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ABSTRACT The celebrated method of Ackermann for eigenvalue assignment of single-input controllable 

systems is revisited in this paper, contributing an elegant proof. The new proof facilitates a compact formula 

which consequently permits an extension of the method to what we call incomplete assignment of 

eigenvalues. The inability of Ackermann's formula to deal with uncontrollable systems is considered a 

weakness inherent in the method. The notion of incomplete assignment leads to a straightforward 

generalization of our method to eigenvalue assignment of uncontrollable systems, thus mitigating such a 

drawback of a popular method with minor modifications. Further results concerning the incomplete 

assignment are stated, verified, and commented. Such results  reveal the trace of the state matrix A    a worthy 

feature  pertinent to  an open loop  system . Finally, four numerical examples are worked out to demonstrate 

cases of incomplete and uncontrollable eigenvalues assignment. The examples consider a case   where the 

structure of the feedback matrix can be easily simplified.  The paper ends with a commentary brief concerning 

some commonly used MATLAB commands for eigenvalue assignment.   

INDEX TERMS - Ackermann’s method, eigenvalue assignment, incomplete assignment, MATLAB, 

uncontrollability. 

I. INTRODUCTION 
The eigenvalue assignment problem is well established in 

system theory and continues to attract further research over 

the years. Since the study concentrates on a particular 

method namely Ackermann's method [1-2], attempting to 

review such myriad   methods is beyond the scope of this 

study.  

Nonetheless, in a brief, the problem of eigenvalue 

assignment has been tackled through many approaches 

ranging from an algebraic approach [3-4], a geometric 

approach [5], conjectural and explicit determination [6-7], 

recursive methods [8], eigenstructure methods [9-10], closed 

loop robustness [11], Minimization of certain condition 

numbers [12], algorithmic, numerical, and computer-aided 

design approaches [13-17].  Additional approaches have 

been through the theory of variable structure systems [18], 

partial assignment [19-21], mechanical structures [22], and 

derivative and acceleration feedback [23-24], to mention but 

a few. 

Among the numerous methods for eigenvalue assignment is 

the well- known method of Ackermann [1-2], [25-26]. The 

method is simple in concept, and of clear-cut nature. Besides, 

it   doesn’t require knowledge of the open loop characteristic 

polynomial nor the requirement of similarity 

transformations. However, the method applies to 

controllable systems only. This is evident by its vivid 

reliance on the inverse of the   controllability matrix.   

We revisit the method in this paper, shedding more light on 

its nature, and provide an elegant proof. Such alternative   

proof results in a compact form of the state feedback matrix 

and facilitates an extension of the method to incomplete 

assignment of eigenvalues (in the sense of assigning a 

limited number of eigenvalues). In certain cases, 

demonstrated later in the examples, incomplete assignment 

becomes the usual partial eigenvalue assignment. 

Since Ackermann's method deals with controllable systems 

only, extending the method to uncontrollable systems should 

be a significant improvement. In fact, it turns out to be a 

special case within the incomplete assignment approach, and 

is shown to be possible with minor modification. Beside the 

use of incomplete assignment as a mechanism to extend the 

method to the uncontrollable case, it can be justified on its 

own right in some cases, leading to a simpler controller of 

lower dimensionality. 

 
II.   NATURE OF THE ACKERMANN’S FORMULA  

The method is well known, simple in concept, of explicit 

nature, and requires no particular transformation. However, 

it suffers from the drawback of only applying to controllable 

single-input systems [1-2], [25-26]. It is implemented by 

MATLAB [35], through the built-in acker function 

command. 

Many control theorists commented on the derivation of the 

Ackermann’s formula as being nontrivial. P.C. Chau [25] 
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commented: “it is not trivial to prove Ackermann's formula 

and most introductory texts do not derive it”. Nonetheless, 

some authors approach the derivation of the method by 

restricting the proof to the case of a three state system as a 

compromise, as that presented in [25-26]. To the author’s 

knowledge , other proofs are carried out also  for  the case of 

3n  , [27-29]. 

