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Abstract: With the advancement of science and technology, the development and application of
unmanned mobile vehicles (UMVs) have emerged as topics of crucial concern in the global industry.
The development goals and directions of UMVs vary according to their industrial uses, which
include navigation, autonomous driving, and environmental recognition; these uses have become
the priority development goals of researchers in various fields. UMVs employ sensors to collect
environmental data for environmental analysis and path planning. However, the analysis function of
a single sensor is generally affected by natural environmental factors, resulting in poor identification
results. Therefore, this study introduces fusion technology that employs heterogeneous sensors in
the Ackerman UMV, leveraging the advantages of each sensor to enhance accuracy and stability
in environmental detection and identification. This study proposes a fusion technique involving
heterogeneous imaging and LiDAR (laser imaging, detection, and ranging) sensors in an Ackerman
UMV. A camera is used to obtain real-time images, and YOLOv4-tiny and simple online real-time
tracking are then employed to detect the location of objects and conduct object classification and
object tracking. LiDAR is simultaneously used to obtain real-time distance information of detected
objects. An inertial measurement unit is used to gather odometry information to determine the
position of the Ackerman UMV. Static maps are created using simultaneous localization and mapping.
When the user commands the Ackerman UMV to move to the target point, the vehicle control center
composed of the robot operating system activates the navigation function through the navigation
control module. The Ackerman UMV can reach the destination and instantly identify obstacles and
pedestrians when in motion.

Keywords: heterogeneous sensor; Ackerman unmanned mobile vehicle; deep learning; object detection;
navigation control

1. Introduction

With the advancement of science and technology, the development and application of
unmanned mobile vehicles (UMVs) have emerged as topics of crucial concern in the global
industry. The development goals and directions of UMVs vary according to their industrial
uses, which include navigation, autonomous driving, and environmental recognition; such
uses have become priority development goals for researchers in various fields. UMVs
recognize the external environment through sensors, which each have different advantages
and disadvantages [1]. Various sensor combinations and weather conditions [2] affect the
mobile performance of UMVs. Commonly used sensor types include cameras, radars, and
LiDAR (laser imaging, detection, and ranging).

Camera sensors easily identify objects using high-resolution color information. Grad-
ual advancements in image processing technology have contributed to the rapid develop-
ment of the deep learning field. Researchers have widely employed convolutional neural
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networks (CNNs) to achieve satisfactory results in various vision applications. Girshick [3]
proposed the detection method of region-based-CNN (R-CNN). R-CNN extracts input
images and identifies 2000 bounding-box object region candidates; the proposed bounding-
box images are then resized and input to the CNN for feature extraction. Then, a support
vector machine (SVM) [4] classifier is used to classify and regress bounding-box objects.
Although R-CNN boasts high classification accuracy, it runs slowly and requires a long
training process. To achieve real-time image detection, researchers have developed one-
stage object detection models with an end-to-end design and a fast execution speed, such
as the Single Shot MultiBox Detector [5] and You Only Look Once (YOLO) [6]. YOLO uses
a CNN to simultaneously predict multiple object frames and calculates the confidence level
of each. Numerous scholars have developed a series of network models [7–11] based on
YOLO to boost accuracy and optimize the detection ability of small objects [11].

Radar sensors obtain information about the physical environment, such as the rel-
ative speed, distance, angle, and direction of motion of high-precision targets. Valtl
et al. [12] proposed an artificial neural network navigation algorithm for autonomous
driving based on frequency-modulated continuous-wave radar. They employed 60-Hz
frequency-modulated continuous-wave radar to obtain environmental information, gath-
ered training data through vehicle manipulation, and used a deep CNN [13] to convert the
information; steering and speed were set as the network outputs. Ort et al. [14] developed
an autonomous navigation system based on localizing ground penetrating radar (GPR)
that can operate in harsh weather conditions. They employed existing GPR technology to
interpret combinations of soil, rocks, and tree roots beneath the vehicle.

