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ACME: Automated Cell Morphology Extractor for
Comprehensive Reconstruction of Cell Membranes

Kishore R. Mosaliganti, Ramil R. Noche, Fengzhu Xiong, Ian A. Swinburne, Sean G. Megason*

Department of Systems Biology, Harvard Medical School, Boston, Massachusetts, United States of America

Abstract

The quantification of cell shape, cell migration, and cell rearrangements is important for addressing classical questions in
developmental biology such as patterning and tissue morphogenesis. Time-lapse microscopic imaging of transgenic
embryos expressing fluorescent reporters is the method of choice for tracking morphogenetic changes and establishing cell
lineages and fate maps in vivo. However, the manual steps involved in curating thousands of putative cell segmentations
have been a major bottleneck in the application of these technologies especially for cell membranes. Segmentation of cell
membranes while more difficult than nuclear segmentation is necessary for quantifying the relations between changes in
cell morphology and morphogenesis. We present a novel and fully automated method to first reconstruct membrane
signals and then segment out cells from 3D membrane images even in dense tissues. The approach has three stages: 1)
detection of local membrane planes, 2) voting to fill structural gaps, and 3) region segmentation. We demonstrate the
superior performance of the algorithms quantitatively on time-lapse confocal and two-photon images of zebrafish
neuroectoderm and paraxial mesoderm by comparing its results with those derived from human inspection. We also
compared with synthetic microscopic images generated by simulating the process of imaging with fluorescent reporters
under varying conditions of noise. Both the over-segmentation and under-segmentation percentages of our method are
around 5%. The volume overlap of individual cells, compared to expert manual segmentation, is consistently over 84%. By
using our software (ACME) to study somite formation, we were able to segment touching cells with high accuracy and
reliably quantify changes in morphogenetic parameters such as cell shape and size, and the arrangement of epithelial and
mesenchymal cells. Our software has been developed and tested on Windows, Mac, and Linux platforms and is available
publicly under an open source BSD license (https://github.com/krm15/ACME).
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Introduction

Pattern formation and tissue morphogenesis are two classical

and unsolved problems in developmental biology. Patterning

refers to the process by which the embryo generates the right kind

of cells at the right place and time. Morphogenesis refers to how

tissues are bent and molded to achieve the right shape and form.

Modern systems-based approaches to understand these processes

in vivo involve using advanced imaging techniques to elucidate how

mechanisms at multiple spatial scales i.e., molecular networks,

single cell behaviors, cell-cell interactions, and tissue mechanics,

are coordinated to turn an egg into an embryo [1,2]. By

systematically imaging embryos expressing fluorescent proteins

with confocal or two-photon microscopy (in toto imaging), one can

watch events at cellular resolution and then quantitatively model

these events inside a computer [3].

In toto imaging generates large quantities of images depicting

developmental dynamics in the embryo across space and time [4–

6]. For example, a confocal or two-photon imaging session can

capture three-dimensional images covering a field-of-view of

200|200|100mm with a spatial sampling of 0:2|0:2|0:8mm
and with a time-sampling rate of 2 minutes over a period of 2

days. The process of imaging consists of irradiating the specimen

with laser light focused on successive optical planes in XY . The

useful sampling interval between successive optical planes is

limited by the point-spread function (PSF) of the optics leading to

worse resolution and thus larger sampling intervals along the Z-

axis in comparison to the XY plane. Such an imaging experiment

typically generates 100,000 images per experiment, with about

5000 cells in a given 3D image and over 100,000 cell tracks and

division events in the whole dataset. As a result, automated image

analysis techniques are essential for extracting cell kinematic and

morphogenetic parameters such as cell shapes, cell trajectories, cell

packing, and tissue rearrangement patterns [6–8]. Automatic

extraction needs to be robust since manual curation of errors is

laborious even at low error rates for a large field of cells.

Over the past decade, a number of automated methods were

developed for 3D nuclei-specific segmentation including watershed

[9–11], active surface based methods [12–16] and gradient vector

flow methods [17]. However, robust segmentation of membranes

rather than just nuclei remains a difficult problem. Most

techniques for membrane segmentation use nuclear segmentations

as seeds for expanding into membranes [12,16]. The reason
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progress on segmentation algorithms for membrane has lagged

behind nuclei is manifold: cell nuclei are better separated; have

more consistent and simple shapes; maintain a condensed marker

expression, and are more photostable for time-lapse experiments.

However, in many situations, nuclear images require additional

acquisition overhead and membrane information may be more

vital in a study. For example, membranes are pertinent to the

analysis of cell behavior and morphogenesis since cell shape and

size, and intercellular contact areas can be directly quantified.

Thus, there is a compelling need for algorithms that obtain

membrane segmentations directly when there are no nuclear

images available.

To address this need, we present a fully automated method with

corresponding open-source, cross-platform software (ACME) to

reconstruct weak membrane signals for achieving high-quality cell

segmentations. We validated our algorithm using synthetically

generated images for which ground-truth is known as well as with

real images that were manually segmented by an expert. For

generating synthetic data, we developed novel simulations of the

image acquisition process replete with suitable noise models. Using

simulated data, the performance of the algorithm was compre-

hensively evaluated against different noise conditions. To further

demonstrate the utility of our method, we quantified cell shape

and size, and the development of epithelial and mesenchymal

characteristics in images of the zebrafish presomitic mesoderm.

Our algorithm enabled us to quantify differences in the dynamics

of cell sub-populations that correlate with the mesenchymal to

epithelial differentiation process. Our methods are computation-

ally-efficient, powerful, and widely-applicable to the quantitative

analysis of cell dynamics during morphogenesis.

Design and Implementation

Membrane signal reconstruction for accurate image
segmentation
Two big challenges with membrane data are the presence of

intensity inhomogeneities and punctuated gaps along the three-

dimensional boundary. In Figure 1(A–C), we show a single cell

membrane across the three cross-sections of XY , XZ and YZ.

Intensity inhomogeneity (red and blue arrows) can be explained

with help of an image formationmodel formembranes (Figure 1(D)).

