ACOCO: Adaptive Coding for Approximate
Computing on Faulty Memories

Chu-Hsiang Huang

Department of Electrical Engineering,
University of California, Los Angeles

seanhuang0522@ucla.edu

Abstract

With scaling of process technologies and increase in process vari-
ations, embedded memories will be inherently unreliable. Approx-
imate computing is a new class of techniques that relax the accu-
racy requirement of computing systems. In this work, we present
the Adaptive Coding for approximate Computing (ACOCO) frame-
work, which provides us with a theory-guided design methodol-
ogy to develop adaptive codes for different computations on the
data read from faulty memories. In ACOCO, we first compress the
data by introducing distortion via a designed source encoder. We
then add redundant bits via a designed channel encoder in order
to protect this distorted data against memory errors; with a proper
design of source/channel encoder pairs we are able to protect the
data against memory errors without additional memory overhead.
We develop an adaptive code (consisting of the source/channel en-
coder pair) for several applications, including machine learning
algorithms and iterative inference/decoding under ACOCO, and
demonstrate that the adaptive code successfully protects against
memory errors while the designed data compression component
has a negligible effect on residual error rate.

Keywords Approximate computing, fault-tolerant computing,
faulty memory, iterative decoders, error-correcting code.
1. Introduction

Nanometer CMOS technologies are susceptible to a variety of relia-
bility issues. Popular approaches to enhancing hardware reliability,
such as overdesigning and guardbanding, incur large power con-
sumption and are inefficient for current digital systems. A promis-
ing alternative is to develop algorithmic-based robust systems tol-
erant of hardware errors [8].

Memory failure rates are increasing due to the impact of shrink-
ing dimensions, high integration densities, lower operating volt-
ages, etc. [2, 7]. Error correction coding was introduced to miti-
gate the effects of memory cell errors by redundant bits stored in
additional memory cells [4, 11, 14].

Approximate computing has attracted significant interest in re-
cent years for its capability to trade computation accuracy for data
processing throughput or energy efficiency [13, 15, 16]. Several
previous efforts have achieved promising results by exploring ap-
proximate computing both in software and in hardware [3]. How-
ever, there is still a need for a systematic methodology that will of-
fer designers an ability to analytically evaluate the distortion (intro-
duced by relaxing the accuracy requirement) and to develop theory-
guided approximate computing techniques.

In this work, we present the Adaptive Coding for approximate
Computing (ACOCO) framework [10]. The ACOCO framework
provides a theory-guided design methodology to develop adaptive
codes for different types of systems subject to memory errors. For
systems that have inherent tolerance to distortion in data repre-

Yao Li

Akamai Technologies, Inc.
yli@akamai.com

Lara Dolecek

Department of Electrical Engineering,
University of California, Los Angeles

dolecek@ee.ucla.edu

Source Channel Hardware Channel Source
encoder encoder ik ecoder ecoder

Figure 1: A system diagram of ACOCO framework.

sentation, the ACOCO framework uses cleverly-designed adaptive
codes to restrict the distortion in data presentation brought about by
faulty data storage (memory) to the range that least impacts the sys-
tem performance. We first introduce the binary symmetric channel
(BSC) memory error model, and lay out the ACOCO framework.
The adaptive coding scheme first defines a (lossy) source code, and
uses the memory cells saved via source coding to store the redun-
dant bits produced by a channel code whose code rate is equal to
the ratio of the length (in bits) of the source encoder output (xse in
Fig. 1) to the length (in bits) of the original input data (z, in Fig.
1). Therefore, unlike the previous error-correcting codes which re-
quire additional memory cells (e.g., [4, 11, 14]), the adaptive codes
developed under ACOCO have coding rate 1, i.e., no additional (re-
dundant) memory cells are required. Although we introduce some
distortion in the source encoder, the channel codes are able to cor-
rect possibly harmful memory errors (e.g., the errors in the sign bit).
In this abstract, we report our results for three representative ap-
plications: max-product (MP) inference algorithm, naive Bayesian
classifier (NBC) and an iterative decoder. MP algorithm and NBC
are extensively used in machine learning systems, and iterative de-
coders are ubiquitous in modern data communication and storage
systems.

2. System Model and The ACOCO Framework

In this work, we use the bit-flipping model for faulty memories [1,
6, 9]. We model the effect of errors in each memory cell as passing
a binary input through a BSC with cross-over probability p. To be
more specific, suppose a bit is stored in a memory cell. The value
retrieved at read time differs from the original value with probabil-
ity p, 0 < p < 1. The logic gates performing the computations
(computation units) are assumed to be noise-free.