Although LiDAR and radar operate similarly, LiDAR emits laser light instead of
millimeter waves. LiDAR resolution is inferior to that of cameras, but it can obtain clearer
object outlines compared with radar. Mihai et al. [15] proposed a machine learning-based
pedestrian detection system using 16-line LiDAR. The application of linear interpolation
compensates for the low resolution of LiDAR and enables real-time detection of pedestrians.
Gao et al. [16] proposed a dynamic clustering algorithm for LiDAR obstacle detection in
autonomous driving systems. Generating a region of interest allows the algorithm to filter
out unnecessary point cloud data. Clustering is then implemented to identify potential
obstacles. Due to the influence of the scanning mechanism, the spatial distribution of
the point cloud is not uniform. Gao et al. thus proposed a dynamic clustering algorithm
based on the analysis of the spatial distribution of point clouds along different directions to
achieve higher detection accuracy. Jianmin et al. [17] proposed a road obstacle detection
system for unmanned vehicles based on multilayer LiDAR; this system extracts road edge
data sets from LiDAR data and performs cluster analysis. The Dezert–Smarandache theory
is employed to construct the environment grid map and detect dynamic obstacles through
the collision coefficient in the drivable area. Finally, the extended algorithm completes
cluster analysis and information extraction of the dynamic obstacles.

The mainstream research of UMV systems focuses on the combined use of multiple
sensors to exploit their complementary advantages and disadvantages. Potdar et al. [18]
proposed a method to accomplish localization, obstacle detection, and path planning in an
Ackerman steering robot [19,20] using a single camera and LiDAR sensor; LiDAR data are
transmitted over a wireless network to a computer using the TCP/IP protocol, and obstacle
data from the robot are augmented with potential fields and combined with positional data
from overhead cameras to construct cost maps for use in navigational algorithms. Four
different search algorithms [21–23] were implemented for testing. The results revealed
that the hybrid A* navigational algorithm outperformed the three other methods. Weon
et al. [24] employed multi-sensor data fusion to develop an autonomous driving method
that matches 3-D LiDAR data with 2-D image data. To remove noise in 3-D LiDAR data,
the random sample consensus method is used to segment between the ground and objects,
and interpolation is employed to match 2-D images with 3-D data.

Navigational algorithms have been widely employed in UMVs. Dijkstra [25] proposed
Dijkstra’s algorithm, which identifies the shortest path in a known environment and finds
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the least cost path between two nodes. This algorithm searches from the starting point to
the rest of the map and sets cost points. When the algorithm identifies the next lowest-cost
waypoint, the cost of the neighbor is updated. Hart et al. [22] proposed the A* search
algorithm, which is similar to Dijkstra’s algorithm; however, it adds a score to the end-point
distance and combines the movement cost and end-point distance to identify the next
moving point. Rösmann et al. [26] proposed the timed-elastic-band (TEB) algorithm, which
treats the path as an elastic rubber band affected by a deforming force; the force includes
all the constraints on the robot’s motion and minimizes the trajectory execution time.
Fox et al. [27] proposed the dynamic window approach. This strategy samples multiple
velocities in the velocity space, simulates the expected trajectories of each set of velocities,
and scores each trajectory. Aguilar et al. [28] design a path planning algorithm for a UGV
of Ackermann. The developed NHR-RRT algorithm was used for path planning to the best
path that is closer to the final goal. Results show that the Ackerman unmanned ground
vehicle reaches the final point in a certain time. Wang et al. [29] applied DeepLabV3+
semantic segmentation to realize the classification of road scene images. The automatic
controller of the Ackerman unmanned vehicle is established using the cascade PID model.
Experiment results show that the proposed method helps the decision system to better judge
the current vehicle situation and make appropriate decisions. Carpio et al. [30] present an
effective navigation architecture for Ackermann vehicles in orchard environments. The
pose regulation controller and navigation controller are implemented in ROS. Experimental
results demonstrate reliability even in the presence of sudden dynamic obstacles along the
planned route.

Most of the literature emphasizes the design of navigation algorithms and obstacle
avoidance methods for Ackerman unmanned vehicles. However, many dynamic obstacles
in the real environment are not considered. If obstacles and pedestrians can be effectively
identified, collisions between vehicles and pedestrians can be avoided. Furthermore, most
of these methods rely on a single sensor (e.g., camera, infrared, LiDAR), which leads to the
poor robustness of Ackermann UGV. To improve those shortcomings, this study proposes
a fusion technique with heterogeneous imaging and LiDAR sensors in an Ackerman UMV.
The major contributions of this study are as follows:
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2. Materials and Methods 

The experimental results indicated an average distance error of 0.03 m and an average
error of the entire motion path of 0.357 m when using LiDAR in the Ackerman UMV.