Here, optical planes (red lines) periodically section a dense cloud of

fluorescent proteins tagged to membranes. The point spread

function (PSF) of the optics accumulates emissions from a small

neighborhood of fluorophores and creates intensity profiles shown

in dark red. Mathematically, this is a convolution of the PSF with

the fluorophore density function of the sample. The intensity at a

voxel is therefore representative of the fluorophore density at the

focused region of the tissue. Cell junctions are generally more

intense as a result of high spatial concentration of fluorophores

arising from the co-localization of multiple membranes. Addition-

ally, membranes that are orthogonal to the imaging planes depict a

crisp and bright intensity profile, whereas oblique membranes

appear diffuse (observable in the XZ and YZ views in Figure 1(B–

C)). This is because the PSF, as mentioned before, is shaped similar

to an anisotropic Gaussian kernel with sx&syƒsz. The strength of

the output signal is thus dependent on the relative alignment of he

membrane and the PSF kernel. Thus, orthogonal membranes

present a strong signal because the PSF samples fluorophores in the

membrane ‘‘above’’ and ‘‘below’’ the focal plane. For oblique

membranes, the space ‘‘above’’ and ‘‘below’’ is non-fluorescing so

that output signal is weaker. In the limit, en-face membranes,

especially those in between imaging planes are often very dim and

difficult to detect even by the human eye.

In order to correct these two problems, we developed signal

reconstruction techniques. Our algorithms are inspired by work

on vessel-detection from MR and CT imagery in which Hessian-

based filters were designed to detect vessels [18,19]. They used

the fact that eigenvectors of the image Hessian point in the

directions of principle curvature. At vessel boundaries, the

eigenvector with largest eigenvalue is almost normal to the

boundary, and the one corresponding to the smallest eigenvalue

points along the vessel axis. Here we extend these ideas to planar

membrane structures and further improve these results using a

voting strategy.

Our method has three stages (Figure 1(E)): (i) We observe that

membranes assume locally linear intensity patterns especially in

dense cell regions. This is used to design image processing filters

to identify planar intensity formations in images. Automated

scale-selection is accomplished by identifying the relative

orientation of the membrane planes with a putative Gaussian

PSF. (ii) Near inter-cellular junctions and due to image noise,

the planarity assumption breaks down causing structural gaps to

appear. The identified planar components are then used in a

voting framework to fill gaps and eliminate spurious structures.

(iii) After reconstructing membrane planes, we use the popular

watershed methodology for image segmentation to identify

cells.

Planarity detection function for locating membrane
planes
Using our preliminary work in [20], we designed an image filter

that responds to 3D locally planar intensity structures such as those

found in cell membranes and suppresses all other types of intensity

patterns. The derived filter is based on the the Hessian matrix

(+2u) of the intensity function u(x) combined with normalized

Gaussian derivatives that provides an aspect of scale. Let l1(x),

l2(x) and l3(x) be the sorted (Dl1DƒDl2DƒDl3D) eigenvalues of

+2
su(x) with corresponding eigenvectors e1(x),e2(x),e3(x).

In a local coordinate reference frame placed at a membrane

voxel, we are interested in identifying the neighborhood intensity

distribution. There are three types of distribution shapes that can

be detected: rod, plane and ball (Figure 2). Based on our

presentation, it is easy to see that a rod has a 0 change in second

derivative of intensity along its axis and maximal change in the

cross-sectional plane. Hence, Dl1D&0 and e1 points along the axis.

e2 and e3 lie in the cross-sectional plane with Dl2D&Dl3D. In the case

of a plane, the maximal change in directional second derivative is

along the normal and there is no change in the plane. Hence, we

have e3 along the normal and e1 and e2 lying on the plane.

Correspondingly, the eigenvalues follow the relation

0&Dl1D&Dl2D%l3. Finally, for a ball (uniform signal), there is no

preferential orientation and all directions have the same change of

directional second derivatives. Hence, 0%Dl1D&Dl2D&Dl3D. Table 1

summarizes these different cases.

In order to detect membrane structures, we want to selectively

identify pixels that belong to a plane distribution rather than a ball

or a rod. Hence, we define the planarity of a voxel x as the

similarity of the local neighborhood N x to a plane-like structure,

as:

Ps(~ll)~

0 if l3§0

(1{e
{

S2

2c2 )
|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

T0

: e
{

A2

2a2
|fflffl{zfflffl}

T1

: e
{

B2

2b2

|fflffl{zfflffl}

T2

: e
{

2c2

l2
3

|fflffl{zfflffl}

T3

otherwise

8

>>><

>>>:

ð1Þ
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where, A~
Dl2D

Dl3D
, B~

ffiffiffiffiffiffiffiffiffiffiffi
Dl1l2D

p

Dl3D
, S~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

l21zl22zl23

q

g ð2Þ

Here, 0vPsv1 with larger values indicating more similarity to

a plane at regularization scale s. The free parameters (a,b,c) are

set to 1 in our experiments and code but may be fine-tuned

depending on the specifics of the imaging modality. For the case of

bright membranes on a dark background, a positive l3 denotes

background and hence the planarity output is set directly to 0. We

now explain how background voxels and voxels corresponding to

the rod and ball forms are suppressed by design:

1. Foreground vs. background: If~ll&0, it indicates image background

with minor variations due to noise. This case is quantified by

T0, and c controls the smallest acceptable scale. In membrane

locations, S&0 and hence T0&1. In contrast, background

regions have S&0 and hence, T0&0.

2. Plane vs rod: The parameter T1 measures the ratio of the largest

pair of eigenvalues. It is close to 0 for a plane and 1 for a rod.

Hence, the negative exponential function selectively prefers the

plane to a rod.

3. Plane vs ball: The term T2 measures the ratio of the smaller pair

of eigenvalues with the largest one. It is close to 0 for a plane

and in turn, T2 has values closer to 1. Note that for a ball, B&1

and T2%1 as a result.

