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Identifying brain effective connectivity (EC) networks from neuroimaging data has become

an effective tool that can evaluate normal brain functions and the injuries associated

with neurodegenerative diseases. So far, there are many methods used to identify EC

networks. However, most of the research currently focus on learning EC networks from

single modal imaging data such as functional magnetic resonance imaging (fMRI) data.

This paper proposes a new method, called ACOEC-FD, to learn EC networks from fMRI

and diffusion tensor imaging (DTI) using ant colony optimization (ACO). First, ACOEC-FD

uses DTI data to acquire some positively correlated relations among regions of interest

(ROI), and takes them as anatomical constraint information to effectively restrict the

search space of candidate arcs in an EC network. ACOEC-FD then achieves multi-modal

imaging data integration by incorporating anatomical constraint information into the

heuristic function of probabilistic transition rules to effectively encourage ants more likely

to search for connections between structurally connected regions. Through simulation

studies on generated datasets and real fMRI-DTI datasets, we demonstrate that the

proposed approach results in improved inference results on EC compared to some

methods that only used fMRI data.

Keywords: functional magnetic resonance imaging, diffusion tensor imaging, brain effective connectivity

networks, anatomical constraint information, ant colony optimization

1. INTRODUCTION

As an important method in brain science, brain imaging reveals the anatomic structure and
function of a brain through images and imaging techniques such as functional MRI (fMRI),
electroencephalography, magnetoencephalography, structural MRI and diffusion tensor imaging
(DTI), and provides a powerful technical tool to understand the working mechanisms of the brain.
Recently, the imaging data is often used to study connectivity in the human brain, that is, how
brain regions interact with each other within networks to understand brain functioning and to
handle cognitive processes (Friston, 2011). In particular, the resting-state fMRI data has been
used to learn brain effective connectivity (EC) networks, which has aroused great interests among
researchers. Different from the functional connectivity (FC) network, which is an undirected
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graph, an EC network is a directed graph where a node
represents a brain region and a directed edge characterizes
a causal effect of interval neural activity in the brain. By
identifying and distinguishing brain EC differences between
normal and abnormal subjects, people can understand the
roles that connectivity patterns and their disruption play in
mental health disorders and brain diseases, and can evaluate
each abnormal brain EC and its relationship with injuries of
neurodegenerative diseases, such as epilepsy, Alzheimer’s disease
(AD), schizophrenia, and autism, etc. Therefore, learning the
brain EC from fMRI data can help elucidate the pathogenesis of
cerebral diseases, which plays an important role in performing an
early diagnosis of brain diseases and pathological studies.

Within the past decade, many computational methods and
mathematical models have been proposed to identify EC involved
in the human brain (Patel et al., 2006; Shimizu et al., 2006;
Rykhlevskaia et al., 2008; Stephan et al., 2009; Dauwels et al.,
2010; Ramsey et al., 2010; Seth, 2011; Smith et al., 2011; Sui
et al., 2012; Wu et al., 2013; Zhu et al., 2013; Ide et al., 2014;
Mumford and Ramsey, 2014; Zhou et al., 2015; Ji et al., 2016;
Liu et al., 2016; Dang et al., 2017; Havlicek et al., 2017; Xu et al.,
2017; Lennartz et al., 2018; Karwowski et al., 2019). These studies
can be roughly divided into two categories, one is the model-
driven approach while the other is the data-driven approach.
The model-driven approaches usually require the prior models
or hypothesis to conduct a valid connectivity analysis, which
does not perform well for those situations where prior knowledge
is insufficient (Wu et al., 2013). The data-driven approaches
can directly extract causal interactions from fMRI data without
any prior knowledge, and gradually become the mainstream
method in identifying EC (Patel et al., 2006; Shimizu et al.,
2006; Dauwels et al., 2010; Ramsey et al., 2010; Seth, 2011; Xu
et al., 2017). Common methods belonging to the second category
include: the Linear non-Gaussian acyclic model (LiNGAM)
algorithm (Shimizu et al., 2006), The Granger causality (GC)
algorithm (Seth, 2011), the Generalized synchronization (GS)
algorithm (Dauwels et al., 2010), Patel’s condition dependence
measurement (Patel) algorithm (Patel et al., 2006), the Greedy
equivalence search (GES) algorithm (Ramsey et al., 2010), and the
Prediction Correlation (P-corr) (Xu et al., 2017) algorithm, etc.
Though these methods have their own advantages in some ways,
they have a common limitation on the direction estimation of EC.
Recently, a data-driven approach based on Bayesian networks
(BNs) has been greatly developed and has become an emerging
approach for learning the brain EC (Ide et al., 2014; Mumford
and Ramsey, 2014; Zhou et al., 2015). The main reason is that BN
methods can accurately infer the functional connectivity between
brain regions (Smith et al., 2011). However, they do not perform
well on inferring causal directions. To overcome this problem,
Ji et al. successively developed two swarm intelligent algorithms
called AIAEC (Sui et al., 2012) and ACOEC (Liu et al., 2016)
in 2016, which respectively use an artificial immune algorithm
and an ant colony algorithm to infer EC between different brain
regions. By means of two randomly global searching mechanisms
in the candidate solution space, both AIAEC and ACOEC obtain
higher accuracy on identifying the directions of EC compared
with other methods. In particular, ACOEC not only has the same

excellent identification ability on connections and directions of
EC networks as that of AIAEC, but can also get the strengths
of these connections, thus it is a more promising method of
studying EC.