This paper is organized as follows. Section 2 introduces the architecture of the Acker-
mann UMV system and the navigation control method based on heterogeneous imaging
and LiDAR sensors. Section 3 presents the experimental results of the developed Acker-
mann UMV system. In addition, single-sensor and multi-sensor performance analysis are
discussed. Section 4 describes the conclusions of this study and provides recommendations
for future research.

2. Materials and Methods

This study developed an Ackerman UMV system with heterogeneous sensors. The
proposed system architecture is presented in Figure 1. As shown in Figure 1, the fusion of
heterogeneous data involving camera images, laser imaging, laser distance, vehicle pose,
and speed in the Ackerman UMV system has achieved better performance in vehicle control.
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The proposed Ackerman UMV system works online for real-time control. The latencies of
each function are shown in Figure 1. The YOLO and SORT algorithm takes 0.102 ms, the
laser scan takes 0.01 ms, odometry takes 0.1 ms, SLAM takes 0.012 ms, navigation control
takes 0.0996 ms, point cloud computing takes 0.22 ms, and the total calculation time of the
system is 0.5436 ms.
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Figure 1. Architecture of proposed Ackerman UMV system.

During system operation, the camera obtains real-time images; it then employs
YOLOv4-tiny to determine the position, classification, and movement of objects. LiDAR
simultaneously gathers real-time distance information. To avoid delays caused by excessive
image data and point cloud data, this system uses the NVIDIA AGX Jetson Xavier embed-
ded system for calculation. An inertial measurement unit (IMU) is used to collect odometry
information to calculate the position of the Ackerman UMV. Static maps are created using
simultaneous localization and mapping (SLAM). When the user issues a command to the
Ackerman UMV to move to the target point, the VCC composed of the robot operating
system (ROS) uses the navigation control module to activate the navigation function and
simultaneously identifies obstacles and pedestrians in real time. The system flowchart and
pseudocode are presented in Figure 2.
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2.1. Hardware Architecture of the Ackerman UMV

The Ackerman UMV is composed of sensors, computing devices, controllers, and a
vehicle chassis. The vehicle chassis includes the steering system, the power transmission
system, and the frame. The VCC is the control terminal, and the AGX embedded system
acts as the computing device. The AGX collects sensor information, makes decisions, and
issues commands to the VCC to control the power and steering systems. Figure 3 is a
location diagram of related components in the Ackerman UMV.
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Figure 3. Location diagram of related components in Ackerman UMV.

This study employed NVIDIA Jetson AGX Xavier as a computing device; it collects
sensor information, makes decisions, and sends commands to the onboard controller to
operate the power and steering systems. The operating system is Ubuntu 18.04. ROS
provides common functions, management of functional blocks, communication between
blocks (publish/subscribe), and device controls. The camera, a Logitech C925e with a 45◦

horizontal field of view, is installed on the front center of the vehicle. The camera is used
to input real-time images to analyze the identification process of obstacles in front of the
vehicle, such as pedestrians. The LiDAR sensor, which uses a Velodyne VLP-16 with a 360◦

horizontal viewing angle, is mounted on the front center of the vehicle above the camera.
The sensor is used to construct maps and obtain real-time distance information. The IMU
uses a Bosch imu_bno055, which can calculate the acceleration relative to the three axes as
an input of the odometry information.

The steering system of the UMV adopts Ackermann steering. The servo motor is
connected to and fixed on the Ackermann lock point, converting the rotational motion of
the motor into linear motion. The steering rod is used to pull the steering column and
change the direction of the tires. The transmission mode is designed to drive the rear
wheels. The gears of the gearbox are driven by the motor, and the decelerated power is
transmitted to the transmission shaft to directly control the rear wheels.

2.2. Ackerman UMV Positioning and Map Construction

SLAM enables the Ackerman UMV to start from an unknown location in an unknown
environment, identify its own position through repeatedly observed map features during
movement, and construct a map based on its position. Cartographer, a real-time indoor
SLAM method developed by Google, supports multi-sensor mapping. This study employed
Cartographer to construct a static map for the input of the system navigation module.