Figure 1. Reconstructing the membrane signal by eliminating intensity inhomogeneities. A single cell membrane is shown across (A) XY ,
(B) XZ, and (C) YZ sections. The XY plane shows a consistently bold and uniform membrane signal while the XZ and YZ views show a non-uniform
membrane signal. Membrane planes en-face to the XY optical planes (marked by red arrows) are very weak and markedly diffuse in intensity.
Membranes orthogonal to the XY imaging plane are sharper (blue arrows). (D) A qualitative model describing the formation of a membrane image
under a fluorescent microscope. Flourophores tagged to membranes are shown as a point cloud (input). The XY focal planes are shown in red and
the obtained intensity profiles on the plane are shown as plots. Cell membranes imaged oblique and en face such as the interface between cells 2{4
are poorly visible in comparison to those orthogonal to the focal planes. (E) Three stages in the reconstruction process: (i) Detect membrane planes
by mining for planar fluorophore distributions. This allows even weak membranes (en-face or oblique) to be extracted and accounts for intensity
inhomogeneity. (ii) Voting to fill structural gaps or holes in the membrane signal that may not be contiguous. (iii) Region segmentation using the
watershed algorithm to extract three-dimensional cell meshes for quantification.
doi:10.1371/journal.pcbi.1002780.g001

Figure 2. Tensor decomposition. A symbolic illustration of a generic tensor represented in terms of basis tensors of type plane, rod and ball.
doi:10.1371/journal.pcbi.1002780.g002
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4. Smooth Plane: In order for Ps to be a smooth function around

the origin (~ll&0) and robust to noise, we add a fourth term T3

that selectively picks up voxels that have a relatively large Dl3D

value compared to a small value of c(~0:01). When l3~0, T3

evaluates to 0.

A heat map of the sampled function P in the ~ll space with all

free parameters set to 1 is shown (Figure 3). Since Ps is a three

dimensional function defined on (l1, l2, l3), we show a single 2D
cross-section at l1~0. In the figure, high filter response

corresponds to voxels having a plane form alone

(0&Dl1D&Dl2D%Dl3D), while background voxels and voxels corre-

sponding to the rod and ball forms are suppressed.

Earlier, we described how membranes have crisp or diffuse

profiles depending on their orientation with respect to the optical

planes (Figure 1). In an ideal situation, the PSF is an impulse-

response and the membrane plane is infinitesimally thin and s?0
is sufficient for its detection. However, this ideal is not achievable

in optical microscopes. So, we model the PSF as an anisotropic

Gaussian kernel (sx&syƒsz). The signal for an orthogonal

membrane is contained in a small band of pixels as opposed to an

en-face membrane which is diffused farther out. Thus, the scale of

Hessian computation (s) needs to adapt depending on membrane

orientation. Let smin and smax represent the optimal scales for

orthogonal and en-face membranes with respect to the optical plane

with normal k̂k (a unit vector along the optical axis). The normal

orientation of membranes locally is given by the eigenvector e3, as

per our convention. Therefore, we automatically determine scale

as:

s~sminz(smax{smin)De3:k̂kD ð3Þ

The dot product of e3 and k̂k returns the cosine of the angle

between the optical axis and the largest principal components, so

s~smin if they are orthogonal and s~smax if they are parallel. In

our case, for a orthogonal membrane we set smin~2sx&0:4 mm
and smax~2sz&1:4 mm, which makes s[½0:4,1:4� mm. To first

determine membrane orientations (e3 in the above formula), we

use a blind scale determined by s�~0:5(sminzsmax)~0:9mm to

compute +2
s�u(x).

In Figure 4, we show a three-dimensional result of applying the

planarity function on raw data (a–d). The result (e–g) is displayed

along orthogonal sections in XY , XZ and YZ respectively. The

last column is a detailed view of the first column of images. We

identify membrane voxels inspite of severe intensity inhomogene-

ities and noise. The image center shows cells in the notochord

region which have a very weak intensity profile but were uniformly

identified by our method. Local variations of membrane intensities

due to orientation differences with the optical planes are also

compensated. This can be seen in the orthogonal planes XZ and

YZ, where membrane structures are well-reconstructed. Upon

zooming in at a high resolution in (h), we spot several gaps in the

membrane structure especially near membrane junctions. At these

locations, the intensity structure ceases to be of planar distribution.

In some locations, planar noise patterns create false positives in

detection. In order to eliminate these spurious structures and

reconstruct membranes alone, we use the tensor voting framework

to build on the output of the planarity filter.

Tensor voting to fill structural gaps in membrane data
The principle of tensor voting is that image voxels vote in their

surrounding neighborhood to propagate information about the

presence of a surface passing through them [21,22]. At each voxel,

votes are cast and accumulated in a local neighborhood. The basic

idea behind this process is that if a set of unconnected voxels exists

on a geometric surface oblivious of each other, then by voting each

voxel develops a sense of direction and affiliation. Thereafter, the

surface boundary can be automatically extracted by a region

segmentation procedure such as the watershed. The geometric

surface in our context refers to the membrane planes.

The application of tensor voting to membrane images has

previously been considered. Loss and colleagues developed an

iterative extension of the tensor voting framework to demonstrate

its application on low fidelity 2D membrane images [23].

Although, tensor voting methods are parameter-free, they are

computationally expensive and do not scale well with large image

sizes. The iterative extension exacerbates the computational cost.

In our case, the accurate detection via the planarity filter provided

to the tensor framework eliminates the need for iterative methods.

In another extension, Parvin et al. [24] developed an iterative

voting system that employs tunable kernels to refine paths of low

curvature in images. Given the short nature of membrane

segments, we do not consider the iterative extension here.

Table 1. Geometric structure classification based on eigen-
system.