In recent years, multimodal analysis from multiple imaging
data provides new insights for the progress of learning EC
studies. This is because many studies have produced evidence,
that FC based on fMRI is positively correlated with structural
connectivity (SC) between brain regions based on DTI in the
brain network (Rykhlevskaia et al., 2008; Sui et al., 2012;
Zhu et al., 2013). Obviously, a multimodal analysis could
provide a more reliable basis than a single modality analysis
to differentiate brain patterns under various conditions such
as normal, diseased, or aging (Dang et al., 2017). Up to now,
there are some fusion methodologies for combining DTI and
fMRI data (Zhu et al., 2013), for instance, a few studies have
fused FC with axonal connectivity (AC). However, there are
only two tentative studies (Stephan et al., 2009; Dang et al.,
2017) that fuse EC with AC. Enno et al. used diffusion weighted
imaging and probabilistic tractography to specify anatomically
informed priors for dynamic causal models (DCMs) of fMRI
data. More specially, the anatomical likelihood of a given
connection was used to inform the prior variance of the
corresponding coupling parameter in the DCM (Stephan et al.,
2009). Dang et al. proposed a unified probabilistic framework
that combines information from both DTI and fMRI data to
learn EC using dynamic Bayesian networks, where a novel
anatomically-informed score that simultaneously evaluates the
fitness of a given connectivity structure to both sources was given
(Dang et al., 2017). This type of research focuses on DCM-based
methods using DTI and fMRI data. Therefore, how to further
explore other novel fusingmethods to identify EC from fMRI and
DTI data is still an open and challenging research topic.

In this paper, a new method employing Ant Colony
Optimization to learn EC from fMRI and DTI data is presented,
named ACOEC-FD. First, ACOEC-FD uses DTI data to acquire
some positively correlated relations among regions of interest
(ROIs), and takes them as anatomical constraint information to
effectively restrict the scope of available candidate arcs, reduce
the space of candidate solutions, and induce ants to avoid
many unnecessary searches. Then, by combining the global
score increase of a solution with the local anatomical constraint
information between two corresponding ROIs, a new heuristic
function with a better search ability is given to induct the process
of ant stochastic searches. We then develop a new heuristic
function with a better search ability to induct the process of ant
stochastic searches. The experimental results on generated data
and real fMRI-DTI datasets show that the new algorithm is more
effective and efficient in identifying EC, and greatly enhances the
convergence speed and learning quality compared to ACOEC
and some other methods that only use single modality data.

2. RELATED WORKS

2.1. Ant Colony Optimization (ACO)
Ant colony optimization (ACO) is a meta-heuristic search
algorithm inspired by the ant foraging theory. Ants use
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pheromones to communicate with each other in their feeding
process. The more pheromones released on a route, the greater
the probability is of ants selecting that route, which means that
the more pheromones deposited on the shorter path over equal
periods of time is, the greater the number of ants selecting the
shorter path becomes. Thus, when one ant finds a very short path,
other ants are more likely to follow this path. Such information
feedback eventually leads all ants to select and follow the shortest
path. In detail, each ant finds a solution starting from a start node
and moving to feasible neighbor nodes step-by-step to construct
a new solution. In the meantime, pheromones also evaporate
over time during the process. For infrequently traveled paths,
pheromone trails become weaker, and vice versa.

2.2. ACO for Learning Brain Effective
Connectivity (ACOEC)
ACOEC (Liu et al., 2016) employs ACO to search for the best EC
network, and takes each EC network as a directed acyclic graph
(DAG) just like other methods based on BNs. It views each ant
in ACO as an available solution (an EC network), employs a K2
scoring metric to evaluate each ant in a population, and guides
ants to construct and search for the global maximum with the
best K2 score in a feasible solution space.

In ACOEC, each ant k starts from an empty graph G(0)
including all nodes (ROIs) and no arc, and proceeds by adding
an arc at a time, and this process will be repeatedly performed
until there is no way to make the score of the candidate solution
higher by adding an arc. At time t, the probabilistic transition rule
that an ant k selects a directed arc aij between two ROIs Xi and Xj

from the current set of candidate arcs is defined as:

ai,j =

{

arg maxi,j∈DAk(t){[τij(t)] · [ηij(t)]
β}, if q ≤ q0,

aI,J , otherwise,
(1)

where τij(t) is the pheromone concentration, ηij(t) represent
the heuristic information of aij, and β is the weighted
coefficient which controls ηij(t) to influence the selection of arcs.
DAk(t) (i, j ∈ DAk(t)) is the set of all candidate arcs whose
heuristic information is larger than zero; q0 (0 ≤ q0 < 1) is
an initial parameter that determines the relative importance of
exploration vs. exploitation; q is a random number uniformly
sampled in [0,1]; and I and J are a pair of ROIs randomly selected
according to the probability in the following way:

pkij(t) =











[τij(t)]
α · [ηij(t)]

β

∑

r,l∈DAk(t)
[τrl(t)]α · [ηrl(t)]β

, if i, j ∈ DAk(t),

0, otherwise,
(2)

where α denotes the relative importance of τij(t) left by ants. The
heuristic function ηij is defined as follows:

ηij(t) = ω · (f (Xi, Pa(Xi) ∪ Xj)− f (Xi, Pa(Xi))), (3)

where f (Xi, Pa(Xi)) is the K2 score of the initial structure while
f (Xi, Pa(Xi) ∪ Xj) is the K2 score of new structure by adding an
arc Xj → Xi, ω = 1 + Inf (Xi,Xj) is a weighted factor associated

with the arc connecting intensity, and Inf (Xi,Xj) represents the
mutual information between Xi and Xj.

For τij(t), ACOEC respectively carries out two pheromone
updating processes. Moreover, once the iterations of ant colony
searching end, the algorithm gets the optimal solution G+,
i.e., EC network with the highest k2 score, and calculates the
connection strength for every arc in G+.