2.3. Navigation Control

Navigation control is a crucial system function used to determine the best route and
avoid collisions. Figure 4 presents the architecture diagram of the system navigation
control module.
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First, global navigation is employed to establish a predetermined path, and then
local navigation is used to correct and optimize the path through a cost map. The path
with the highest score is converted into linear and angular velocities and commands the
Ackerman UMV to move. The result of the final navigation is then completed. The cost
map is constructed with the static map, dynamic map (including map and obstacles), and
odometry information. Cartographer provides simultaneous 2-D and 3-D localization and
mapping in real time. This study employed Cartographer to obtain a static map; adaptive
Monte Carlo localization is used to locate the Ackerman UMV on the map. LiDAR is
employed to obtain angular distances around the Ackerman UMV. The IMU is used to
obtain the odometry information, which includes the position of the Ackerman UMV
(position and rotation angle [X, Y, θ]) and speed (including linear speed and steering
speed). Global navigation uses Dijkstra’s algorithm to identify the shortest path, and local
navigation implements the TEB algorithm to optimize the path given to global navigation.
Dijkstra’s algorithm starts at the source node and analyzes the graph to find the shortest
path between that node and all the other nodes in the graph. If the shortest path between
the source node and another node is found, that node is marked as “visited” and added to
the path. The process continues until all the nodes in the graph have been added to the
path. Then the shortest path can be obtained. Finally, the motion path of the Ackerman
UMV is determined.

2.4. Object Detection and Tracking Based on YOLOv4-Tiny and SORT

In the Ackerman UMV system, the YOLOv4-tiny network model is used to detect
obstacles and pedestrians. YOLOv4-tiny, a lightweight network simplified from YOLOv4,
uses the CSPDarknet53-tiny network to extract object features. UpSampling and Concat
are used to merge previous features to expand feature information and improve detection
performance. In this network, predictions use scale sizes of 13 × 13 and 26 × 26. Figure 5
presents a network architecture diagram of YOLOv4-tiny.
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If the direction of pedestrian travel can be determined, the probability of collision
with the Ackerman UMV can be reduced. Therefore, this study implemented correlation
matching of detected objects in different image frames to determine whether detected
objects were new. SORT [31] was used to track dynamic objects (Figure 6).
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2.5. Integration of LiDAR and Imaging

Each laser layer of LiDAR can return 897 distance points and be evenly distributed
in 360◦. To determine the distance between the obstacle and the vehicle in the image
recognition system, the camera view angle and the LiDAR sensor must be matched. Figure 7
presents a schematic of the LiDAR and the camera visual angle. The red ball indicates
the LiDAR sensor, and the angle between the two green lines is the visibility range of the
camera. The distance interval (DI), which is the range of the camera visual angle and the
LiDAR point, is obtained. When YOLOv4-tiny detects an object, it determines the object’s
detection frame and center point. The X-axis ratio of the center point to the pixel identifies
the corresponding angle from the DI. Figure 8 presents a schematic of the integrated LiDAR
and imaging technology. The window width (W) is 480 pixels, the window height (H) is
640 pixels, and x and y are the coordinates of the center point.
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The corresponding value of the DI is the distance between the red point and LiDAR;
the distance (Dis) formula can be expressed as follows:

Dis = DI ∗
( x

W

)
(1)
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To obtain the point cloud and image comparison, a LiDAR and image integration
method is used to cut the point cloud and implement point cloud analysis of the camera
visual angle range. Figure 9 presents a flowchart of the point cloud process.
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When the LiDAR sensor scans a circle, it obtains point cloud data. The data contain
information (x, y, z, I) about a point, where x, y, z are the coordinates corresponding to each
axis, and I is the intensity of the laser reflection. In Figure 10, we used a planar method
to identify the coordinates that correspond to the LiDAR sensor and the camera. After
identifying the x and y coordinates, the angle (θ) and distance (D) between the point and
the LiDAR sensor are calculated; the formulas are represented as follows:

θ = tan|( x
y
)| (2)

D =
√

x2 + y2 (3)
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If the angle falls within the set range, the distance data are entered into a new array,
and points with different distances are represented with different colors. Objects closer
than 1 m cannot be detected by LiDAR. This study represented various distances which
are represented by different colors. The distance between 1 and 2 m is indicated in red,
the distance between 2 and 3 m is indicated in yellow, the distance between 3 and 4 m
is indicated in green, the distance between 4 and 5 m is indicated in light blue, and the
distance that is greater than 5 m is in purple.

3. Experimental Results and Discussion

This experiment developed a modified Ackerman UMV to solve navigational and
obstacle avoidance control problems. We designed several test situations to evaluate the
navigational and obstacle avoidance ability of the Ackerman UMV. The experiment was
divided into a navigation experiment and an obstacle avoidance experiment.