Structure l A B S

Foreground - - - high

Plane 0&Dl1 D%l2 D&Dl3 D &1 0 high

rod 0&Dl1 D&Dl2 D%Dl3 D 0 0 high

Ball 0%Dl1 D&Dl2 D&Dl3 D &1 &1 high

Background - - - low

An overview of the local intensity structures determined by their eigen-system.
Parameters A, B, and S refer to individual terms in the planarity filter (Equation
1 and 2). These terms are specified as ratios of individual eigenvalues to
enhance the identification of planes relative to rods and ball structure classes.
doi:10.1371/journal.pcbi.1002780.t001

Figure 3. Planarity response function. Ps is computed for different
values of (l2 , l3) and for l1~0 and free parameters (a,b,c,c) set to 1.
The function response shows high values for voxels having l values
characteristic of planar arrangements alone.
doi:10.1371/journal.pcbi.1002780.g003

Automated Segmentation of Cell Membranes
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There are three stages of the tensor voting process: (i) initialize a

tensor image, (ii) cast and accumulate votes at each voxel, and (iii)

extract membrane saliency image.

Initialize a tensor image. First, a tensor image Tinit is

constructed to represent the affiliation to a geometric surface at

each voxel and the corresponding direction of its surface-normal.

Figure 4. High-fidelity reconstruction of zebrafish membrane images. Significant improvement in membrane signal quality is shown in XY,
XZ and YZ planes. (A–D) Raw data showing dorsal view (anterior on top) of zebrafish neuroepithelium (ne) and notochord at 12 hpf, (E–H) Planarity
function intermediate output and (I–L) Tensor voting final output. The last image in each panel shows a color-mapped zoomed view for easy
comparison.
doi:10.1371/journal.pcbi.1002780.g004

Automated Segmentation of Cell Membranes
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Each voxel (position p) is mathematically represented as a second-

order tensor encoding the magnitude as eigenvalues (k1, k2, k3)

and corresponding eigen directions (s1, s2, s3). The tensor is a

symmetric and non-negative (0ƒk1ƒk2ƒk3) matrix and can be

written as:

Tinit(p)~ s1 s2 s3½ �
k1 0 0

0 k2 0

0 0 k3

2

6
4

3

7
5 s1 s2 s3½ �T ð4Þ

In a local coordinate system at each voxel, there are three

possible geometric structures that can pass through a voxel

namely, a 3D ball, a 3D rod, and a 3D plane. Thus, the tensors

encode the contributions of the three forms in terms of their

normals as follows:

Tinit(p)~k1s1s
T
1 zk2s2s

T
2 zk3s3s

T
3 ð5Þ

~ (k1)(s1s
T
1 zs2s

T
2 zs3s

T
3 )

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Ball

z (k2{k1)(s2s
T
2 zs3s

T
3 )

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

rod

z

(k3{k2)s3s
T
3

|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

Plane

ð6Þ

In the above equation, a plane is encoded as the inner-product

of its normal (s3), a rod by the inner-product of two normals

spanning its cross-section (s2 and s3), and a ball by the inner-

products of all directions (Figure 2). The coefficients k1, (k2{k1),

and (k3{k2) represent the saliency of each geometric structure. At

the end of the voting process, we expect membrane voxels to

contain high plane saliency (k3{k2) and low saliencies for the rod

and ball structures.

To construct a tensor image Tinit, we initialize all voxels as

follows: (k1,k2,k3)= (0,0,P(x)) with s1~e1, s2~e2, and s3~e3.

Here, P(x) refers to the output of the planarity filter described in

the previous section. Therefore, all identified voxels get encoded as

plane tensors with high saliencies and directions same as the image

Hessian. By substituting in Equation 5, we get the input token

image (T ) as:

Tinit(x)~P(x)e3eT3 ð7Þ

Cast and accumulate votes. Once the initial token image

Tinit is defined, the next step is the voting step wherein each voxel

influences its neighbors in the output image Tout based on a scale

parameter V. The vote VV(p,q) from a voxel p[Tinit to another

voxel q[Tout consists of a modified version of the encode tensor

Tinit(p). The modification consists of a distance-dependent

attenuation of magnitude and transformed orientation of T(p).

The attenuation in magnitude is motivated by the fact that a

voxel’s influence should progressively decay in the neighborhood

based on its distance from p. The rotation is motivated by the fact

that voting should be cognizant of the curvilinear surface each

voxel is affiliated to.

The construction of a plane voting field describing the rotation

is given in Supplementary Text S1 (Section 1 and Supplementary

Figure S1) and review articles [21,22]. By using this voting field as

a lookup table, the votes from each voxel p in the input image Tinit

to its neighborhood in the output image Tout is efficiently

computed. There is a single free parameter V that defines the

size of the voting neighborhood window N .

Tout(q)~

P

p[N(q) P(p)VV(p,q)
P

p[N(q) P(p)
ð8Þ

Extract membrane saliency image. We earlier mentioned

that the identified voxels in the planarity output belong to either

spurious structures generated by noise or lie on 3D membrane

planes. The output of the voting step increases the affiliation (or

saliency) of the voxels on the membrane planes and reduces stand-

alone or disconnected structures to low saliency values. The output

image Tout is once again decomposed to its geometric forms using

Equation 5 and the plane coefficients (k3{k2) are extracted. This

represents the final membrane reconstruction to be used as a

topographic map for the watershed algorithm.

Figure 4 shows the reconstructed membrane profile (I–L) given

the planarity function input in (E–H). As before, we show the

profiles in all three cross-sections of XY , XZ, YZ and a zoomed

image respectively. It is easy to observe the high quality of

reconstruction profiles especially in the zoomed image showing

thin and narrow cells. Junctions were smoothly reconstructed and

gaps in the structure were eliminated. Spurious formations were

also eliminated by the voting process. There is no intensity

inhomogeneities present which now make it straight-forward to

perform image analysis tasks such as segmentation and shape

analysis. We have chosen to focus here on the planar tensor

component because our intent is cell membrane segmentation and

analysis of morphology, but a similar approach could be used to

reconstruct rod-like structures such as microtubules and microfil-

aments using our code.

Membrane segmentation using watershed algorithm on
reconstructed images
We use the watershed algorithm for obtaining high quality

segmentations once the reconstruction procedure is completed

[11]. We use the saliency images generated from tensor voting as

topographic maps in the watershed procedure. The saliency image

results from the votes of tensors oriented along the membranes

thereby causing a very rapid change in values normal to the

membrane. Figure 5 shows the resulting cell segmentations

obtained from using our new approach on two timepoints of

noisy membrane data. The output of the high-quality reconstruct-

ed membrane signal is shown in the orthogonal image planes. A

step-wise graphical overview of the complete segmentation process

is provided in Supplementary Figure S2.