3. THE ACOEC-FD ALGORITHM

To enhance the performance of ACOEC, we employ two new
strategies to learn the EC network from fMRI and DTI data.

3.1. Main Idea
As mentioned in some studies, the functional dynamics of a
brain region is closely related to the pattern of its anatomical
connections (Honey et al., 2007; van den Heuvel et al., 2009),
and the anatomical fiber properties contribute to dynamic
connectivity among homologous brain regions (Honey et al.,
2009). Higher values of functional coherence in particular are
linked to stronger AC (Xue et al., 2015). Motivated by such prior
research, ACOEC-FD first uses DTI data to acquire anatomical
constraint information, and then applies it to reduce the search
space of the ant colony, which makes a candidate complete
connection diagram become a limited connection diagram with
smaller connections. Second, ACOEC-FD re-uses the obtained
information to revise the heuristic function and to induct ants
searching in the reduced space fast. Themain process of ACOEC-
FD is shown in Figure 1.

3.2. Acquiring Anatomical Constraint
Information
First, we use FMRIB Software Library (FSL) to perform DTI data
processing of multiple subjects, employ automated anatomical
labeling (AAL) to partition the brain into N ROIs, and obtain
the mean fractional anisotropy (FA) value of each ROI for every
subject. We then calculate the Pearson correlation coefficient for
each pair of ROIs Xi and Xj as follows:

r(Xi,Xj) =
1

n− 1

n
∑

l=1

(
Xl
i − Xi

δXi

)(
Xl
j − Xj

δXj

), (4)

where n is the number of DTI samples, Xi and δXi are respectively
the FA mean and standard deviation of Xi. r(Xi,Xj) describes
the intensity of linear correlation between two ROIs, and its
range is [−1, 1] where r(Xi,Xj) > 0 show that Xi and Xj are
positively correlated by means of FA values. The greater the value
of r(Xi,Xj), the stronger the anatomical connection strength
between Xi and Xj. Based on all positively correlated relations,
we build the adjacency matrix of the network of brain structures,
and take it as anatomical constraint information to carry out two
following processes in ACOEC-FD.

3.3. Reducing Search Space by Using
Anatomical Constraint Information
The ACOEC algorithm is an iterative optimization algorithm,
which stochastically searches for the optimal solution from all
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FIGURE 1 | The main process of learning an effective connectivity network by ACOEC-FD.

A B

FIGURE 2 | Changes of a connection diagram with 4 nodes. (A) Candidate

connection diagram with four nodes. (B) Limited connection diagram with only

four corresponding connections.

feasible solutions. In ACOEC, each ant selects a satisfied arc from
a candidate connection diagram at each step in an iteration, thus
the complexity of the candidate connection diagram determines
the complexity of ACOEC to a large extent. Furthermore, if
some useful strategies are developed to simplify the candidate
connection diagram, then the search space of solutions will be
greatly reduced. In light of the idea of that AC is necessary
for EC, ACOEC-FD first uses anatomical constraint information
obtained to reduce the search space before ants search. More
specifically, we remove some redundant connections that do not
satisfy the anatomical constraints based on DTI data from the
initial connection diagram, and change the complete connection
diagram to a limited connection diagram.

For example, we consider the changes of a candidate
connection diagram with four nodes in Figure 2. Figure 2A
is a complete connection diagram built on four ROIs, which
has all six connections. If we use DTI data to acquire the
anatomical constraint information r(X1,X2) > 0, r(X2,X4) > 0,
r(X2,X3) > 0, and r(X1,X4) > 0, then we will obtain a limited
connection diagram with only four corresponding connections,
shown in Figure 2B.

The different initial connection diagrams will directly
determine the size of search spaces of some nodes at different
iterations. Corresponding to the connection diagrams in
Figure 2, the changes in search spaces for the parent set of X4 are
given in Figure 3. Figure 3A shows the search space equal to the
whole state space when there are connections between all X4 and

A B

FIGURE 3 | Corresponding changes of the search space for the candidate

parent node set for X4. (A) Search space equal to the whole state space. (B)

Search space is reduced to four candidate parent node sets.

other nodes, and Figure 3B depicts that the search space is greatly
reduced to four candidate parent node sets {}, {X1}, {X2}, and
{X1,X2}. Since the connection between X1 and X4 fails to satisfy
the anatomical constraint, those candidate parent node sets for
X4, shaded in Figure 3B, could be pruned.

Using this strategy, the connections that failed to satisfy the
anatomical constraints, will be prevented from being constructed
by ants, thus the search spaces for many nodes would be greatly
reduced, which would reduce the computational time required
for ACO to learn EC.

3.4. Revising Heuristic Function by Reusing
Anatomical Constraint Information
In ACOEC, the heuristic function is defined as the product of the
connecting intensity of an arc and the score increase introduced
by adding an arc, which integrates the global information (score
increase) with the local information (arc connecting intensity)
and guides an ant to select arcs. However, the definition has
a drawback, in that it only provides the heuristic information
of arcs from the view of FC, and overlooks other relevant
and available information. That makes the heuristic information
unilateral and might influence the searching ability of the
heuristic function. Considering that some study results show that
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stronger levels of EC (derived from fMRI data) are associated
with stronger levels of AC (derived from DTI data), the new
heuristic function of a directed arc is defined as:

