacterial virulence factor [109]. The life cycle of temperate
phage is lysogeny. Lysogenic bacteriophages integrate their own genome into the host
genome through integrase, replicate with the host genome and form offspring. Through
this pathway, lysogen phages participate in the variation related to bacterial virulence or
drug resistance [110,111], carrying genes encoding virulence (strong extracellular toxins),
proteins related to promoting bacterial invasion, and various enzymes (superoxide dismu-
tase [112], grape kinase, phospholipase, DNA enzyme, proteins that affect serum resistance
and change antigenicity, superantigens, adhesion molecules, proteases, and mitogenic
factors) [37,109,113,114]. In addition, the prophage genome can also bring quorum sensing
and motility to bacteria [115]. The above phenomenon, which gives virulence to bacteria by
bacteriophages, is called lysogen transformation [116,117]. Under the influence of inducers
or adverse external factors (such as antibiotics), lysogen bacteriophages will enter the
lytic cycle and produce offspring to find the host again. The induction and mobility of
prophages promote the widespread of virulence genes, ARGs and mobile genetic elements
and promote the evolution of bacteria [79,118,119].

Based on the genomic analysis of the current pandemic carbapenem-resistant A. baumannii,
the Oxa23 gene related to drug resistance was detected and analyzed by Abouelfetouh et al.
The results have shown that eight of the 13 strains carrying the Oxa23 gene were located on
the genome of the phiOXA prophage [111]. Phages with the Oxa23 gene were successfully
isolated by mitomycin C induction. Transposon or plasmid-mediated drug resistance is
a common mechanism, but in recent years, it has been reported that prophages lead to
drug resistance, which may be another main mechanism of the horizontal transfer of these
genes [120–124]. Similarly, based on the analysis of the evolution of A. baumannii in the
clinical ward over 10 years, it was found that lysophage provided A. baumannii with virus
defense proteins and quorum sensing functions [115].

Phages interact with bacteria while using bacteria for reproduction and provide
bacteria with genes that are conducive to bacterial survival (ARGs, virulence genes, quorum
sensing, etc.). This is a very interesting phenomenon; bacteriophages seem to protect their
“food” from being naturally eliminated. In addition, it has been reported that the release of
ARGs by phage lysis can be introduced into nondrug-resistant E. coli and produce related
drug resistance [125].

4.4. Phages Act on Biofilms

A. baumannii with biofilms are a collective community cluster formed by the accumula-
tion of a large number of bacteria, surrounded by self-secreted fibrin isopolymers. A large
number of studies on hospital clinical outbreaks, severe infections and antibiotic resistance
of A. baumannii have identified biofilm formation ability as the main virulence factor of
A. baumannii, while providing strong adaptability and resistance to antibiotics [126–131].
In clinical practice, A. baumannii forms biofilms on the surfaces of hospital equipment or
on retention equipment in patients [132], especially in urinary tract infections [133,134].
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Biofilms can effectively inhibit antibiotics elimination of bacteria, which is one of the impor-
tant reasons for the high mortality of A. baumannii infection [135–139]. Biofilm-producing
A. baumannii has become a serious challenge for clinical infection, and many chemical-
, physical-, and biological-based methods have been developed to prevent or destroy
biofilms [140–143]. However, bacteriophages that directly degrade bacterial biofilms are
the most promising therapeutic method to solve this problem, so the study of phages acting
on biofilms is crucial [144–151].

Phages act on biofilms, destroying the biofilm matrix, exposing receptors on the bacte-
rial surface, and initiating the phage replication cycle. In addition, phage lysis of biofilms
also increased the permeability to antibiotics, restoring the eradication effect of antibiotics
on bacteria [152] (Figure 4). By comparing the antibiofilm activity of a single phage and a
phage cocktail, it was found that the antibiofilm activity of the phage cocktail is significantly
higher than that of a single phage [51]. Studies have shown that the combination of two
different types of antibacterial agents, bacteriophage and antibiotics, is more effective than
the use of a single component, and can eradicate biofilms [134,153]. Changes in the biofilm
structure, caused by one or both of the antimicrobial agents, may account for the enhanced
disinfection effect. For example, bacteriophages can make bacteria more sensitive to bac-
teriophages and certain antibiotics by disrupting their external structures and improving
their internal metabolic state. Antibiotics themselves may also cause changes in the biofilm
structure, thereby increasing the ability of phages to invade biofilms [152].
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Figure 4. Phages act on biofilms, destroying the biofilm matrix, exposing receptors on the bacterial
surface, and initiating the phage replication cycle. In addition, phage lysis of biofilms also increases
the permeability to antibiotics, restoring the eradication effect of antibiotics on bacteria.