Results

In order to validate our segmentation results, we quantified

segmentation accuracy on synthetic images where ground truth is

known and on real images manually segmented by experts using

four metrics: average volume overlap (Dice), average L2 Hausdorff

distance, over-segmentation and under-segmentation rates. The

Dice coefficient for measuring volume overlap between the

automated results and the ground truth for a single cell is defined

as:

O(Ra,Rg)~
DRa\Rg D

DRa|Rg D
ð9Þ
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where Ra is the automated extracted region and Rg is the ground

truth region. The \ operator takes the intersection of two regions

while | takes the union of regions. The L2 Hausdorff distance (in

mm) refers to farthest separation of closest boundary points between

the two segmentations [25]. In other words, it is the error in

localizing the true border between two cells due to distortions in the

object morphology. The over-segmentation measure indicates that

a cell has been separated into more than one object, or an extracted

object has not been labeled as cell. The under-segmentation

measure indicates that clusters of cell have not been appropriately

divided or a true cell was not at all extracted (Figure 6G).

In Tables 2 and 3, a total of M pairs of manual (of total of G

labels) and automated segmentation labels (of total of A labels)

were first matched by checking for overlap larger than 0.75. The

average volume overlap (Overlap) and L2 Hausdorff metric

(Encroach) was computed across all M matched pairs. Manual

segmentation labels that remained unmatched were classied as

over-segmentation (O) or under-segmentation (U ) labels. We

define an over-segmentation instance when a manual label

overlaps with multiple automated labels. Under-segmentation is

when two manual labels are output as a single automated label.

However, there is a scope for complex error types to be present.

For example, an automated label may undersegment two manual

labels but participate in the over-segmentation of a different

manual label. To be consistent, over-segmentation is when a

manual label has no more than 75% of its area overlapping with

Figure 5. Robust reconstruction and segmentation of cells in the presomitic mesoderm. (A–C) Raw image data showing presomitic
mesoderm on 2D image planes (XY,YZ, and XZ) at 3ss. (D–F) Segmentation meshes overlaid on reconstructed membrane images demonstrate
excellent localization. Each mesh was randomly colored for visually separating adjacent cells easily. (G,H) 3D rendering of membrane segmentations
at 3ss and 5ss. Somites 3, 4 and 5 at 5ss are formed from the presomitic tissue at 3ss by cell sorting and rearrangement.
doi:10.1371/journal.pcbi.1002780.g005
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any automated label (Ra\Rgv0:75Rg ), else it is an under-

segmentation label. Based on these classifications, we measured

the precision and recall of the automated procedure. Precision

measures the fraction of correctly identified cells from the

automatically segmented set of cells (M=A), so measures false

negatives. Recall measures the fraction of correctly identified cells

from the number of manually segmented cells (M=MzOzU ) so

measures false positives.

High sensitivity as demonstrated by performance on
synthesized 3D membrane images
Since there is no gold standard available for evaluating

algorithm performance, we synthesized 3D membrane images

based on an image formation model that simulates confocal

microscopy of membrane labeled embryos (Supplementary

Section S3 and Supplementary Figure S3). The advantage of

using synthetic images is that ground-truth is exactly known and

Figure 6. Accurate and highly-sensitive algorithm performance on synthesized 3D membrane images. (A–C) Synthesized cell structures
in 3D along XY , YZ and XZ sections with image noise added (Table 2). As in the case of real-world images, the lateral resolution significantly differs
from the axial resolution. (D–F) Segmentations overlaid on the raw image with a 50% opacity function. (G) An example of under-segmentation
(brown cells, black arrows) and over-segmentation (interstitial fragments, white arrows) in the image. The errors could be filtered out by size criteria.
doi:10.1371/journal.pcbi.1002780.g006

Automated Segmentation of Cell Membranes

PLOS Computational Biology | www.ploscompbiol.org 8 December 2012 | Volume 8 | Issue 12 | e1002780



different imaging parameters can be rapidly tested. A spectrum of

ten images with varying noise parameters was generated for

comparison, and the performance of the algorithm is described in

Table 2. Despite the fact that cells are tightly-packed and large

additive noise is present, the proposed method reconstructs

membranes and segments the touching cells with high precision.

Figure 6(A–C) shows an example of a synthesized 3D membrane

image containing 1000 cells with the corresponding segmentation

results shown in Figure 6(D–F). The performance of the algorithm

steadily degraded for higher levels of noise as expected. It was

observed that in the worst case, we obtained a precision of 94%

and recall of 98%. The enchroachment on neighboring cells was

limited to 1.42 mm and with an overlap of more than 84%. As it is

clear from these results, our proposed segmentation method

achieves significant volume overlap with the ground truth,

indicating the accurate performance of the segmentation method.

High sensitivity and segmentation accuracy as
demonstrated by performance on manually-segmented
zebrafish membrane images
We next applied the method to images of zebrafish mesoderm

obtained at 12 hpf (Figure 4). Four 3D membrane images were

used to evaluate the proposed segmentation method. Using the

Table 2. High sensitivity in algorithm performance on synthetic data with varying noise parameters.