In this section, we present a general derivation in a 

straightforward manner irrespective of the order of the 

system. 

Consider a linear time invariant system given by, 

1; , (1)nx Ax Bu x R u R


                          

Following the same lines as that of  Ackermann’s , since  

matrix B   has full rank 1, it is routinely replaced by b  ; the 

state feedback controller used is u K x  .  

where K is a  1 n   matrix resulting in a closed loop system 

given by.  

( ) (2)x A bK x


                                                                         

Given that ; 1, 2, ,i i n   are the coefficients of the 

closed loop characteristic equation (polynomial), 

Ackermann's formula calculates K as in [1-2], and [25-26] 

as, 
1 1

1 2

1 2

[0 0 1]([ ]

[ ... ]) (3)

n

n n n

n n

K b Ab A b

A A A I

 

 



      
                                                     

Due to the reliance of K on the  inverse of the controllability  

matrix, such description of the feedback matrix  as in (3)  

necessarily assumes and requires the system to be 

controllable, thus  limiting the applicability of the method to 

controllable systems only.  

We shall now consider another approach to the derivation of 

K  , and thus   provide an  alternative general  proof  to the 

above expression given in (3) , ending with a compact form  

for K  . Such depiction facilitates incomplete eigenvalue 

assignment   and enables the method to be extended to 

uncontrollable systems. 

III.    AN ELEGANT PROOF 

An alternative proof of Ackermann's formula is now worked 

out. As a consequent, we gain further insight into the method 

yielding what we call incomplete eigenvalue assignment. 

Such novel treatment of the classical Ackermann's method 

culminates in a generalization of the method to eigenvalue 

assignment of uncontrollable systems.   

Assuming the closed loop system matrix  ( )A bK  has

1 2, , , n    as closed loop eigenvalues. The associated  

closed loop characteristic equation ( )clP   is therefore,  

 1 2( ) ( )( ) ( ) 4cl nP                                                                          

Expanding we get, 

 1 2

1 2 1( ) 5n n n

cl n nP  

                                                                

Where i  are obtained using the theory of elementary 

symmetric polynomials [30]. 

Applying Cayley-Hamilton theorem to (5), i.e. setting 

( ) 0clP A bK   gives.  

 

1 2

1 2

1

( ) ( ) ( )

( ) 0 6

n n n

n n n

A bK A bK A bK

A bK I

 



     

   

 

 
                                               

 

Let the controllability matrix T be given by, 

 2 2 1 7n nT b Ab A b A b A b                                                                      
 

With the following partioning of the  inverse of T as, 

 1

2

1

( )

8

( )

( )

g

g

n g

n g

b

Ab

T

A b

A b







 
 
 
 
 
 
 
 

              

The fact that  1

nT T I   necessitates,  

 

( ) ( ) 0 for ; , 0,1,2, , 1

1 9

i g jA b A b i j i j n

i j

   

 
     

                                              

while 1

nT T I   necessitates, 

    
1

0

10
n g

i i

n

i

A b A b I




              

Each row matrix with the  superscript g  is  a unique 

generalized inverse of a column of the  matrix T ,[31-34]. 

The generalized inverses are unique in our case since they 

satisfy the additional conditions given in (9), and (10). 

Pre-multiplying (6)   by 1( )n gA b   where 1( )n gA b  is the last 

row of 
1T 
 , and , observing the conditions in (9) , we 

simplify each term as follows. 

 

1 1

1 2 1

1

1 2

1 3 1 2

1 2

1 3

( ) ( ) ( )

( ) ( ) ( ) ( )( )

( ) ( )

( )

( ) ( ) ( ) ( ) ( )

( ) ( )

( ) 11

n g n g

n g n g

n g

n g

n g n g

n g

n g

A b A bK A b A

A b A bK A b A bK A bK

A b A A bK

A b A

A b A bK A b A bK A bK

A b A A bK

A b A

 

 





 





 

   

 



   

 



                                                      

Continuing this process, the last term ends up as,  

 

1 1 1

1 1

1

( ) ( ) ( ) ( ) ( )