Phage disruption of biofilms relies on hydrolases such as phage endolysin and depoly-
merase, and Lu et al. characterized that endolysin PlyF307 significantly reduced plankton
and biofilms of A. baumannii both in vitro and in vivo. PlyF307, the first highly active lysin
protein against Gram-negative bacteria, rescues mice from lethal A. baumannii bacteremia.
The endolysin belonging to other families can also lyse A. baumannii [154,155]. By compar-
ing the engineered phage expressing depolymerase with the phage without depolymerase,
it was found that the engineered phage significantly destroyed the biofilm of E. coli [66].
After Zhang et al. treated A. baumannii with bacteriophage AB3 and its LysAB3 for 24 h, the
A. baumannii biofilm was significantly degraded [156].

As bacteriophages continue to be discovered and characterized to dissolve biofilm-
related proteins, numerous studies have reported the use of bacteriophage endolysins or
depolymerase for the efficient elimination of A. baumannii [157–159]. These antibacterial
proteins do not have the advantage of self-replication, but are more difficult to tolerate
than phages and less likely to elicit the body’s immune defense. Similar to bacteriophages,
bacteriophage protein antimicrobials work better with antibiotics. In the clinical eradication
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strategy of bacteria, the use of phage-associated protein antibacterial strategies has great
potential and application prospects.

4.5. Transcriptomic Analysis

Transcriptomics investigates gene transcription and its regulation at the overall level
and detects gene expression at the RNA level. At present, most of the research on the action
of A. baumannii phage on A. baumannii is limited for characterization and local protein
mechanism research, and the global analysis of phage and host interactions is lacking.
Transcriptomic alignment analysis can be used to better understand the effect of phages on
bacteria and provide a reference for the development of phage therapy [160].

Yang et al. analyzed the differential expression of genes after the infection of host
AB1 by A. baumannii phage ϕAbp1 using global transcriptome analysis. The alignment
showed only 15.6% (600/3838) of the host genes were differentially expressed; that is,
only a small part of the bacterial genome can be used to complete phage reproduction.
Through gene co-expression networks, an intermediate protein, gp34, was found to be
involved in RNA polymerase synthesis and negatively interacts with many host ribosomal
protein genes, which suggests that gp34 may be a key gene that inhibits or shuts down
the translation process of the host. This also means that the replication and translation
process of the phage overtakes the host cell. In phage late proteins, downregulation of both
phage assembly and biosynthesis resulted in a lack of the expression of phage structural
proteins. In addition, upregulation of host proteolytic proteins was observed, suggesting
that the host has a defense mechanism against phages. Based on GO and KEGGplus
network analysis, despite the challenge of the host stress response, the regulation of phages
remains precise and powerful. In bacteria, phage infection suppresses the expression of
relevant virulence genes, but activates resistance genes. The underlying mechanism of
this phenomenon is still unclear, but it presents new challenges for the clinical use of
phage-antibiotic combination regimens [161].

The global analysis of transcriptomics provides a basic research direction for studying
the interaction between phages and bacteria. At the same time, data analysis based on
transcriptomics can judge the treatment potential of phages from a more holistic perspective,
to analyze the changes in virulence and drug resistance after bacterial infection and select
appropriate phages to formulate treatment plans. At present, transcriptomic analyses of
A. baumannii phages and their hosts are very scarce. Although many reports have verified
the antibacterial potential of phages in vitro or in vivo, there are no data to analyze the
changes in phages and bacteria globally [162–169]. This brings a huge workload to the
clinical formulation of phage therapy or phage-antibiotic combination therapy.