Data (s, l) #Cells U O M Dice Encroach Prec. Recall

1 (0.01, 1.0) 1000 0 0 1000 0.99 0.25 1.0 1.0

2 (0.02, 0.9) 1000 0 0 1000 0.97 0.27 1.0 1.0

3 (0.03, 0.8) 1000 0 0 1000 0.94 0.35 1.0 1.0

4 (0.04, 0.7) 1005 0 5 1000 0.92 0.47 0.99 1.0

5 (0.05, 0.6) 1010 2 12 998 0.91 0.52 0.98 0.99

6 (0.06, 0.5) 1021 4 25 996 0.89 0.70 0.97 0.99

7 (0.07, 0.4) 1027 6 33 994 0.87 0.85 0.96 0.99

8 (0.08, 0.3) 1032 8 40 992 0.87 1.11 0.96 0.99

9 (0.09, 0.2) 1033 11 44 989 0.86 1.31 0.95 0.98

10 (0.1, 0.1) 1038 16 54 984 0.84 1.42 0.94 0.98

Algorithm performance was measured against ten synthetic datasets with progressively higher noise parameters (s,l) and increasing cell number. Dice refers to the
area of overlap between ground-truth and automated segmentations. U, O, and M list the number of cells that were undersegmented, oversegmented, and matched
respectively. Encroachment measures the average L2 Hausdorff displacement of the cell boundaries (a lower value is better). Precision measures the fraction of
correctly identified cells from the automatically segmented set of cells. Recall measures the fraction of correctly identified cells from the manually segmented set of
cells. The algorithm recorded a precision of at least 94%, recall of at least 98%, and an volume overlap of at least 84% even with high levels of noise, thereby indicating
an accurate performance of the method.
doi:10.1371/journal.pcbi.1002780.t002

Table 3. Robust correspondence of automated segmentations with manually segmented zebrafish membrane images.

Dataset #Cells Algorithm O U M Dice Encroach Precision Recall

1 6 9 37 0.88 0.45 0.63 0.71

1 52 2 3 4 45 0.91 0.39 0.81 0.86

3 2 2 48 0.93 0.21 0.88 0.92

1 8 7 43 0.90 0.37 0.65 0.74

2 58 2 4 3 51 0.92 0.41 0.82 0.87

3 4 2 53 0.94 0.28 0.89 0.91

1 7 8 47 0.87 0.52 0.68 0.75

3 62 2 4 3 55 0.90 0.47 0.83 0.88

3 2 2 58 0.91 0.31 0.90 0.93

1 10 12 42 0.91 0.42 0.56 0.65

4 64 2 7 5 52 0.91 0.41 0.73 0.81

3 3 2 59 0.95 0.29 0.88 0.92

13.06% 13.48% 0.89 0.44 0.63 0.71

Average 7.51% 5.92% 0.91 0.42 0.79 0.85

4.66% 3.3% 0.93 0.27 0.89 0.92

Automated algorithm performance was measured against manually-segmented membrane images of the zebrafish presomitic mesoderm from four different time-
points. The proposed algorithm 3 recorded an average precision of 89%, average recall of 92%, average encroachment of 0.27 mm, and average volume overlap of 93%,
thereby indicating an accurate performance of the method. Moreover, algorithm 3 consistently performed better than the basic watershed procedures (algorithms 1
and 2) across all the chosen metrics indicating the utility of the reconstruction procedure in improving algorithm performance.
doi:10.1371/journal.pcbi.1002780.t003
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publicly available GoFigure2 software, an expert manually marked

all the somite cells in a small image region by drawing 2D contours

on different image planes. For each cell, a 3D mesh was generated

out of the sampled 2D contours by using an automatic surface

reconstruction procedure. The 3D meshes were used to compare

and assess the performance of the automated segmentation

algorithm. To demonstrate the effectiveness of our reconstruction

procedure for automated segmentation, we compare the perfor-

mance of three versions of the automated algorithm, namely:

(1) watershed on intensity data directly,

(2) watershed on planarity filtered data, and

(3) watershed on planarity filtering and tensor voting.

In Table 3, we evaluated the segmentation metrics and observed

that the basic algorithms 1 and 2 suffer from a high over-

segmentation (13.06%, 7.51%) and under-segmentation (13.48%,

5.92%) error rates. Over-segmentation occurs when spurious

structures are present in cell interiors that split single cells into

multiple labels. Under-segmentation rates are high due the lack of

membrane pixel connectivity especially in XZ and YZ planes.

When segmentations correctly matched, the algorithms localized

the boundary accurately (0.44 and 0.42 mm) and also had a

significant volume overlap (89% and 91%). In contrast, algorithm

3 shows significantly improved performance. On average, the

over-segmentation and under-segmentation rates are 4.66% and

3.3% respectively. For the matched set of cells, the average volume

overlap and L2 Hausdorff distance are 93% and 0.27 mm,

respectively demonstrating the low distortion in object morphol-

ogy. Our results indicate that the reconstruction procedure

enhanced membrane connectivity and eliminates spurious struc-

tures, thereby reducing the over and under-segmentation error-

rates.

Robust performance as demonstrated by an exploration
of the scale space parameters
The two scale parameters s and V constitute two important

parameters in generating the automated output. Thus, we

explored a range of s[½0:1,4:0� and V[½0:1,4:0� values and

assessed the variation in the performance of our method. While

changing a given parameter, we ensured the other parameters

were optimally set. Figure 7 reports the average precision and

recall values plotted against s/V values for the four manually

segmented datasets. We observe robust performance for a broad

range of s and V parameters ([0.7, 1.5]) with a gradual

degradation in performance. High values (§1:7) tend to assign

more importance to membrane smoothness over large scales. This

negatively impacts membrane connectivity at cell junctions leading

to under-segmentation and hence lowers the precision/recall

metrics. Low values (ƒ0:7) tend to localize membranes more

accurately but retain spurious structures that causes over-

segmentation and also lowers the metrics. Hence, a judicious

choice that balances over-segmentation and under-segmentation

rates is recommended.

Robust correspondence between membrane and nuclear
segmentations
We also applied the method to three 3D zebrafish images in

which nuclei and membranes are imaged in separate channels and

segmented separately. For nuclear segmentation, we use an

improved version of the watershed algorithm using seeds [26].

Although the nuclear and membrane segmentations are not

perfect, in an ideal scenario there should exist a one-to-one

correspondence between both segmentations (Figure 8). We

extract the centroids of cells and nuclei and match them using a

nearest neighbor method. Table 4 provides the details of the

matching. On average, the number of nuclei extracted are less

than the number of cells from membrane information. This

discrepancy is because interstitial space in the tissue (or vacuoles)

can be segmented as cells even when they do not exist. These

empty spaces can be difficult even for a human to distinguish in

the absence of any other information. Our experiments demon-

strated an excellent match between the nuclear and membrane

segmentation algorithm outcomes indicating a robust performance

of our segmentation software.