ηij(t) = ω · ω′ · (f (Xi, Pa(Xi) ∪ Xj)− f (Xi, Pa(Xi))), (5)

where a new weighted factor ω′ = 1 + r(Xi,Xj) is concerned
with the anatomical connecting intensity of the corresponding
arc, and r(Xi,Xj) > 0 represents the arc aij to be positively
correlated. r(Xi,Xj) > 0 reflects whether the two nodes are
correlated and how much that correlation is; thus, it can also
be used as heuristic information to induce ant selecting arcs. A
new heuristic function employs the local correlation information
of arcs from DTI to participate in selecting an arc. Obviously,
when two connecting intensities of an arc from both fMRI and
DTI data are strong, and the score increase by adding the arc
is large, the heuristic function value is great, and vice versa.
That is, such arcs, which not only have significant function
connecting intensities on fMRI but also have strong anatomical
connecting evidence on DTI, are more likely to be explored.
Because the revision of the heuristic function can cause ACO to
avoid some unnecessary explorations for some structures that
lack anatomical connectivity evidence, this would also reduce
the computational time required for ACO to learn EC.

3.5. Algorithm Description
In summary, ACOEC-FD employs two strategies, combining
fMRI with DTI, to improve ACOEC. First, the Pearson
correlation coefficient computing is introduced so that
anatomical constraint information from DTI is exploited to
restrict the search space, thus avoiding some unnecessary
searches. Second, the anatomical constraint information from
DTI is re-used in the new heuristic function, enhancing
the purpose of construction solutions during ant random
searching (i.e., heuristic ability). In other words, ACOEC-FD
not only makes use of anatomical constraint information to
reduce the search space, but also takes it as other heuristic
information to induce random searching. In contrast to ACOEC,
there are two main differences: (1) using Pearson correlation
coefficient computing to obtain a limited connection graph
so that the search space is greatly reduced; (2) combining
anatomical constraint information base on DTI with the
functional connectivity information (mutual information and
score increase) based on fMRI to propose a more powerful
heuristic function. In fact, effective connectivity can exist
without underlying anatomical connections. However, some
important connections may be ignored as the search space is
restricted to the regions that possess anatomical connections.
To overcome this issue, we perform local optimization when all
ants finish their searching. The local optimization operation can
get the effective connectivity under the situation when there is
no anatomical connection between two brain regions. In detail,
if an arc is important and has a higher K2 score, the arc will
be added even if there is no anatomical connection. Finally,
the termination condition of the ACOEC-FD is that once the
algorithm obtains the same optimal solution for 10 successive
generations, the search phase will end.

Algorithm 1 provides the main processes of ACOEC-FD.

Algorithm 1: ACOEC-FD

Input: Functional MRI Data, Diffusion tensor imaging
Data.

Output: Brain EC network.
1 Initialization:

2 Set some parameters;
3 Reducing search space:

4 for every pair of brain regions a and b do
5 Calculate the mutual information ;
6 Calculate the Pearson correlation coefficient using

Equation (4);

7 end

8 Reduce search space by anatomical constraint information;
9 Searching for effective connectivity network:

10 Set G+ = G(0);
11 repeat

12 for k = 1 to m do

13 Ant k construct Graph using Equation (1) and
Equation (2);

14 Locally update pheromone τij;
15 Calculate heuristic information ηij using

Equation (5);
16 Obtain the best solution G+ at the time.
17 Globally update pheromone τij;

18 end

19 Perform local optimization and update G+;

20 until termination condition is satisfied;
21 Calculation of connection strength;
22 Return: Effective connectivity network (G+).

3.6. Algorithm Analysis
The main cost of the ACO algorithm is the computation of
statistic factors. Let L be the number of iterations, m be the
number of ant colony, and N be the number of ROIs, the
complexity of ACOEC can be simply summarized as O(N2) +
O(L · m · N2) + O(N2) + O(1) ≈ O((L · m + 2) · N2)
according to its processes. In contrast to ACOEC, ACOEC-
FD performs two changes in the first two processes, thus the
complexity level is the same as ACOEC though the complexity
of the initialization process slightly increases from O(N2)
to O(3 · N2). Notably, ACOEC-FD first employs anatomical
constraint information to reduce the search space, which will
greatly decrease candidate connections (N2), and then merges
anatomical constraint information into the heuristic function to
induct the process of stochastic searches, which may effectively
decrease the number of iterations (L).

4. EXPERIMENTAL RESULTS

To assess the performance of ACOEC-FD, we first use a common
evaluation method, which is to test the algorithm and its new
strategies on a set of simulated fMRI and DTI data, generated
from known ground-truth networks. Then, to illustrate the
application potential of ACOEC-FD, we apply it to real AD
datasets to discriminate EC differences between four subject
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groups. The experimental platform is a PC with Intel (R) Core
(TM) i7-4770, 3.40GHz CPU, 16 GB RAM, and Windows 7.
Codes are available at https://github.com/teddyduo/teddyduo.

4.1. Datasets
4.1.1. Simulation Datasets

The generationmodel of simulations is referenced in themethods
of Smith et al. (2011), which used the dynamic causal modeling
(DCM) to generate the neural timeseries. The neural network
model is shown as:

ż = σAz + Cu, (6)

where z is the neural timeseries, ż is its rate of change, u is the
external inputs (gaussian noises), C is the external input matrix
where only diagonal elements are 1 and others are 0, and the
matric A determines the network connections between nodes
which indicate the ground-truth. The sizes of the matrix C and
A are N × N, and σ controls the neural lag between ROIs.