5. Bacteriophage Resistance Mechanism of A. baumannii

In the tens of millions of years of struggle between bacteria and phages, bacteria have
evolved a variety of defense systems [170] to resist phage infection, and anti-phage mutant
strains have been found constantly. Ambroa A et al. conducted whole-genome sequencing
analysis on 18 clinical strains of A. baumannii and identified 118 to 171 genes related to
phage resistance, including the abortion infection (Abi) system, CRISPR-Cas system, and
restricted-modification (R-M) system [171]. Their research suggests that the number of
genes associated with resistance to phages may be growing year by year (Figure 5).

Phage therapy, as an alternative therapy for multi-resistant A. baumannii (MRAB), ex-
tensive drug-resistant A. baumannii (XDRAB) and pandrug-resistant A. baumannii (PDRAB)
infections, has gradually become the focus of attention. A more comprehensive understand-
ing of the resistance strategy of A. baumannii against phage attacks is helpful to evaluate
the antimicrobial ability of phages. In addition, according to the molecular mechanism of
bacterial and phage resistance to each other, it is helpful to develop new phage therapies to
solve the increasingly complex problem of antibiotic resistance and avoid the influence of
the bacteriological anti-phage strategy on phage therapy.
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5.1. Adsorption Inhibition

Inhibition of phage adsorption by phage receptor deletion or structural change is the
first step taken by A. baumannii to defend against phage infection. Phages are recognized
with host surface receptors by receptor-binding proteins (RBPs) typically located at the
end of phage tail fiber [73]. The capsule of A. baumannii is the most common receptor for
phage [79,166,172,173].

Phages ΦFG02 and ΦCO01 can infect A. baumannii strains AB900 and A9844, respec-
tively. Gordillo Altamirano F et al. found that both strains, AB900 and A9844, had single
nucleotide deletions at the K locus (capsule biosynthesis locus) [174] after coincubation
with phages, which affected the gene gtr29 encoding transferase and the gene gpi encoding
glucose-6-phosphate isomerase, respectively. This resulted in the production of phage-
resistant mutants, ΦFG02-RAB900 and ΦCO01-RA9844, with missing capsules. As a result,
the adsorption of phages ΦFG02 and ΦCO01 to the strain was interrupted, which hindered
the infection of the phage with A. baumannii [79]. Similarly, single-base deletions in the gtr6
gene, which encodes glycosyltransferase in A. baumannii, AB5001, resulted in a change in
the structure of the K3-type capsular polysaccharide (CPS), thereby inhibiting the ability
of the phage to infect the bacteria [172]. The adsorption test proved that the capsular
membrane was the main receptor of phage Phab24, while the outer membrane was the
secondary receptor [166]. Wang X et al. obtained phage-resistant mutant strains with
the changed structure of the capsular and extracellular membrane due to gene mutations,
by coculturing phage Phab24 and A. baumannii. Importantly, both studies found that
phage-resistant mutant strains were resistant to antibiotics due to the absence of a bacterial
capsule. Among them, Gordillo Altamirano F et al. demonstrated that phage-resistant
strains ΦFG02-RAB900 and ΦCo01-RA9844 were more sensitive to cephalosporins and
β-lactams. They also found that strains resistant to Phab24 increased their sensitivity to
colistin [166]. These findings support the combination of bacteriophages and antibiotics in
the treatment of A. baumannii infections.
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5.2. CRISPR-Cas in Acinetobacter baumannii

CRISPR-Cas consists of clustered regularly spaced short palindromic repeats (CRISPR)
and CRISPR-associated (cas) genes, and is an acquired immune system [175]. It can be
divided into the class 1 CRISPR-Cas systems (including three types, I, III and IV), where
the effector complex consists of multiple Cas proteins, and the class 2 CRISPR-Cas systems
(including three types, II, V and VI), where the effector complex consists of a single Cas
protein [176]. The CRISPR array consists of the spacer from exogenous gene sequences
and repeat sequences. CRISPR-Cas systems insert the protospacers of phage DNA into the
CRISPR array. When the phages invade again, CRISPR-derived RNA (cr-RNA) induces
the Cas proteins to cut the target genes, thus preventing the phage from infesting the
bacteria [177].