Inspired by approximate computing techniques, we propose the
ACOCO framework. Consider each computation unit input (from
the memory) as a source message. We first encode the source mes-
sage (xs) using a (lossy) source encoder so as to represent the
message with fewer bits (zse). The source encoder aims to min-
imize a suitably quantified difference in the output of the system
with noise-free memory and the system subject to memory errors
but protected by the proposed adaptive codes; we design different
source encoders for systems with different (output) error character-
istics. We then append redundant bits using a channel encoder; its
output is z ... The output z.p of the hardware error channel repre-
sents the binary representation read from memory cells. A channel
decoder followed by a source decoder decodes x.p, and the output
Z, is the input to the computation units performing operations on

2015/3/29



(a) (®) (©)

(d) (e) (H

Figure 2: Image denoising via MP: (a) original image, (b) contaminated image, (c) recovered image by noise-free MP, (d) recovered image by noisy MP
without ECC, (e) recovered image by noisy MP with QC, (f) recovered image by noisy MP with AD.

the data. The system block diagram for ACOCO is shown in Fig. 1.
Note that we choose the number of bits reduced during the source
coding stage to be equal to the number of redundant bits introduced
during the channel coding stage. Hence, jointly, our adaptive code
is of rate 1.

The authors in [6] proposed a coding scheme following a sim-
ilar methodology as the one proposed here, but in their approach
the least significant bits (LSBs) in the source encoder are simply
and non-adaptively discarded. We compare the performance of the
systems implementing proposed adaptive codes (referred to as AD)
with the systems implementing the code in [6] (referred to as QC)
and the nominal systems (without any codes, referred to as NC),
and demonstrate the advantage of our theory-guided code design in
the following section.

3. Representative Results

We first consider the MP algorithm. In this example, we apply the
MP algorithm to image denoising and demonstrate the advantages
of the adaptive code developed under ACOCO. We recover the
original image from the noise-contaminated image by running MP
to obtain the most likely value of every pixel based on the contam-
inated observations. We use the “penguin” image and Potts model
[5]. The original image and the contaminated image are shown in
Fig. 2a and Fig. 2b. The MP messages are stored in the faulty mem-
ories with bit-flipping rate p = 2.5 x 10™3. We use the following
adaptive code. When the magnitude of x; is large, we discard the
four LSBs and protect the MSBs by the channel code. When the
magnitude of z is small, however, we keep the LSBs, use a single
bit to indicate that the magnitude of z is small, and discard the
four MSBs. We choose (7,4) Hamming code as our channel code.

Comparing Figs. 2e, 2d, and 2f, we observe that for QC and
NC, a large portion of the pixels are determined incorrectly and the
recovered image is very different from the image recovered using
noise-free MP (Fig. 2¢). On the other hand, for AD, the recovered
image closely resembles the image recovered by noise-free MP.

Next, we consider the NBC system subject to memory errors.
Since NBC has similar error characteristics as the MP algorithm,
we use the same adaptive code as the one used in MP. We show the
average classification error rates (over 1000 experiments) in Fig.
3. We observe that the increase in bit-flipping rate p has very little
effect on the classification error rates under QC and AD, while the
classification error rate under NC increases a lot as p increases. We
also find that the classification error rate under QC is much larger
than under AD due to (non-adaptively) discarding the LSBs. AD is
very close to the noise-free case (less than 0.5% difference) in the
entire p region we considered.

Finally, we consider a popular iterative decoder: min-sum de-
coder, subject to memory errors. We use a (3, 6)-regular LDPC
code with code length 2640 [12]. The communication channel
noise is modeled as a zero-mean Gaussian random variable with
variance o2. The memory bit-flipping probability is p = 5 x 10™%.
The maximum number of iteration is 30. We design the following
adaptive code for the min-sum decoder. When the MSB is 1, the
source encoder discards the two LSBs, and uses the (3, 1) repeti-

0.35

0.3

0.25

0.2

Classification error rate

0.15

0.1
0 0.005 0.01 0.015
4]

Figure 3: Naive Bayes classifiers comparison.

o Smallo : Transition i Lae o

10

--QC
—+—NC
——AD

07 0.75 038 0.85

Standard deviation o

Figure 4: Comparison of residual error rates.

tion code to protect the sign bit. When the MSB is 0, both source
and channel encoder become an identity function.