3.1. Navigation Experiment Results

Figure 11 presents the experimental verification scene and the map constructed using
SLAM. First, the researchers established two sets of starting points and destinations in the
corners of the map. The navigation effect is more easily observed with a longer navigation
distance; no obstacles were placed in the path. Speed and steering control (v,ω), distance
traveled, and time were recorded. The trajectory of the moving distance is calculated by
summing the distance between the real-time Ackerman UMV coordinates.
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The Ackerman UMV first located its own position on the map and was given the
destination coordinates. According to the starting point and the goal point, the Ackerman
UMV implemented the navigation algorithm and the cost map for navigation control and
generated a predetermined path. Figure 12a is the navigation path planned by the system.
After the Ackerman UMV generated the navigation path, the TEB algorithm was employed
to plan the route of the Ackerman UMV based on this path and the real-time updated
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cost map. Figure 12b is the actual moving path of the Ackerman UMV. The experimental
Ackerman UMV traveled a total distance of 49.83 m in 76 s.
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Figure 12. (a) Navigation path planned by the system. (b) Actual moving path of the Ackerman UMV.

The waypoint error is the difference between the actual moving trajectory and the
path planned by the system; it is used to evaluate the performance of the Ackerman UMV
trajectory. The formula is expressed as follows:

Waypoint error =
√
(nx− rx)2 + (ny− ry)2 (4)

where nx and ny are the x-axis and y-axis coordinates of the path planned by the system,
and rx and ry are the x-axis and y-axis coordinates of the actual moving track. The waypoint
error curve is illustrated in Figure 13. The average error was 0.935 m.

The speed and steering of the Ackerman UMV are presented in Figure 14. The blue
line indicates linear velocity where positive values are forward acceleration and negative
values are backward acceleration; the orange line indicates angular velocity where positive
values are deflections to the left and negative values are deflections to the right. This figure
reveals that when the Ackerman UMV travels in a wide area, the speed and steering are
relatively stable. When the Ackerman UMV travels in a narrow area, the speed and steering
oscillate but do not affect the forward movement of the vehicle. The navigation algorithm
has a recovery mechanism. When the algorithm detects that the Ackerman UMV cannot
complete a task, it moves the Ackerman UMV backward, allowing the task to proceed. In
this figure, the linear velocity during reverse indicates a negative value.



Sensors 2023, 23, 4558 12 of 19Sensors 2023, 23, x FOR PEER REVIEW 13 of 20 
 

 

 

Figure 13. Waypoint error curve. 

The speed and steering of the Ackerman UMV are presented in Figure 14. The blue 

line indicates linear velocity where positive values are forward acceleration and negative 

values are backward acceleration; the orange line indicates angular velocity where posi-

tive values are deflections to the left and negative values are deflections to the right. This 

figure reveals that when the Ackerman UMV travels in a wide area, the speed and steering 

are relatively stable. When the Ackerman UMV travels in a narrow area, the speed and 

steering oscillate but do not affect the forward movement of the vehicle. The navigation 

algorithm has a recovery mechanism. When the algorithm detects that the Ackerman 

UMV cannot complete a task, it moves the Ackerman UMV backward, allowing the task 

to proceed. In this figure, the linear velocity during reverse indicates a negative value. 

 

Figure 14. Speed and steering of Ackerman UMV. 

3.2. Obstacle Avoidance Experiment Results 

This study implemented two obstacle avoidance experiments, the first with static ob-

stacles and the second with dynamic obstacles. The starting point and purpose of the 

Figure 13. Waypoint error curve.

Sensors 2023, 23, x FOR PEER REVIEW 13 of 20 
 

 

 

Figure 13. Waypoint error curve. 

The speed and steering of the Ackerman UMV are presented in Figure 14. The blue 

line indicates linear velocity where positive values are forward acceleration and negative 

values are backward acceleration; the orange line indicates angular velocity where posi-

tive values are deflections to the left and negative values are deflections to the right. This 

figure reveals that when the Ackerman UMV travels in a wide area, the speed and steering 

are relatively stable. When the Ackerman UMV travels in a narrow area, the speed and 

steering oscillate but do not affect the forward movement of the vehicle. The navigation 

algorithm has a recovery mechanism. When the algorithm detects that the Ackerman 

UMV cannot complete a task, it moves the Ackerman UMV backward, allowing the task 

to proceed. In this figure, the linear velocity during reverse indicates a negative value. 

 

Figure 14. Speed and steering of Ackerman UMV. 