There is an evolving and complex CRISPR-Cas system in the genome of A. baumannii [122].
At present, the I-F CRISPR-Cas system has been found in A. baumannii. Tyumentseva M et al.
compared the strains carrying the I-F1 and I-F2 CRISPR-Cas systems, and found that the
A. baumannii strain with the I-F2 system had more CRISPR arrays and stronger resistance
to phage invasion than the A. baumannii strain with the I-F1 system [178]. In addition, they
found that the CRISPR-Cas system appeared to be associated with virulence factors, with a
higher proportion of virulence genes in strains that lacked the CRISPR-Cas systems. Karah
N et al. investigated the CRISPR-Cas isoform I-Fb locus in 76 A. baumannii isolates from
14 countries and found that the locus was derived from a common ancestor. In addition,
they demonstrated that CRISPR-based methods could be used for A. baumannii. These
isolates can be divided into 40 CRISPR-based sequence types (CSTS), with the CST1 isolate
originating from Iraq and three CST19 isolates originating from Thailand [179]. In addition,
the CRISPR-Cas system belonging to the CST8 subtype was also detected in the blaOXA-23-
containing A. baumannii ST409 isolated from Greece by Galani V et al. [180]. Mangas EL
et al. performed genomic analysis of nearly 2500 A. baumannii and demonstrated that a
group of strains with fewer plasmids (717 strains) had more CRISPR array and cas genes.
This may be because the CRISPR-Cas system prevents plasmids from entering the bacteria.
Moreover, they also found that this group of strains had more genes associated with the
biomembrane formation [181].

Through the CRISPR-Cas system, bacteria can not only resist phages, but also obtain
more ARGs. Some studies have shown that A. baumannii isolates with the CRISPR-Cas
system usually carry more ARGs and have a stronger drug resistance [182]. At the same
time, with the specific recognition property of the CRISPR-Cas system, it can be used as a
tool to knock out, modify or silence drug-resistance genes in the bacterial genome, which is a
new scheme for treating drug-resistant bacteria [183,184]. However, not all genes associated
with CRISPR-Cas contribute to bacterial resistance. To explore the relationship between
the csy1 gene in the type I-Fb CRISPR-Cas system and A. baumannii resistance, Guo T
et al. knocked out the csy1 gene of A. baumannii AB43, and found that the AB43∆csy1
mutant showed antibiotic resistance. Transcriptome analysis proved that the csy1 gene
could lead to the antibiotic sensitivity of A. baumannii by regulating related genes, such as
the Cas protein and efflux pumps [15]. Although the CRISPR-Cas system is ubiquitous in
A. baumannii, not all A.-baumannii-resistant strains have the CRISPR-Cas system. For
example, A. baumannii NCIMB8209, which contains blaOXA-51-like genes on its chromosomes,
has a low ability to form biofilms and membranes and a slow movement rate. Whole-
genome sequencing analysis showed that the NCIMB8209 genome does not contain the
CRISPR-Cas system [185].

5.3. Quorum Sensing

Quorum sensing (QS) is an intercellular communication system that can coordi-
nate population density and regulate gene expression through QS signals, which helps
A. baumannii respond quickly to environmental changes [186]. QS can promote the pro-
duction of A. baumannii biofilms [187], which can protect bacteria from phage infection
by shading phage receptors and other ways. A. baumannii possesses an abaI/abaR QS
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system, with n-acyl-homoserine lactone (AHL) as a signaling molecule, which consists of
an AHL synthase (encoded by abaI) and a transcriptional regulator (encoded by abaR). The
abaI and abaR genes are thought to have been obtained by A. baumannii from Thiobacillus
neapolitanus by horizontal gene transfer [188]. The abaI/abaR QS system is widely present
in A. baumannii. Tang J et al. collected 80 clinical isolates of A. baumannii from Jilin Province,
China, from 2012 to 2017; 61 strains carried abaI and abaR genes, 24 of the 61 strains could
produce AHL, and 76 of the 80 strains showed the ability to form biofilms [189]. In addition,
they found that the abaI and abaR genes were positively correlated with bacterial drug
resistance rates and surface-related motility. AbaM is a gene located between abaR and
abaI; Lopez-Martin M et al. confirmed that ∆abaM mutant strains formed three times more
biofilms than wild-type strains, and increased AHL production, indicating that abaM is
a negative regulator of AHL production and biofilm formation [190]. QS also plays a
role in the regulation of bacterial virulence factors. Sun X et al. evaluated the virulence
of A. baumannii ATCC17978 with the abaI/abaR QS system. They found that ∆abaI and
∆abaIR mutant strains were completely nonvirulent, while the ∆abaR mutant remained
virulent [191].