The BOLD fMRI timeseries are obtained from the neural
timeseries after convolution with a hemodynamic response
function (HRF). We set the session duration to 10 min,
and the BOLD fMRI timeseries are sampled with a TR
of 3 s, so the number of timepoints is 200. Based on
different ROIs, we generate four simulated fMRI datasets,
namely Sim1, Sim2, Sim3, and Sim4, whose number of
ROIs are 12, 48, 96, and 116, respectively. Each simulation
comprises 50 separate subjects, and all of these subjects
use the same simulation parameters. Additionally, we also
generated a set of anatomical connections corresponding to
the effective connections in the four simulations. Synthetic
anatomical connections corresponding to no dynamic influence
are randomly given zero probability, or one, because the
presence of anatomical connections does not determine effective
connectivity, which is dynamic in nature (Dang et al., 2017).
The ground-truth of the four simulations are shown in Figure 4,
where each connection matrix corresponding to an effective
connectivity network is shown. In detail, a value of 1 means there
is a directed connection between these two nodes.

4.1.2. Real Alzheimer’s Disease Datasets

Real data used in this article was obtained from the ADNI
database (adni.loni.usc.edu). For details, please see http://www.
adni-info.org.

In this study, we used 35 subjects from the ADNI database
presenting concurrently volumetric T1-weighted (T1-w), DTI
and fMRI data. These subjects belong to four groups according
to ADNI baseline diagnosis: healthy controls (HC), and early
MCI (EMCI), late MCI (LMCI), and AD patients. The subject
selection criteria are as follows: The session duration and time
points of each subject’s fMRI data are the same, furthermore, for
each subject, the MRI (contains T1-w and fMRI data) and DTI
data were obtained at the same time. The characteristics of the
subjects are shown in Table 1.

Neuroimaging MRI data including high-resolution fMRI data
and DTI data was acquired using a 3T MRI scanner (Siemens)
and an 8-channel receive only head coil. fMRI sequence
parameters include: Slices = 48; volumes = 140; TR/TE = 3,000/30

ms; FA = 90◦; Matrix = 64×64. DTI sequence (spin echo with
echo planar readout): axial plane; Slices = 80; gradient directions
= 54.0; TR/TE = 7,200/56 ms; FA = 90◦; Slice thickness=2.0 mm,
Reconstruction matrix = 256×256; b = 1,000 s/mm2. For more
data acquisition information, please see http://www.adni-info.
org.

fMRI data preprocessing was performed using the Data
Processing Assistant for Resting-State fMRI (DPARSF, http://
www.restfmri.net), which is based on Statistical Parametric
Mapping (SPM8, http://www.fil.ion.ucl.ac.uk/spm) and Resting-
State fMRI Data Analysis Toolkit (REST). The steps used for
preprocessing are as follows: (1) Arrange the DICOM files
and discard the first 10 time points of each session; (2) Set
parameters, DPARSF will then give all the preprocessed (slice
timing, realign, normalize, smooth) data; (3) Define ROIs and
get fMRI time series data. In this paper, we employed two
methods of dividing ROIs: (1) Use a brain template to parcellate
the whole cortex into multiple brain regions, and treat each
brain as a ROI, e.g., we utilize the AAL template to achieve
116 ROIs; (2) Decompose several independent brain networks
from fMRI data, and define these specific networks as ROIs,
e.g., we define some ROIs from the Default Mode Network
(DMN) and the Executive Control Network (ECN) based on
the literature.

DTI data were preprocessed using the FSL toolbox (https://
fsl.fmrib.ox.ac.uk/fsl/fslwiki/FSL). The steps are as follows: (1)
Transform raw DICOM images into NIFTI format using
dcm2nii; (2) Create a mask using brain extraction which
segments the brain from the skull and other extracranial
structures; (3) Correct the head motion and eddy current
distortion of images; (4) Utilize the brain template (same with the
fMRI data) to define ROIs, and get the FA value for every ROI by
computing the averaging FA of all fibers inside each region.

After fMRI data preprocessing, the preprocessed fMRI data
also requires discrete processing. The reason is that ACOEC-
FD employs the K2 metric, which requires data discretization.
According to the number of time points, the discretized instance
data are obtained for the whole brain, where each instance
includes the discretized values of all brain regions (nodes) at the
corresponding time point. For each node’s timeseries of a subject,
the range of voxel values is divided into several equal parts, thus
each part contains the same number of voxel values. Then the
voxel value of each node is quantized at every instance into a
discrete value. For instance, a node’s timeseries is quantized into
five parts, including very low (set value = 0), low (set value =

1), medium (set value = 2), high (set value = 3), and very high
(set value = 4), with each of the five parts containing 20% of the
data points.

4.2. Evaluation Metrics
We compared the learned results to the ground-truths on four
common graph metrics (Ji et al., 2016; Liu et al., 2016; Zheng
et al., 2018): (1) Precision (PRE), (2) Recall (REC), (3) F1-
measure (F1), (4) Structural Hamming distance (SHD). In detail,
SHD is the total number of edge additions, deletions, and
reversals needed to convert the learned effective connectivity
network into the ground-truth network. Let Lnet denote the
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FIGURE 4 | The connection matrix of the four ground-truths on the four simulation datasets: The upper left is Sim1, upper right is Sim2, lower left is Sim3, and lower

right is Sim4. For each network graph the corresponding connection matrix is shown, where an element in the upper diagonal of the matrix (red gird) implies a directed

connection from a lower-numbered node to a higher-numbered one, and an element in the lower diagonal of the matrix (red gird) implies a directed connection from a

higher-numbered node to a lower-numbered one.

learned network and Gnet express the ground-truth network. The
four evaluation metrics are then given by:

PRE =
SD

TDLnet

, (7)

REC =
SD

TDGnet

, (8)

F1 =
2 ∗ PRE ∗ REC

PRE+ REC
, (9)

SHD = RD+ FD+MD, (10)

where SD represents the number of same directed arcs (arcs are
both in Lnet and Gnet), RD represents the number of reversed
directed arcs (arcs have different directions between Gnet and
Lnet), FD represents the number of false arcs (arcs are not in Gnet

but in Lnet), MD represents the number of missing arcs (arcs are
not in Lnet but in Gnet), TDLnet , and TDGnet , respectively denote
the total number of directed arcs in Lnet and Gnet .