3.2. Obstacle Avoidance Experiment Results 

This study implemented two obstacle avoidance experiments, the first with static ob-

stacles and the second with dynamic obstacles. The starting point and purpose of the 

Figure 14. Speed and steering of Ackerman UMV.

3.2. Obstacle Avoidance Experiment Results

This study implemented two obstacle avoidance experiments, the first with static
obstacles and the second with dynamic obstacles. The starting point and purpose of the
experiments were the same, and the speed and steering control (v, ω), moving distance,
and time of the Ackerman UMV were recorded.

3.2.1. Static Obstacles

This study developed a short-distance assessment to evaluate the obstacle avoidance
ability of the Ackerman UMV. Three obstacles were placed in the path of the Ackerman
UMV on the way to its destination. Cardboard boxes placed crosswise were used as
obstacles. The length, width, and height of the three cartons were 50 × 29 × 25 cm3 (O1),
58 × 30 × 30 cm3 (O2), and 63 × 43 × 43 cm3 (O3). Figure 15 presents a top view of the
static obstacles in the experimental field.
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Figure 16 presents the combined LiDAR and imaging technology for static obstacle
detection. This figure presents the category of the detected object, the confidence level of
the category, and the point cloud information of the LiDAR. Therefore, the combination
of LiDAR and imaging technology can be employed to identify objects and the distance
of each object. Table 1 compares the actual distance and the distance obtained by the
LiDAR between the three cartons and the Ackerman UMV. The average distance error
using LiDAR was 0.03 m when the Ackerman UMV moved from start to destination. This
result demonstrates that the distance obtained by LiDAR was quite accurate.
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Table 1. Comparison of the actual distance and the distance obtained by LiDAR.

Cartons (Length, Width and Height) (cm) Actual Distance (m) Distance Obtained by the LiDAR (m) Error (m)

50 × 29 × 25 1.37 1.39 0.02

58 × 30 × 30 3.08 3.11 0.03

63 × 43 × 43 4.97 5.01 0.04

Dijkstra’s algorithm determines the shortest path based on the cost map of the original
map and between the starting point and the target point, but it does not consider real-time
changes in the map. Figure 17a is the navigation planning path of the system. During the
experimental navigation, the Ackerman UMV first generated a navigation path according
to the obstacles, which was then optimized using the TEB algorithm. The colored dots on
the map indicate reflections of the LiDAR sensor, which can detect the position of obstacles.
Figure 17b illustrates the motion path of the Ackerman UMV with static obstacles. The
Ackerman UMV traveled a distance of 10.7 m in 16 s.

Figure 18a is the movement error curve with static obstacles. This figure indicates that
the first turn was larger and had a higher error. The average error of the entire moving
path was 0.357 m. Figure 18b illustrates the speed and steering of the Ackerman UMV with
a static obstacle. This figure indicates that the route primarily passed through three large
bends (i.e., bypassing obstacles) to reach the destination. The steering limit of the wheels
and the expansion radius of obstacles required additional time for position adjustments.
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3.2.2. Dynamic Obstacles

The study then assessed the ability of the Ackerman UMV to avoid dynamic obstacles.
An experiment was implemented in which two pedestrians passed in front of the moving
vehicle. One pedestrian passed from left to right; the other passed from right to left.
Figure 19a presents a top view of dynamic obstacles (i.e., the pedestrians) in the verification
field. Figure 19b presents the integration of LiDAR and imaging in dynamic obstacle
detection. Table 2 presents the error between the actual distance from the Ackerman UMV
to the two pedestrians and the distance measured by the LiDAR. In this experiment, the
Ackerman UMV needs to judge the moving directions of two pedestrians and formulate
corresponding obstacle avoidance strategies. To detect and track moving objects effectively
and quickly, the object detection method is adopted in this study.

Table 2. Error between the actual distance and the distance measured by LiDAR.