( ) ( )

( ) 12

n g n n g n

n g n

n g n

A b A bK A b A bK A bK

A b A A bK

A b A K

  

 



   

 

 

                                                      

Hence, (6)  is now compactly represented as, 

 1 1

1 1( ) [ I ] 0 13n g n n

n n nK A b A A A 

                                                                

Consequently, 

 1 1

1 1( ) [ I ] 14n g n n

n n nK A b A A A 

                                                                      

It’s not hard to recognize that the product of the first two 

terms of (3) is effectively  1( )n gA b , i.e. 
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2 1 1

1

1

[0 0 0 1][ ]

( )
[0 0 0 1]

( )

( ) 15

n n

g

g

n g

n g

b Ab A A b

b

Ab

A b

A b

  





 
 
 
 
 
  



 

 

Hence, K  as in (3 )  is elegantly  proved for the  general case 

of  n  states as compared to special case proofs [25-26] . 

Furthermore, the new form, 

  

 

1 1

1 1

1

1 2

1

( ) [ I ]

( ) ( )

( ) ( ) 16

n g n n

n n n

n g

n n n

n g

cl

K A b A A A

A b A I A I A I

A b P A

 







    

   



  

    

stands as a compact alternative to the original classical form 

presented in (3). 

Such depiction proves to be convenient in extending the 

method to incomplete eigenvalue assignment and to the 

assignment of uncontrollable systems as will be shown in 

sec.V, and sec.VI. 

 
 
IV.   FURTHER INSIGHT 

The original depiction of the Ackermann's formula 

artificially accentuates the fixed positional order of the 

number 1 in the first row and the fixed positional order of the 

columns 1, , , nb Ab A b   in the controllability matrix. The 

new depiction shows that such order can be dispensed with. 

The importance is in fact to the singling of  the 1( )n gA b  row 

out of 
1T 
. In other words, the controllability matrix   needs 

not be in its common layout. A possible alternative is,  

 

 

1 2 1

1

1 1

1 0 0 0

[ ... ] 17

n

n n

n n n

K A b Ab b A b

A A A I

 





   

      
  

Another reordering may be, 

 

 

2 1 1

1

1 1

0 0 1 0

[ ... ] 18

n

n n

n n n

K A b b A b Ab

A A A I

 





   

      
 

In fact, any ordered arrangement of the columns of the 

controllability matrix is eligible as long as the 1 in the first 

row matrix has the same column position as that of 1nA b  in 

the controllability matrix . Such observation couldn’t have 

been naturally spotted when considering the original 

classical proof of the method. In other words, expressing 

 1 )n gA b
as  

     1 2 1 10 0 0 1 19
g

n nA b b Ab A b A b       

And consequently K as, 

 

     

1 1

1 1

1

[ ... ]

20

g
n n n

n n n

g
n

cl

K A b A A A I

A b P A

 





    



  
 

further enhances compactness, and renders the method a 

closed-form formula which is analytically more appealing. 

 
V.   INCOMPLETE EIGENVALUES ASSIGNMENT  

Partial assignment of eigenvalues is well-known in control 

theory analysis and applications. It is generally needed 

whenever the mainstream of the system eigenvalues are 

satisfactory while the remaining ones are not. In which case 

, a subset of the spectrum of the system matrix A  is 

reassigned leaving the rest of the spectrum invariant. In 

certain cases, this is favorable and usually results in a 

simplified feedback controller in terms of structure, 

dimension, and robustness [19-21]. In our study we will not 

pursue partial assignment any further.  The reader is warned 

not to mix it with what we shall call incomplete assignment 

described next.   

Our method has an analogous feature to partial assignment, 

but of different nature. It will be called incomplete 

eigenvalue assignment.  It enjoys the liberty of assigning  a 

number of eigenvalues less than n , say q  if so desired 

without any concern of the remaining n q  eigenvalues . In 

other words, the remaining assigned eigenvalues are 

enforced and are not known in advance. They depend on the 

structure of  the system and the particular newly defined  T  

which may differ from the usual controllability matrix 

especially if the system is uncontrollable .  