5.4. Other Mechanisms of Bacterial Resistance to Phages

Restriction-modification (R-M) systems that protect bacteria from bacteriophage in-
fection can be classified into four categories: I−IV. The R-M system consists of genes
encoding methyltransferase (MTase) and restriction enzyme (REase). Among them, MTase
methylates host genome recognition sites, and REase recognizes unmethylated foreign
genes and cleaves foreign DNA [192]. The R-M systems are the common defense system in
bacteria, and Ambroa et al. identified genes associated with the R-M system in A. baumannii
strains Ab2000 and Ab2010 [171]. When the phage gene injects into the host cell, the REase
of the R-M system cleaves the phage gene by recognizing specific sites, while the host
gene is not recognized by the Rease due to methylation by Mtase, thus resisting the phage
infection [193].

Another bacteriophage-resistant strategy is abortive infection (Abi), in which bacteriophage-
infected bacteria lyse their cells before phage maturation to protect other bacteria from
infection [194].

The toxin-antitoxin (TA) system is widely present in A. baumannii [195–197] and is
composed of toxin proteins and antitoxin proteins or antitoxin noncoding RNA [198].
Among them, toxins can regulate many important cellular processes in cells, which limits
the growth of bacteria [199], and antitoxins can inhibit the activity of toxins. The antitoxin
is unstable and easily degraded by protease. TA is believed to be associated with the
resistance of A. baumannii [200] and is considered a promising drug target [201]. TA has
also been shown to inhibit the biosynthesis of A. baumannii cell walls [202]. In addition,
type IV TA has been found to mediate Abi, and thus play an anti-phage role [203]. Com-
pared with A. baumannii, the anti-phage effect of TA has been studied more deeply in
Escherichia coli [204,205]. Song S et al. found that the type I TA system Hok/Sok could
inhibit phage T4 infection, and the possible mechanism of action is that phage T4 blocks
the host transcription process, thereby blocking the production of Hok and Sok (antitoxin
Sok is the single-stranded RNA). Because the antitoxin Sok is unstable and degraded first,
the toxin Hok can play an anti-phage role [206].

At present, the CRISPR-Cas system is the most deeply studied anti-phage strategy
in A. baumannii. However, R-M systems [207], Abi [208] and TA [206] systems, which
have been extensively studied in other bacteria, have been studied relatively little in
A. baumannii. However, it is believed that with increasing attention to phage therapy,
research on the defense mechanism of bacteria against phages will continue to deepen,
and the more specific action mechanism of A. baumannii against phage systems will be
gradually clarified.
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6. Phage Therapy for Drug-Resistant A. baumannii

With the abuse of antibiotics, MDR bacterial infections have emerged as a potential
danger. Phages have been widely reported as a natural antibacterial agent, being used to
deter the spread of MDR A. baumannii and to treat infections caused by A. baumannii [10,209].
Depending on the antibacterial mechanism, phage therapy can be classified as phage single
therapy, phage cocktail therapy [59], the combination of phages with antibiotics, and
application of phage products (lysozyme, depolymerase) (Figure 6).
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6.1. Phage Single Therapy

Phages used as antimicrobial agents need to have the characteristics of a broad host range,
short latent period, high burst size, and limited frequency of resistant bacteria [56,210]. Single-
phage treatment is primarily used as a proof-of-concept for phage agents during design and
testing. Although single-phage treatment has been successfully tested in animal models,
data on clinical treatment are still lacking [211,212]. Phage vB_ABAP_PD-6a3, reported
by Minle Wu et al., showed a lysis rate of approximately 32.4% against clinically resistant
A. baumannii, which was approximately three times higher than the usual phage lysis
rate [213]. However, the therapeutic effectiveness of single phages in the clinic may be
reduced due to the existence of an arms race between resistant bacteria and phages [214].
Cocktail therapy is one of the most common methods in clinical treatment, as a single
phage cannot always lyse various bacteria in the clinic.