4.3. Contributions of Two New Strategies
First, to quantitatively examine the effectiveness and efficiency
of two new strategies, we employed four algorithms to learn
EC structures from simulated data sets with different node
scales. The four algorithms are respectively the original ACOEC,
an improved ACOEC-1 (only add reducing search space
with anatomical constraint information), another improved
ACOEC-2 (only add revising the heuristic function with

TABLE 1 | The characteristics of the HC, EMCI, LMCI, and AD.

HC EMCI LMCI AD

Num.a 10 10 10 5

Genderb 8F/2M 3F/7M 4F/6M 3F/2M

Mean Agec 75.3 ± 7.7 78.7 ± 5.0 80.0 ± 9.0 74.1 ± 12.0

Age Ranged [65–87] [70–86] [68–96] [56–89]

aNumber of subjects.
bF, Female; M, Male.
cThe mean age ± standard deviation.
dThe age range (years old).

anatomical constraint information), and ACOEC-FD with two
new strategies. The experimental results on four datasets are
shown in Figure 5, where the performance of the algorithms is
evaluated using four measures: Precision (PRE), Recall (REC),
F1-measure (F1), and Structural Hamming distance (SHD).

In the following section, we analyze how the two new
strategies contribute to ACOEC algorithm on different
simulations. From Figure 5, we can see that the two strategies
can slightly increase the PRE, REC, and F1 values of the
ACOEC algorithm, and the improving rate is about 1 to 6%.
More specifically, ACOEC-1 employs anatomical constraint
information to effectively reduce the search space, which
increases the possibility that ants obtain a better solution.
ACOEC-2 uses the new heuristic function with anatomical
constraint information to enhance the ant random search ability
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FIGURE 5 | Contributions of two new strategies for ACOEC. Horizontal axis corresponds to the four simulation data sets, vertical axis corresponds to the four

measurements on each simulation. Error bars represent standard deviation for the given metric over 10 runs.

TABLE 2 | Contributions of two new strategies on time performance.

Data (nodes) Algorithms Times (s)

ACOEC 3.92 ± 0.25

Sim1 (12) ACOEC-1 2.97 ± 0.18

ACOEC-2 3.66 ± 0.21

ACOEC-FD 3.38 ± 0.19

ACOEC 270.36 ± 9.20

Sim2 (48) ACOEC-1 149.49 ± 4.18

ACOEC-2 256.71 ± 8.20

ACOEC-FD 123.04 ± 3.13

ACOEC 1411.62 ± 144.96

Sim3 (90) ACOEC-1 639.76 ± 16.87

ACOEC-2 1091.15 ± 90.42

ACOEC-FD 577.34 ± 87.63

ACOEC 3342.85 ± 115.52

Sim4 (116) ACOEC-1 968.67 ± 70.41

ACOEC-2 1931.10 ± 87.45

ACOEC-FD 796.57 ± 27.19

to some extent. The lower SHD values for three improved
algorithms show that both of the two strategies can make
the ACOEC algorithm have fewer incorrect arcs. Specifically,
effectively reducing the search space may decrease the likelihood
of an unexpected arc addition, while the new heuristic function
with anatomical constraint information plays a better role in
determining the directions of arcs. This result indicates that two
strategies can improve the SHD performance of the ACOEC
algorithm from two different point of view.

Furthermore, we compared the time performance of the four
algorithms, focusing on the running time to learn a brain EC
network. The reported results are summarized in Table 2, where
theµ±σ indicates the meanµ and the standard deviation σ over
10 executions independently carried out by the corresponding
algorithm. It is important to note that the two strategies can

significantly improve the convergence performance. By reducing
the search space, ACOEC-1 greatly decreases the running time
compared to ACOEC. In particular, when the node number is
larger, e.g., 48, 90, and 116, the strategy becomes more efficient.
The reduced time is 120, 771, and 2,372 s, and the improving
ratios are about 54, 59, and 94%, respectively. Moreover, the new
heuristic function also improves the convergence performance
while maintaining a better solution quality. The reduced time is
0.26, 14, 320 and 1,411 s for four cases, respectively. The main
reason is that anatomical constraint information is integrated
into the heuristic function to make the arc selection more
reasonable, which reduces the number of iterations.

The results in Figure 5 and Table 2 show that based on
anatomical constraint information, ACOEC-FD integrates two
strategies of reducing the search space and revising heuristic
function into ACOEC, which can not only greatly accelerate the
process of learning EC networks but can also effectively improve
the learning results in all cases.

4.4. Comparing ACOEC-FD With Other
Algorithms
To illustrate ACOEC-FD’s ability to accurately infer EC, we
compare it with another 10 algorithms only using fMRI data.
These algorithms are the LiNGAM, ParceLiNGAM (Tashiro
et al., 2014), pairwise LiNGAM (PWLiNGAM) (Hyvärinen and
Smith, 2013), GC, GS, Patel, GES, P-corr, AIAEC, and the
ACOEC algorithm, respectively. They are classic methods used
to identify brain EC networks, some of them perform well on
Smith’s simulated dataset, and some of them are state-of-the-art
methods. The parameters of the algorithms under comparison
are based on existing literature (Ji et al., 2016; Liu et al., 2016).
The default parameter configurations of the corresponding
methods are as follows. LiNGAM uses the parameters where
Prune Factor = 1.0. ParceLiNGAM runs with Alpha = 0.05.
PWLiNGAM is performed with method = 1. GC is set as
max_lag ∈ [1, 30], Alpha = 0.05. GS is performed with tau =
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TABLE 3 | Comparisons of 11 algorithms on the four simulations.