One may argue the point behind that; in which case the 

answer is that such an approach enables an extension of the 

method to uncontrollable systems. Besides, as shall be 

shown in  sec.VII,  certain preliminary information can be 

obtained beforehand regarding these eigenvalues and in 

certain cases can simplify the feedback K  matrix. In the 

worst case such incomplete assignment can be looked upon 

as a characteristic feature pertinent to the newly shaped 

Ackermann's method. 

In the light of the new derivation and depiction of the state 

feedback matrix, the case of incomplete   assignment of 

eigenvalues is now shown to be easily carried out.  

Assume we are only interested in the closed loop assignment 

of the 𝑞  eigenvalues 
1 2, , , q   , where q n  with no 

interest in the remaining n q  closed loop eigenvalues. Let 

these remaining enforced closed loop eigenvalues be the 

roots of an  n q th  polynomial say,  P  . Consequently, 

the characteristic equation of our closed loop feedback 

system   is,  

 1 2( )( ) ( ) ( ) 0 21q P           

Or equivalently, 

 1

1 1( ) ( ) 0 22q q

q q P
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Where  
1 2, , , q   are obtained  by expanding the first q  

terms of (21). Alternatively, they are compactly expressed 

using the theory of elementary symmetric polynomials [30]. 

The first parenthesis accounts for the q eigenvalues to be 

assigned while  P  is in fact irrelevant to the forthcoming 

derivation.  

Due to the uncontrollability of the system  we now introduce 

an alternative T matrix modified to have the following form. 

 1 23qT b Ab A b N     
Where N  is any n n q   matrix ensuring the 

nonsingularity of T . Accordingly, the following conditions 

are to be observed and subsequently will be referred to quite 

frequently. 

 

1

1

1

( )

24
( )

q

g

g

q g

g

T b Ab A b N

b

Ab

T
A b

N







   

 
 
 
 

   
 
 
 
  

 

1

nT T I   necessitate,  

 

1

1

( ) ( ) 0 for

1 for

, 0,1,2, , 1

( ) 0 for 0,1, , 1

( ) 0 for 0,1, , 1

25

i g j

i g

n q

g i

n q

g

n q n q

A b A b i j

i j

i j q

A b N i q

N A b i q

N N I

 

 

  

 

 

 

  

  



                                                          

1

nT T I   necessitate, 

 
1

0

[ ( )( ) ] 26
q

i i g g

n

i

A b A b N N I




   

Applying   Cayley-Hamilton theorem to (22) in a similar 

manner as has been done to (5) one gets. 

 

1 2

1 2

1

(( ) ( ) ( )

( ) ) ( ) 0 27

q q q

q q n

A bK A bK A bK

A bK I P A bK

 



    

     

 

 
 

 

Note that the terms in the first parenthesis are analogous to 

those in (6 )  with q replacing n . Repeating the same 

methodology as in sec. III, we get, 

 

1 1 1 2

1 2

1

(( ) ( ) [

I ]) ( ) 0 28

q g q q g q q

q q n

A b A K A b A A

A P A bK

   



  

    

 

 
 

for (28)  to hold, it is sufficient that the terms within the 

overall first parenthesis sum to zero, in which case, 

 

1 1 1 2

1 2

1

( ) ( ) [

I ] 0 29

q g q q g q q

q q n

A b A K A b A A

A

   



  

   

 

 
 

Consequently, 

 1 1

1 1( ) [ ] 30q g q q

q q nK A b A A A I 

                       

Note that the number of terms involved   are now reduced : 

q instead of n  and the  highest power of A  is  q  which is 

necessarily less than n . Both facts add to the numerical 

attractiveness of the incomplete assignment approach.   

This  value   of K guarantees  incomplete assignment of only 

q eigenvalues . The remaining enforced eigenvalues are 

dependent upon the structure of the system and the selection 

of a particular N  as will be shown in sec.VII. 