We compare the residual error rates under different o’s (Fig.
4). We observe that for small o, the residual error rates under AD
(and QC) are much lower than NC. In the transition region between
small and large o, AD still achieves a lower residual error rate than
QC and NC.

From the above three applications, we conclude that some mem-
ory errors are harmful to the system, hence we see large perfor-
mance degradation under NC. Although QC can correct memory
errors, the detrimental effect of simply discarding the LSBs is po-
tentially large and the output can be significantly deteriorated. On
the other hand, by applying the proposed adaptive code developed
under ACOCO, we successfully correct most of the harmful mem-
ory errors as well as keep the effects of the distortion introduced in
the source encoder small.

4. Conclusion and Future Work

In this work, we presented the ACOCO framework for the design
of adaptive codes that improve the performance of computation
systems in the presence of faulty memory cells. ACOCO achieves
its goal by shifting resources to protect critical components of the
system and relaxing accuracy requirements on less critical compo-
nents. We demonstrated the effectiveness of ACOCO on three rep-
resentative applications: the MP algorithm, NBC, and an iterative
decoder. In all the three applications, our codes successfully cor-
rect harmful memory errors, while the distortion introduced by the
source encoder has negligible effects on the system performance.
Due to lack of space, the theoretical analysis is omitted from this
abstract, please see our companion paper [10].

2015/3/29



References

[1] A. Balatsoukas-Stimming and A. Burg. Density evolution for min-
sum decoding of LDPC codes under unreliable message storage. [EEE
Commun. Lett., 18(5):849-852, May 2014.

[2] A. Chandrakasan et al. Technologies for ultradynamic voltage scaling.
Proceedings of the IEEE, 98(2):191-214, Feb 2010.

[3] V.K. Chippa, S. T. Chakradhar, K. Roy, and A. Raghunathan. Analysis
and characterization of inherent application resilience for approximate
computing. In IEEE/ACM DAC, page 113, 2013.

[4] Y. Emre and C. Chakrabarti. Memory error compensation techniques
for JPEG2000. In IEEE SIPS, 2010.

[5] P. F. Felzenszwalb and D. P. Huttenlocher. Efficient belief propagation
for early vision. Int. J. Comput. Vision, 70(1):41-54, Oct. 2006.

[6] F. Frustaci, M. Khayatzadeh, D. Blaauw, D. Sylvester, and M. Alioto.
13.8 a 32kb SRAM for error-free and error-tolerant applications with
dynamic energy-quality management in 28nm CMOS. In [EEE
ISSCC, 2014.

[7] S. Ganapathy, G. Karakonstantis, R. Canal, and A. P. Burg. Variability-
aware design space exploration of embedded memories. In IEEE
IEEEI, 2014.

[8] P. Gupta et al. Underdesigned and opportunistic computing in pres-
ence of hardware variability. IEEE Trans. Comput.-Aided Design In-
tegr. Circuits Syst., 32(1):8-23, Jan. 2013.

[9] C.-H. Huang, Y. Li, and L. Dolecek. Belief propagation algorithms on
noisy hardware. IEEE Trans. Commun., 63(1):11-24, Jan 2015.

[10] C.-H. Huang, Y. Li, and L. Dolecek. ACOCO: Adaptive coding for
approximate computing on faulty memories. IEEE Trans. Commun.,
2015. submitted.

[11] M. Jayarani and M. Jagadeeswari. A novel fault detection and correc-
tion technique for memory applications. In /CCCI, 2013.

[12] D. MacKay. Encyclopedia of sparse graph codes. URL

http://www.inference.phy.cam.ac.uk/mackay/codes/data.html.

[13] A. K. Mishra, R. Barik, and S. Paul. iACT: A software-hardware
framework for understanding the scope of approximate computing. In
WACAS, 2014.

[14] D. Rossi, N. Timoncini, M. Spica, and C. Metra. Error correcting code
analysis for cache memory high reliability and performance. In DATE,
2011.

[15] M. Samadi, J. Lee, D. A. Jamshidi, A. Hormati, and S. Mahlke.
Sage: Self-tuning approximation for graphics engines. In IEEE/ACM
MICRO, pages 13-24, 2013.

[16] R. Venkatesan, A. Agarwal, K. Roy, and A. Raghunathan. MACACO:
Modeling and analysis of circuits for approximate computing. In
ICCAD, pages 667-673, 2011.

2015/3/29