6.2. Phage Cocktail Therapy

Cocktail therapy is a personalized treatment method that is often designed based
on the specific conditions of patients. It targets a single bacterium or bacteria. Cocktail
therapy is effective in preventing the emergence of resistant bacteria through a train of
agents of different phages compared to simultaneous agents of phage mixtures [215]. Even
if resistant bacteria appear during phage therapy, bacteria will be targeted by new phages
that are added in the course of treatment. This strategy keeps the population density of
bacteria at a low level for a long time and curbs the emergence of resistant bacteria [216].
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6.3. Synergistic Effect of Bacteriophages and Antibiotics in A. baumannii

The main obstacle of bacteriophage therapy is the tolerance of bacterial evolution,
which is faster than bacteriophage evolution. However, the evolution of bacteria to avoid
phage lysis has resulted in certain sacrifices, including restoring sensitivity to antibi-
otics [217]. Based on this characteristic, the dual survival pressure exerted by the combina-
tion of bacteriophages and antibiotics can greatly slow the evolution of bacteria and provide
sufficient clinical treatment time [168,169]. The ϕAB182 combined with antibiotics can
eliminate the biofilm of MDR A. baumannii [218]. Therefore, the synergistic effect of bacte-
riophage and antibiotics on MDR bacteria is the most used and effective treatment strategy
in clinical practice. A 42-year-old man’s left tibia was infected with MDR K. pneumoniae
and MDR A. baumannii in a car accident. After treatment with the combination of antibi-
otics (colistin, Romepenem) and bacteriophage (bacteriophage AbKT21phi3, bacteriophage
KpKT21phi1), the drug-resistant bacteria were completely eliminated, and the patient’s
wound cured quickly [219]. The synergistic effect of bacteriophage and antibiotics has been
proven to improve therapeutic efficiency in vivo and in vitro [51]. Pharmacological synergy
occurs when the combined effect of multiple drugs is greater than the effect of a single drug,
and it is typified by certain adjuvants that can block resistance mechanisms or improve drug
pharmacokinetics. Antibiotics with appropriate concentrations can significantly improve
the amount of phage lysis of bacteria. The reason is that lower concentrations of antibiotics
inhibit the division of bacteria; therefore, the amount of biosynthesis of bacterial cells can
be increased at this concentration [220,221]. In addition, antibiotics can promote phage lysis
of bacteria, as morphological changes in bacteria cause changes in the peptidoglycan layer,
which may lead to a higher sensitivity of bacteria to phage lyases (lysozymes, holins) [222].
A new approach was developed for the evaluation of A. baumannii phage-antibiotic synergic
function [223]. The synergistic effect of these two effects (an increase in the number of
phages and an improvement in the rate of bacterial lysis by phages) leads to superior results
when phages and antibiotics work synergistically against drug-resistant bacteria.