 
VI. UNCONTROLLABLE  EIGENVALUE  ASSIGNMENT  

The new depiction of Ackermann's method superficially 

disguises the dependence of the method on the controllability 

matrix, thus helping in justifying an extension of the method 

to uncontrollable systems. We accomplish this by modifying 

the T matrix to an alternative nonsingular  one as given by 

(23). 

Such approach to the problem of uncontrollable eigenvalues 

through incomplete assignment effectively extends the 

method to uncontrollable systems; evading the impossible 

task of dealing with a would be singular controllability 

matrix.  

An established fact in control theory is that state feedback 

cannot change the uncontrollable eigenvalues and their 

associated left eigenvectors. So, any K  chosen, leaves these 

eigenvalues invariant. In other words any K  which re-

assigns the controllable eigenvalues  automatically  reassigns  

the remaining uncontrollable eigenvalues their original open 

loop values.  

The extension of Ackermann’s method to the uncontrollable 

case tackles the problem from incomplete assignment point 

of view. A state feedback matrix K   is calculated   to only 

re-assign the  controllable eigenvalues. This automatically 

leaves the uncontrollable eigenvalues unchanged. This is 

considered an advantage as knowledge of the uncontrollable 

eigenvalues actual values is not required.  

Therefore, for eigenvalue    assignment of uncontrollable 

systems   , the feedback matrix used is uK ,  

 1 1

1 1( ) [ ] 31g

u nK A b A A A I 

      

     

Where  is the number of controllable eigenvalues. The 

remaining n   uncontrollable eigenvalues are thus 

inescapably re-assigned. Bear in mind that 1( )gA b has to 

satisfy the conditions in ( 25 ), and (26). 

In essence, the method has a safe-guard   property when it 

comes   to uncontrollability. Since the method is based on the 

controllability matrix ,any further incorporation of columns 

representing  the controllable subspaces  greater than    will 

result in  a singular T  matrix affirming uncontrollability, 

consequently, forcing a compulsory need for (23).  
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A careful rethinking of (30) when assigning  a number of q  

eigenvalues reveals that K   in the case  q n    where    

is the number of uncontrollable eigenvalues only ensures  the 

assignment of q  eigenvalues, and    uncontrollable 

eigenvalues. The   uncontrollable eigenvalues are 

automatically reassigned irrespective of the T  chosen while 

the remaining n q    controllable eigenvalues are 

dependent upon the particular choice of N . As mentioned 

before, N  is  needed to ensure the non-singularity of T . 

Further results concerning these enforcedly assigned 

eigenvalues are developed below.   

 
VII.   THE ROLE OF THE TRACE OF A  

In tackling  the problem of incomplete eigenvalue 

assignment of completely  controllable systems the usual 

controllability matrix T  can be used. However, a more 

general approach which allows for systems to be 

uncontrollable is more favorable and we subsequently pursue 

it further.  

 It is now essential to choose T   as in (23) , where the 

inclusion  of the n n q    matrix N  is obligatory to 

accommodate for cases where   the system is uncontrollable. 

Later on, it is shown that choosing T  as  in (23) can be 

relaxed in the case of   controllable systems.  Such relaxation 

yields a simple  bound on the sum of the remaining enforced  

eigenvalues mainly equaling the trace of A  as proved later. 

To Accomplish  that, let 
1

q

i

i




 be the sum of the desired q  

eigenvalues to be assigned using K as  given by (30),  and 

let 
1

n

j

j q


 

  be the sum of the remaining enforced  n q   

eigenvalues.  

In addition,  let ( )tr A stand for the trace of a matrix. Using  

the fact ,[31] that for any two matrices L , and R ; 

   tr LR tr RL , and that the sum of all closed loop 

eigenvalues
1

n

l

l




  is given by ( )tr A bK  then,  

 

1 1 1

( )

( ) ( )

( ) ( ) 32

qn n

l i j

l i j q

tr A bK

tr A tr bK

tr A tr Kb

   

   

 

 

    

 

In order to  determine ( )tr Kb , following the elementary 

symmetric polynomials notation[30], K  in (30) can be 

conveniently expressed as  

 