Sim Metrics Algorithms

LiNGAM ParceLiNGAM PWLiNGAM GC GS Patel GES P-corr AIAEC ACOEC ACOEC-FD

Sim1 PRE 0.57 0.77 0.85 0.61 0.62 0.85 0.69 0.85 0.84 ± 0.06 0.83 ± 0.07 0.85 ± 0.06

REC 0.62 0.77 0.85 0.85 0.62 0.85 0.69 0.85 0.85 ± 0.06 0.85 ± 0.06 0.87 ± 0.06

F1 0.59 0.77 0.85 0.71 0.62 0.85 0.69 0.85 0.84 ± 0.06 0.84 ± 0.06 0.86 ± 0.06

SHD 6 3 2 7 5 2 4 2 2.2 ± 0.72 2.3 ± 0.74 1.8 ± 0.67

Sim2 PRE 0.54 0.69 0.76 0.52 0.58 0.73 0.59 0.54 0.80 ± 0.08 0.80 ± 0.08 0.83 ± 0.07

REC 0.64 0.73 0.80 0.76 0.65 0.82 0.64 0.56 0.81 ± 0.08 0.82 ± 0.08 0.84 ± 0.07

F1 0.58 0.71 0.78 0.62 0.62 0.77 0.61 0.55 0.81 ± 0.08 0.81 ± 0.08 0.84 ± 0.07

SHD 30 18 14 39 26 17 24 26 11.6 ± 4.62 11.3 ± 4.55 8.9 ± 4.02

Sim3 PRE 0.51 0.66 0.71 0.47 0.53 0.69 0.59 0.56 0.76 ± 0.08 0.75 ± 0.08 0.78 ± 0.07

REC 0.61 0.71 0.76 0.75 0.63 0.78 0.63 0.58 0.80 ± 0.08 0.80 ± 0.07 0.81 ± 0.07

F1 0.55 0.69 0.73 0.58 0.58 0.73 0.61 0.57 0.78 ± 0.08 0.77 ± 0.07 0.80 ± 0.07

SHD 61 38 33 88 57 37 45 48 26.4 ± 8.05 26.8 ± 8.08 23.1 ± 6.88

Sim4 PRE 0.50 0.62 0.69 0.48 0.52 0.67 0.56 0.54 0.74 ± 0.08 0.73 ± 0.09 0.77 ± 0.08

REC 0.59 0.69 0.76 0.67 0.60 0.75 0.60 0.56 0.78 ± 0.08 0.78 ± 0.08 0.79 ± 0.08

F1 0.54 0.65 0.72 0.56 0.56 0.71 0.58 0.55 0.75 ± 0.08 0.75 ± 0.08 0.78 ± 0.08

SHD 80 56 46 96 75 50 64 64 39.1 ± 10.16 39.3 ± 10.42 31.8 ± 7.29

FIGURE 6 | Results for simulation experiments of 11 algorithms. The horizontal axis corresponds to the eleven algorithms, which are LiNGAM (1), ParceLiNGAM (2),

PWLiNGAM (3), GC (4), GS (5), Patel (6), GES (7), P-corr (8), AIAEC (9), ACOEC (10), and ACOEC-FD (11), respectively. The vertical axis corresponds to the four

measurements.

2, m = 10, nn = 10, and theiler = 50. Patel runs with bin =

0.75. The parameters of GES is set as PenaltyDiscount = 1.0, and
NumPatternstoSave = 1. P-corr runs with BOLDMaxlength =

15,TR = 3. The AIAEC is set as Ps = 0.5, Pc = 0.6, Pm = 0.4,
T = 150, N = 80, and M = 70. ACOEC and ACOEC-FD
use the parameters where α = 1, β = 2, ρ = 0.2, q0 =

0.8, a = 10, NC = 100, lstep = 10.. AIAEC, ACOEC, and
ACOEC-FD are random optimizationmethods, whose results are
not always same during each run, so we show the meanµ and the
standard deviation σ results over 10 random runs. If the standard
deviation is zero, we only show the mean value.

In our experiments, we compared 11 different algorithms,
to illustrate which one is the best one. We ran them on

four simulation datasets, and the detailed results are shown in
Table 3. From Sim1 to Sim4 in Table 3, the number of nodes
increased from 12, to 48, 90, and 116. Following the chain of
Sim1-Sim2-Sim3-Sim4, we can see that most of the algorithms
including ACOEC-FD decrease very little on four evaluated
metrics. However, three swarm intelligence-based algorithms
(AIAEC, ACOEC, and ACOEC-FD) obtained prominent results
compared to those of another eight algorithms. Compared
to AIAEC and ACOEC, ACOEC-FD has a better and more
reliable performance when the number of nodes increases.
In Sim4, the ACOEC-FD’s PRE, REC, and F1 value retain
better values (0.77, 0.79, and 0.78) which are higher than
those of the other 10 algorithms, while SHD mean value is
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FIGURE 7 | Comparison of Gnet and Lnet by 11 different algorithms on Sim1. The eleven algorithms, which are the Ground-truth (A), LiNGAM (B), ParceLiNGAM (C),

PWLiNGAM (D), GC (E), GS (F), Patel (G), GES (H), P-corr (I), AIAEC and ACOEC (J), and ACOEC-FD (K), respectively. In each graph, black lines mean that the

connections and directions in this graph are consistent with the Gnet, while the blue lines are not.