Pedestrian Actual Distance (m) Distance Obtained by the LiDAR (m) Error (m)

Pedestrian on the right 2.34 2.36 0.02

Pedestrian on the left 4.12 4.16 0.04

YOLOv4-tiny and SORT are used to track the movement trajectory of the center point
of the dynamic obstacle (i.e., pedestrian) and judge the moving direction of the obstacle.
The tracking results of dynamic obstacles are presented in Figure 20. Figure 21 is a path
diagram for avoiding dynamic obstacles when the Ackerman UMV is in motion. In this
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figure, the direction of pedestrian movement is indicated by a blue line. During Ackerman
UMV navigation, pedestrians will move according to the trajectory in Figure 21. The
Ackerman UMV had a total travel distance of 8.07 m and a travel time of 18 s. When a
pedestrian moves at a fast speed, the Ackerman UMV slows down, stops, and waits for the
pedestrian to pass. However, when the pedestrian moves at a slow speed, the Ackerman
UMV bypasses the dynamic obstacle. Figure 22a illustrates the waypoint error curve of
the Ackerman UMV; the average error was 0.759 m. Figure 22b illustrates the speed and
steering of the Ackerman UMV when avoiding dynamic obstacles. Experiments show that
the proposed method can effectively avoid moving dynamic obstacles and can successfully
reach the specified goal.
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3.3. Discussion

In this subsection we will discuss the differences between single-sensor and multi-
sensor fusion methods. Recently, multi-sensor fusion technology has been applied in
unmanned vehicle systems. Caltagirone [32] developed an approach for road detection
by fusing LiDAR point clouds and camera images. They point out that purely camera-
based recognition underperforms severely. However, introducing LiDAR information
can improve the overall recognition accuracy. Zhang [33] proposed a multimodal fusion
method for the task of lane line segmentation and used the KITTI dataset to verify the
performance. The experimental results show that the position of the lane line can be
effectively segmented in the scene by using the multi-sensor information fusion method.
Daniel [34] presents a solution for pedestrian detection which combines LiDAR point cloud
data with multiple camera images. The results show that the proposed framework can
accurately localize pedestrians in the range of 10 to 30 m, and the performance is evaluated
by using accuracy, sensitivity, and precision. The above literature show that the fusion of
LiDAR information and camera images can effectively improve object detection ability,
thereby making unmanned vehicles more robust. Herein, we designed an experiment to
compare the performance of multi-sensor fusion and single-sensor approaches. A forest is
selected as the scenario for experimental verification, as shown in Figure 23.
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A total of 500 point cloud data points and camera photos were collected, including
trees and stone objects. This experiment compared the performance of single camera image,
single LiDAR image, and LiDAR camera image fusion methods in object detection. The
object detection results are shown in Table 3. As shown in the results in Table 3, the camera
image is poor in detecting small objects. The reason is that the detection result is affected
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by the poor camera image due to insufficient light in the forest. In the detection results of
LiDAR images, it can be observed that compared with camera images, the accuracy of small
object recognition has improved a lot. However, the effect is not ideal in the detection of
tree objects. By integrating LiDAR and camera images, it can be found that the performance
has been greatly improved in both tree and stone object detection. It illustrates that the
multi-sensor fusion method has better robustness than the single-sensor method. In terms
of computing time, it takes about 55 ms for object detection on a single-sensor image. That
is, the detected frame per second (FPS) is 20. Object detection with multiple sensors takes
71 ms. The multi-sensor fusion approach requires an additional 20 ms compared to the
single-sensor approach. Overall, the proposed multi-sensor fusion approach is worthwhile
to increase the accuracy from 50% to 80%.

Table 3. Comparison results of different sensors in object detection.

Seneor
AP

mAP Precision Recall F1-Score Computing Time (ms) FPS
Tree Stone

Camera image 51.34% 11.11% 31.23% 55% 64% 59% 52.6 19

LiDAR image 30.93% 61.11% 46.01% 62% 35% 45% 55.5 18

LiDAR camera image 84% 63% 73.5% 84% 76% 80% 71.4 14

4. Conclusions

This study proposed a fusion technique with heterogeneous imaging and LiDAR
sensors in an Ackerman UMV. The major contributions of this study consist of the following:
(1) The proposed system uses a camera to obtain real-time images, and YOLOv4-tiny and
SORT are employed to classify, track, and detect the location of objects. (2) LiDAR is
employed to obtain real-time distance information of detected objects which also combines
camera images to improve detection accuracy. (3) The experimental results indicated an
average distance error of 0.03 m using LiDAR and an average error of the entire motion
path of 0.357 m. (4) The proposed Ackerman UMV successfully reaches its destination and
instantly identifies static obstacles and pedestrians when in motion.

The proposed Ackerman UMV employs two heterogeneous sensors to detect obstacles.
The control center collects a large amount of real-time data from these sensors, resulting in
a long calculation time and subsequent system delay. Future research will implement an
algorithm of the collected images and point cloud data using a field-programmable gate
array to achieve real-time operation.
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