 
1 2

1 2

1 1 2

1 1

3

1

1

(

( 1) ) 33
q

q

q q
g

q q q q

i i j

i i j

q
q

i j p

i j p

q
q

l l l n

l l l

K A b A A A

A

I

  

  



  

   

  

 

 

 





  

  

  

 

 
1 2

1 2

1 1 1

1

1 2

1

1 3

1

1

1

( ) (( ) ) (( ) )

(( )

(( ) )

( 1) (( ) ) 34
q

q

q
q g q q g q

i

i

q
q g q

i j

i j

q
q g q

i j p

i j p

q
q q g

l l l n

l l l

tr Kb tr A b A b tr A b A b

tr A b A b

tr A b A b

tr A b I b

  



 

 

 

  



   

 



 

 











 

  

  

                                                 

Using (25), 

 
1 2

1 2

1

1

1 1

1

( ) (( ) ) (1)

(0) (0)

( 1) (0) 35
q

q

q
q g q

i

i

q q

i j i j p

i j i j p

q
q

l l l

l l l

tr Kb tr A b A b tr

tr tr

tr





    

   

  

   

 



 





    

  

 

 

Ending with, 

 

1

1

1 1

1

1 1

1

( ) (( ) )

(( ) )

(( )( ) ) 36

q
q g q

i

i

q
q g q

i

i

q
q q g

i

i

tr Kb tr A b A b

tr A b A A b

tr A b A b A





 



 



 

 

 













 

Invoking (26), and using the trace of a product of matrices 

property to get traces of zero matrices we arrive at the final 

answer. 

 
1

( ) ( ) ( ) 37
q

g

i

i

tr Kb tr A tr N AN


    

Invoking (32) 

1

q

i

i





1

( )
n

j

j q

tr A
 

  ( )tr A
1

( )
q

g

i

i

tr N AN 


    

 
1

( ) 38
n

g

j

j q

tr N AN
 

   

i.e. the sum of the n q  enforced  eigenvalues is given by 

( )gtr N AN which depends on A  and the specific choice of 

N .  A  necessary condition for stability when using 

incomplete assignment is  a negative trace for gN AN , 

which may be the case for some systems and certain N .  

 However, if the system dynamics are not satisfactory and 

the uncontrollable eigenvalues have negative real parts, one 
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can always resort to a full specification of the whole   

controllable eigenvalues ,i.e. letting  q    and use (31). 

 For the  special case of completely controllable systems, T  

can involve the whole controllable subspace  as in (7) , 

yielding  

 1 2 1[ ] 39q q n nN A b A b A b A b    

In which case, it is now shown that the sum of the remaining 

enforced eigenvalues is equal to ( )tr A .  

First,  gtr N AN is  shown equal to 1( )n g nA b A b  which is 

generally not zero. Then we show it equal to ( )tr A  as 

demonstrated below. 

 

1 2 1

1

2

1

[ ]

( )

( )

40

( )

( )

q q n n

q g

q g

g

n g

n g

N A b A b A b A b

A b

A b

N

A b

A b

  









 
 
 
 
 
 
 
 

                                                                               

Hence, using (9) for   , 1, , 2, 1j q q n n    . 

 

1

2

1

0 0 0 ( )

1 0 0 ( )

41

0 0 0 ( )

0 0 1 ( )

q g n

q g n

g

n g n

n g n

A b A b

A b A b

N AN

A b A b

A b A b







 
 
 
 
 
 
 
 

 

    

   1( ) ( ) 42g n g ntr N AN A b A b   

Furthermore, after proper manipulation using trace of a 

product of product of matrices and using (10) it can be shown 

that  

 ( ) ( ) 43gtr N AN tr A  

 

i.e. the sum of the enforced eigenvalues are now  given by 

( )tr A  and therefore their sum is  known beforehand. For a 

single enforced eigenvalue case , this is fine as  stability is 

secured once ( )tr A  is negative . Sufficient conditions for 

instability, however,  are  non-negative ( )tr A . 