6.4. Applications of Phage Enzymes

The bactericidal mechanism of phage enzymes is different from the mechanism of
other agents. Compared to phages and antibiotics, phage enzymes are able to lyse a
broader range of pathogenic bacteria without causing drug resistance. It is speculated that
in the future, agents related to phage enzymes will be widely used for biological control, a
strategy that will not only effectively contain the growth and spread of pathogenic bacteria,
but also reduce the economic burden for patients [224]. The phage Petty, isolated by
A.C. Hernandez-Morales et al., resulted in a clear halo around the center of the plaques,
which suggests that phage Petty encodes a depolymerase that is capable of degrading the
extracellular polysaccharides (EPS) of bacteria [152,225]. The enzyme was demonstrated
to degrade the EPS of its host strain, AU0783, and reduce its viscosity. When the EPS of
the bacteria is degraded, it will increase the accessibility of phage or other antimicrobial
agents to the material inside the biofilm, and improve the efficiency of the bactericide.
Hugo Oliveira et al. isolated a lytic phage, vB_AbaM_B9, of which ORF69 encodes a
depolymerase (B9gp69) that degrades the EPS of A. baumannii ST-K30 and ST-k45, and does
not cause drug resistance for the related bacteria [82]. Lysin packaged in hydrogel dressing
is a safe and effective cure [226]. Furthermore, phage enzymes have some commercial
value, as they can be protected by patents (which is different from phages). This advantage
may facilitate the development and application of phage products in medicine, animal
husbandry and food safety in the future [77,78,227].

7. Discussion

Phages are abundant in nature, and they can be obtained without complicated experi-
mental manipulation and equipment, for experimental research or clinical practice. The
technology of bacteriophage isolation is simple, and the experimental cost is low, which
provides a basis for the industrial or clinical rapid formulation of personalized treatment.



Viruses 2023, 15, 673 17 of 27

In vivo, bacteriophages can replicate and reproduce in their hosts, maintain high titers and
reduce the adverse effects of multiple administrations.

Currently, phage therapy offers significant advantages in the context of a pandemic of
MDR A. baumannii. However, there are also some limitations. The strong host specificity
of phages makes it difficult to obtain pre-prepared phage cocktails, which need to be
personalized for different patients [228], with a current high cost of the treatment [229].
First, in the absence of widespread theoretical knowledge of phage therapy, many patients
disagree with the use of phages for treatment. This is one of the reasons why phage therapy
is not approved by the FDA and EMA as a clinical drug treatment [230]. Furthermore, the
uncertainties in the mode of administration, route, efficiency, timing, pharmacokinetics
and immunomodulatory mechanisms of in vivo treatment of phages partially deter the
clinical application of phage therapy [217]. In addition, the treatment of Gram-negative
drug-resistant bacteria also requires consideration of endotoxin release, and the response
of each person to endotoxin is very variable [231–233]. The survey data of Lynn El Haddad
et al. showed that bacteriophages were effective (87%) and safe (67%), but only 35% of
the researchers focused on the specific reasons why bacteriophages were resistant to host
bacteria [234].

With the rapid spread and epidemic of MDR pathogens, it has become apparent
that the development of antibiotics has failed to keep pace with the evolution of drug-
resistant bacteria, and attention is being paid to phage therapy worldwide. Due to the
diversity of phages, there are few studies of universal mechanisms based on phage and
bacterial resistance, which has troubled in vivo studies of phage therapy. In the meantime,
researchers are working individually and there is no effective organization to form a
public phage bank to share resources and help build a system for the rapid preparation of
personalized phages.

The maturation of next-generation sequencing technology and the development of
genome editing technology provide the basis for phage modification and phage therapy.
Based on second-generation sequencing technology, an abundant source of phages that
exist in nature will be further exploited and utilized to provide a large number of candi-
dates for clinical treatment. The development of gene editing technology enables further
optimization of phages to be constructed, with engineered phages that meet the desired
targets. Computer technology or artificial intelligence (AI) technology can also advance
phage therapy based on phage genomic information, physiological properties, receptor
binding and other information. In addition, the application of phage therapy in complex
infections is promising. It has been shown to be effective in the treatment of patients with
COVID-19 and secondary CRAB infection [235]. Alongside that, phage formulations are
effective against challenging intracellular infections [236].

In this paper, we reviewed the current epidemiology and resistance mechanisms
of drug-resistant A. baumannii, and described and discussed the current development
of phages against drug-resistant A. baumannii. With the rapid spread of clinical MDR
A. baumannii, phage therapy is a promising treatment for MDR A. baumannii infections. The
combination of next-generation sequencing, gene editing and AI technologies makes it
feasible to customize and optimize personalized phages, and there is no doubt that this
will facilitate advances in phage therapy.
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