Quantitative analysis of cell shape and size during somite
formation
During zebrafish somitogenesis, a series of epithelial tissue

blocks forms rhythmically by separating from the presomitic

mesoderm tissue (PSM) [27]. A total of 28 pairs of blocks known as

somites sequentially form beginning at 10 hpf with a period of

Figure 7. Scale exploration demonstrates robust algorithm performance. Precision and recall measures are plotted against different
settings of (A) s[½0:1,4:0�, V~1:0 and (B) V[½0:1,4:0�, s~1:0. Precision and recall values were maximized with s~1:0 and V~1:0 and and gradually
decreased over broad range of parameter settings indicating robustness. Low scale settings generated noisy features leading to higher over-
segmentation rates while large scale settings tended to smooth out sharp membrane corners and cause under-segmentation errors.
doi:10.1371/journal.pcbi.1002780.g007

Automated Segmentation of Cell Membranes

PLOS Computational Biology | www.ploscompbiol.org 10 December 2012 | Volume 8 | Issue 12 | e1002780



approximately 30 minutes [28]. Somites are formed by cell sorting

from the PSM. Each somite is structurally composed of epithelial

(E) cells on the boundary with an inner mesenchymal (M) core.

Throughout somite formation, the PSM maintains a steady-state

by coordinating the anterior process of somite formation with cell

recruitment and proliferation at its posterior end. The PSM is

gradually patterned along the anteroposterior axis by cellular

rearrangements and tissue/cell-shape changes, deriving its input

from an oscillating molecular circuit known as the segmentation clock

(not to be confused with image segmentation) [29,30]. Segmen-

tation clocks operating inside individual cells are synchronised

along the PSM to create periodic waves of oscillating gene

expression. While there has been substantial progress in under-

standing the molecular mechanisms of wave initiation, synchro-

nization, and the readout circuitry, the cellular and mechanical

mechanisms involved in physically sculpting a somite are not clear

due to the lack of high-quality image data and subsequent robust

analysis [31]. For example, it is not exactly known how the sorting

interface develops, what the cell movement patterns at the

interface are, how many cells are involved, and what the

corresponding changes in cell and tissue morphology are.

Therefore, our goal was to obtain time-lapse membrane images

during somite formation, apply our reconstruction techniques, and

quantify cell dynamics. We chose to in toto image the formation of

somites 3, 4, and 5 in a zebrafish embryo mounted dorsally, with a

406 objective, and with a time-sampling of 2 minutes over a

period of 60 minutes using confocal microscopy [32]. The

beginning marked the formation of somite 3 with a discernable

interface with the presomitic mesoderm. During the time-lapse, we

observe the complete separation of somite 3 and 4. Somite 5 forms

a discernable interface at the end of the time-lapse thus completing

two full cycles of segmentation. In Figure 5, we present the results

of our reconstruction (orthogonal sections) and automated

segmentation (3D view) of the PSM cells at 3 and 5 somite stages

(ss). Automated segmentations were overlaid on the reconstruc-

tions to show the excellent agreement in contours. We then

proceeded to analyze the formation of somites by quantifying

differences between 3 and 5 ss (Figure 9). As a consequence of

somites physically separating and becoming spherical, interface

surface area decreases across all the three somites. Given that

somite 3 is farther along than somite 4 and somite 5 in the process

of forming round somites, their surface areas (see blue and red

bars) are monotonically higher. In particular, somites 4 and 5 show

a large surface area in the PSM initially (see blue peaks). At ss 5,

somite 3 and 4 show significantly smaller surface area due to the

completion of somite rounding while somite 5 is still halfway

through. Thus, the blue peak at somite 3 roughly corresponds to

the red peak of somite 5 given the same relative progress into

somite formation. The total number of cells is very consistent

across the three somites (Figure 9D).

In order to understand the corresponding changes in cell

parameters, we then identified the number of epithelial and

mesenchymal cells in the formed somites. Mesenchymal cells

which do not touch the surface of the somite were a small fraction

(~115–20%) of the cells (Figure 9D). The epithelial layer formed a

single layer of cells over the mesenchymal cells. We labeled these

cells in different colors and retrospectively tracked their location

into the PSM. For tracking, segmentations at individual time-

points were linked based on optical flow-fields that were first

reconstructed [33]. Errors in the tracking were corrected manually

using the publicly-available GoFigure2 software (www.gofigure2.org).

We then computed the principal diameters of the cells along their

principal axis. A typical workflow consists of first visualizing and

interactively exploring the distributions of cell shapes, sizes, and

locations after the segmentation process is completed. The process

of interaction involves zooming in and out, changing the viewing

angle, hiding a subset of data, and visualizing specific outliers or

data points. Scatterplots in Figure 9(E–F) show the distributions of

the epithelial (blue) and mesenchymal cells (red). In ss 3, we

observe large and homogenous variation of cell morphology across

E and M classes. At ss 5, M cells form a more narrow distribution

while E cells spread out to form diverse cell shapes neccessary for

Figure 8. Robust correspondence between membrane and
nuclear segmentations. Algorithm performance was assessed by
matching automated segmentations obtained from the nuclear and
membrane channels. In the ideal case, each individual nucleus would
match with a unique membrane and vice-versa. (A) A single 2D image
plane is shown with contours of membrane and nuclear segmentations
overlaid on raw data. Some cells have their corresponding nuclei
located out-of-plane. The lack of a one-to-one correspondence
indicates an error. For example, an over-segmentation of the membrane
channel (white arrow) causes one of the membrane components to not
contain a nucleus. (B) 3D renderings of cells from membrane and
nuclear segmentations.
doi:10.1371/journal.pcbi.1002780.g008

Table 4. Robust correspondence of automated membrane
segmentations with automated nuclear segmentations.