VIII.   EXAMPLES 

Example 1 

An unstable single input controllable system has the 

following system matrices,  

 

 
2 3 2

,
3 2 1

A b
   

    
   

 

It is required to assign the two eigenvalues 4 5i  , hence,  

 

   
1

2 20 1 * *( ( 4 5 ) )( ( 4 5 ) )K b Ab A i I A i I


        

 
 

20 1 * *( 8 41 )

g

g

b
K A A I

Ab

 
   

  

 

     284
3 32*( 8 41 ) 1.3333 9.3333

g
K Ab A A I      

The closed loop system matrix is 
652

3 3

5 22
3 3

-0.6667 -21.6667

1.6667 -7.3333
AK A bK

    
      

   
 

Which can be checked to have the two eigenvalues 4 5i   

 

Example 2 

A third-order uncontrollable system has the following 

system matrices,  

 

8 3 3 1

6 0 4 , 1

0 1 3 0

A b

   
   

  
   
      

 

The uncontrollable eigenvalue is -2, which cannot be 

changed by state feedback. Since it has negative real part, we 

have no problem with stability. The remaining two 

eigenvalues have to have negative real parts, say 4 5i  . 

Since the system is uncontrollable we have no choice but to 

choose a modified controllability  matrix as in (23), i.e. 

 

   
1

3 30 1 0 * *( (4 5 ) )( (4 5 ) )K b Ab N A i I A i I


      

Where an  1 0 0
T

N  ensures an invertible  

modified controllability  matrix, hence, 

 

    30 1 0 * *( 8 41 )

g

g

g

b

K Ab A A I

N

 
 

   
 
  

 

Resulting in  

   3*( 8 41 ) 6 5 30
g

K Ab A A I      

The closed loop system matrix is 

2 2 27

0 5 26

0 1 3

AK A bK
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By inspection, -2 is an eigenvalue, while the two remaining 

eigenvalues are those of the  matrix M  given by,  

5 26

1 3
M

  
  

 
 

 

Example 3 

Consider assigning repeated eigenvalues for the following 

controllable system  

  5    3    3     0  1

    6    3    4     0   0

    
,

0    1      0    1   0

     0     0   0    3  1 

A b







   
   
    
   
  
   

                                                           

 

It is required to assign 5 , 5   , and 2 j   as eigenvalues. 

Since ( ) 5tr A   , and 5  is an eigenvalue to be assigned, 

then in order to reduce the number of terms, the theory of 

incomplete assignment can be used. In this case , according 

to (38), and (43), N   has to be 3A b  , and the K  used is  

 2

4 4 4( ) ( 5 )( (2 ) )( (2 ) ) 44gK A b A I A j I A j I                                           

Where 2( )gA b is given by the third row of 
1T 
, 

                                                                                   
1

1 2 3

2

3

2 8 1 13

16 7 8 16 ( )
/15

17 8 14 17 ( )

19 17 13 19 ( )

g

g

g

g

T b Ab A b A b

b

Ab

A b

A b


    

  
  

      
    
  

       

 

i.e. 

 2( ) 17 8 14 17 /15gA b      

Using (30),  K  is exactly,  and uniquely, 

   16.4 16.6 19.8 7.4 45K      

The acker command has been used to validate the unique K
in (51),  and  the  jordan(A-b*K) command has been used to 

validate  the assignment of 5 , 5 , and 2 j     as 

eigenvalues . 

If the fact ( ) 5tr A    was ignored, the assignment problem 

becomes that of the classical Ackermann's method . In which 

case and since the system is controllable,  we  should get the 

same numerical value for K using (3) or (16), though K is 

now structurally different  from that given in (44).  
3 2

4 4 4( ) ( 5 ) ( (2 ) )( (2 ) )gK A b A I A j I A j I       

It still results in a numerical value for  K  as given by (45). 

Such answer can be checked using the acker command of 

MATLAB[35], but cannot be checked using the place 

command as it involves assignment of two identical 

eigenvalues where their number  exceeds the rank of b . 