Data #Cells #Nuclei #Matched

#Unmatched

Cells

#Unmatched

Nuclei

1 312 291 279 33 12

2 217 194 186 31 8

3 241 228 219 22 9

Detection and error rates of the automated algorithm was compared with
standard nuclear segmentation algorithms. The assumption was that perfect
segmentations of both algorithms should theoretically establish a one-to-one
correspondence between nuclei and membranes detected. Matched refers to
cells with membrane and nuclei in exact correspondence. Unmatched Cells

refer to membranes that did not contain a unique nucleus. Unmatched

Nuclei refer to nuclei that did not correspond to a cell membrane.
doi:10.1371/journal.pcbi.1002780.t004
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Figure 9. Algorithm-enabled quantification of cell dynamics during somite formation. Retrospective cell tracing of epithelial (yellow) and
mesenchymal (red) cells from formed somites at (B) 5ss back to the presomitic mesoderm at (A) 3ss. (C) Corresponding decrease in somite tissue
surface area during the formation of somites 3, 4, and 5. (D) Epithelial and mesenchymal cell numbers in respective somites at 5ss. (E,F) Three-

dimensional cell shape quantified by the length of their principal axes at 3ss and 5ss. (G,H) Scatter plots of elongation (
2l3

l1zl2
) and cell volumes at 3ss

and 5ss. The two cell populations show different behavior. Statistical analysis of the two distributions show that mesenchymal cells (red) tend to
cluster, round-up, and shrink in size on average.
doi:10.1371/journal.pcbi.1002780.g009
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constructing spherical somites with continuous epithelia. A few

examples of such cells are shown in (F). After finding interesting

correlations and trends, accurate 2D scatterplots or figures can be

used for effective visualization. Hence, we also computed changes

in cell volumes (size) in Figure 9(G–H). Here, we observe that the

distribution of mesenchymal cell volumes (red) narrows and

interestingly we find that the mesenchymal cells shrink in volume

as the somite forms. We are now analyzing somite formation

rigorously across all intermediate time-points, combined with

tracking results for individual cells and across multiple datasets. As

part of our future work, we plan to integrate the process with the

underlying molecular circuitry to obtain a multiscale view of

somite formation.

Our work successfully demonstrates the utility of our algorithms

in enabling the quantification of cell shape and size, tissue interface

areas and volumes, and reconstruction of cell lineages and fate

maps by tracking segmented cells. By recovering individual cell

dynamics and their collective behavior in tissue from time-lapse

images, a deeper understanding of the mechanisms involved in

morphogenesis can be obtained. Thus, our algorithms are

computationally robust and can be deployed to facilitate the

analysis of a wide-variety of morphogenesis systems.

Availability and Future Directions

Our method has several advantages over previous approaches.

The first major advantage of the method is the ability to robustly

segment tightly-packed cells without relying on their absolute

fluorescence levels. Since we detect membranes based on local

shape information computed from second derivatives of the image

intensity function, the absolute values are not important. This is

very relevant for time-lapse imaging data because membrane-

tagged fluorophores can photobleach. With our method, it will be

possible to segment cells and track them for a longer develop-

mental time-window using only the membrane channel. The

second major advantage is that our technique deals with intensity

inhomogeneities that occur in membrane surfaces due to their

orientation with respect to the imaging planes. Our method can

easily be extended to using nuclear information when available as

seed-points for the watershed that will further reduce the amount

of over and under-segmentations. Conversely, the reconstructed

and localized membranes can also be used to refine nuclear

segmentations. Currently the method is implemented in C/C++

language and uses The Insight Toolkit (ITK) libraries (http://www.

itk.org/) that are open-source and publicly available. We have used

multi-threading optimization strategies and efficient data struc-

tures to take in account modern multicore computer architectures.

Our software can be readily used in a cluster environment for large

scale image processing. The documentation provided with the

source code (see Supplementary Text S1, Section 3) details the set

of steps required to download, compile, link, and execute the code.

Our software has been developed and tested on Windows, Mac,

and Linux platforms and is available publicly under a BSD license

(https://github.com/krm15/ACME/). A copy of the source code and

scripts used in the preparation of this manuscript is provided as a

zipped file in Protocol S1. Precompiled binaries are also available

at https://wiki.med.harvard.edu/SysBio/Megason/ACME. A single

time-point of our somite image data (Dataset S1) used in the

paper and all of our synthetic data (Dataset S2) are provided.

Default parameter values are provided as well as instructions for

modifying them, if needed. Code for generating new synthetic data

with other parameter values has also been included in the

repository.

In conclusion, our software enables the efficient and accurate

quantification of cell shape, size, and position from large time-

lapse images in an automated manner. We believe that this work is

immensely useful to research aimed at understanding individual

and collective cell behavior using high-resolution microscopy,

especially in the context of tissue morphogenesis and organ

formation.

Supporting Information

Dataset S1 A single time-point of somite image data

along with intermediate processing results from using

ACME code.

(ZIP)

Dataset S2 Ten synthetic image sets generated with

progressively higher noise parameters (s,l) and increas-

ing cell number.

(ZIP)

Figure S1 Tensor voting field determination. (A) 2D

voting field parameters. (B) Heat map showing the stick voting

field saliencies in 2D. The stick tensor is represented using line

glyphs and overlaid on the figure. (C) A simple example showing

two sampled intersecting circles and their reconstruction (D).

(TIF)

Figure S2 A flowchart of processing filters and param-

eters with intermediate outputs. There are four filters that

take the input image to produce an output segmented image. For

each step on the left, the corresponding input and output image is

shown on the right.

(TIF)

Figure S3 Synthetic membrane images along XY, XZ,

and YZ sections. The (s, l) values were sampled as (A–C) (0.01,

1.00), (D–F) (0.05, 0.6), and (G–I) (0.1, 0.1). Corresponding ground

truth segmentation images (XY) are shown in (J–L).

(TIF)

Protocol S1 A compressed zipped file containing ACME

source code in C++, a README file, and python scripts

for generating synthetic image data.

(ZIP)

Text S1 Step-by-step instructions for downloading,

compiling, and executing ACME code on provided test

datasets.

(PDF)
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