 

Example 4 

A process has the following system matrices, [7] 

  5    3    3     0  1

    6    3    4     0  1 

    
,

0    1      0    1   0

     0     0   0    3  1 

A b







   
   
    
   
  
   

 

 

It is required to assign the eigenvalues 3,  4,  5    and of 

course to reassign any  uncontrollable eigenvalue  (in fact its 

value need not be known beforehand and even if it was 

known it  will not be needed in the calculations). At least the 

sign of the real  part has to be negative. The uncontrollable 

eigenvalue  is this example is  -2.  

The system is unstable and also uncontrollable, but we need 

not test for that in advance. The classical method detects 

uncontrollability due to  the incalculability  of 
1T 
and 

therefore the classical method cannot be used. However, the 

incomplete method is well suited to mitigate  such defect 

through any choice for N . 

The number of columns in N ,  should equal the number of 

uncontrollable eigenvalues, having  any  values  ensuring a 

nonsingular T . Since the system has a single uncontrollable 

eigenvalue, let N  be as simple as  0 0 0 1 TN  . The 

T matrix  used is  therefore.  

2

1 2 7 0

1 3 11 0

0 2 6 0

1 3 9 1

T b Ab A b N

 
 


 
 
 



 



 
   

Which has the following inverse 

1

2 1 0.5 0

3 3 2 0

1 1 0.5 0

2 1 1 1

T 

 
 

 
 
 
 

      

2( )gA b is now extracted and is given by the third  row of 
1T 
, i.e.  

 2( ) 1 1 0.5 0gA b    

Using (31) where 3  ,                    

    2

4 4 4( ) ( 3 )( 4 )( 5 ) (46)gK A b A I A I A I     

 Yields, 

   90 81 69 18 47K    

Note that the 2  uncontrollable eigenvalue is not involved 

in (46 ). Either eig(A-b*K) or jordan(A-b*K) can now be 

used to validate the assignment  of 2, 3, 4,and 5    . 

Commenting: 

For example 4 and due to uncontrollability, the above  

answer for K cannot be checked using the place command 

of MATLAB as place will give a second  alternative yet valid 

answer. This is due to the fact that  K  for uncontrollable 

systems is not unique even for single input systems. 

Note also that the acker function of MATLAB doesn’t work 

in this case since the classical Ackermann's method only 

deals with controllable systems. In other words, the acker 

command of MATLAB can be perfected by our outlined 

procedure for it to deal with uncontrollable systems.  
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Using MATLAB, a general check method for eigenvalue 

assignment is eig(A-b*K). For the case of repeated 

eigenvalues one better use the numerically more expensive 

command jordan(A-b*K) especially when the eigenvectors 

are required. 

To sum things up: the place command cannot be used with 

example 3 as it  cannot assign eigenvalues with multiplicity 

greater than ( )rank B , but the acker command can. The 

acker command cannot be used with example 4 due to 

uncontrollability, but the place command can though it gives 

a different answer for K .   

In conclusion, our modified and improved Ackermann's 

method easily works in both cases.  It offers liberty of choice 

as in example 3, and flexibility resulting in simplicity as in 

example 4.  

 
CONCLUSION 

The study presents an elegant general proof of the method of 

Ackermann, resulting in an alternative concise depiction. 

The new depiction results in a more compact formula, and 

facilitates a method of incomplete assignment of eigenvalues 

if so desired. An advantage of incomplete assignment is that 

it can help in simplifying the structure for the feedback 

matrix in certain cases especially when the system is 

uncontrollable. A principal contribution of our study is the 

extension of the method to deal with uncontrollable systems 

at no extra cost. This has been accomplished through treating 

uncontrollable systems as a special case of the incomplete 

assignment approach.  

Future work may tackle the problem of adaptation of the 

Ackermann’s method to the eigenvalue assignment of 

controllable and uncontrollable multi-input systems. 

Moreover, exploration studies are needed concerning  

particular selections for  N  to further pin-point the values of 

the remaining enforced eigenvalues. Further investigations 

may delve into multi-input eigenstructure assignment 

concerning the assignment of eigenvectors in addition to that 

of eigenvalues. 
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