31.8, which is the smallest value among all 11 algorithms.
Therefore, most of the algorithms do not perform well when
the number of nodes is large, however, ACOEC-FD using fMRI
and DTI data can still achieve good performance and have
fewer mistakes.

Figure 6 provides the box plots of PRE, REC, F1, and SHD
comparisons for the 11 algorithms on four simulations. It is
clear that ACOEC-FD achieved the best performance whether
on PRE, REC, F1, or SHD compared to the other algorithms.
As shown in Figure 6, we also found that GC performed worse
on PRE and SHD but performed better on REC. This is mainly
because GC always has a lot of extra adding arcs, which influences
the PRE and SHD metrics. P-corr performed badly on PRE,
REC and F1 metrics, but its SHD value was not too high. This
is because P-corr has extremely few adding and missing arcs
though it has a lot of reverse arcs from the comparison between
the Lnet and Gnet. This result shows that different metrics can
evaluate the performance of algorithms from different angles.
However, in all evaluated metrics, ACOEC-FD performed the
best, and the mean of each metric is significantly better than the
other algorithms.

In order to present the results more clearly and intuitively,
we provide the network structure diagram learned by various
algorithms on Sim1 as an instance. Figure 7 shows a comparison
of Gnet and Lnet by 11 algorithms, where (a) is Gnet , (b)-(k) are
Lnet by 11 algorithms, and the blue arcs in Lnet are the error arcs
identified. Obviously, the EC network identified by ACOEC-FD
is completely consistent with Gnet while there is at least one
error arc in other Lnet learned by other algorithms. This instance
also verifies that ACOEC-FD can more accurately infer EC using
multimodal Data.

TABLE 4 | The Friedman test results of 11 algorithms on four metrics.

p-value Chi-squared Degrees of freedom (df)

PRE 1.2744× 10−4 34.95 10

REC 1.2370× 10−4 35.02 10

F1 2.0531× 10−4 33.73 10

SHD 7.2612× 10−5 36.37 10

Finally, we use the Friedman test and the post-hoc test to
attest the efficiency of the corresponding algorithms. If the p-
value obtained from the test is less than 0.05, we consider that
a significant difference exists in the corresponding experimental
results. The result of the Friedman test (p-value, chi-squared
and degrees of freedom) is shown in Table 4, which indicates
that there is a significant difference between the 11 compared
algorithms on the four evaluate metrics. Therefore, we employ
post-hoc test to find out which pairs of algorithms are significantly
different from each other. The post-hoc test results on the PRE,
REC, F1, and SHD are shown in Tables 5–8, respectively. Bold
type signifies statistically significant results (p-value < 0.05).

From Table 5, we can find that AIAEC and ACOEC-FD are
significantly better (p-value<0.05) than GC, and the p-values are
0.0353 and 0.0027, respectively. Besides, only the ACOEC-FD
algorithm is significantly better than LiNGAM (p-values = 0.0078
< 0.05). This result indicates that the ACOEC-FD algorithm
has more outstanding results on the PRE metric compared with
other algorithms.

Table 6 shows that only the ACOEC-FD algorithm is
significantly better than LiNGAM, GS, GES, and P-corr, and the
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TABLE 5 | The post-hoc test results of p-values on PRE value.

ParceLiNGAM PWLiNGAM GC GS Patel GES P-corr AIAEC ACOEC ACOEC-FD

LiNGAM 0.8537 0.1613 1.0000 1.0000 0.3221 0.9786 0.9613 0.0795 0.1410 0.0078

ParceLiNGAM 0.9892 0.6955 0.9926 0.9993 1.0000 1.0000 0.9496 0.9845 0.5816

PWLiNGAM 0.0795 0.5036 1.0000 0.9003 0.9358 1.0000 1.0000 0.9969

GC 0.9988 0.1819 0.9193 0.8781 0.0353 0.0685 0.0027

GS 0.7315 1.0000 1.0000 0.3221 0.4657 0.0578

Patel 0.9786 0.9892 1.0000 1.0000 0.9709

GES 1.0000 0.7644 0.8781 0.2911

P-corr 0.8265 0.9192 0.3557

AIAEC 1.0000 0.9998

ACOEC 0.9980

TABLE 6 | The post-hoc test results of p-values on REC value.

ParceLiNGAM PWLiNGAM GC GS Patel GES P-corr AIAEC ACOEC ACOEC-FD

LiNGAM 0.9673 0.4003 0.7789 1.0000 0.2366 1.0000 1.0000 0.1244 0.0804 0.0038

ParceLiNGAM 0.9944 1.0000 0.9992 0.9673 0.9992 0.9944 0.8894 0.8106 0.2366

PWLiNGAM 1.0000 0.7455 1.0000 0.7455 0.5956 1.0000 0.9998 0.8894

GC 0.9673 0.9992 0.9673 0.9102 0.9915 0.9758 0.5551

GS 0.5551 1.0000 1.0000 0.3644 0.2661 0.0242

Patel 0.5551 0.4003 1.0000 1.0000 0.9673

GES 1.0000 0.3644 0.2661 0.0242

P-corr 0.2366 0.1642 0.0117

AIAEC 1.0000 0.9943

ACOEC 0.9986

TABLE 7 | The post-hoc test results of p-values on F1 value.

ParceLiNGAM PWLiNGAM GC GS Patel GES P-corr AIAEC ACOEC ACOEC-FD

LiNGAM 0.6969 0.1076 0.9892 0.9981 0.1845 0.9847 0.9969 0.0422 0.0587 0.0014

ParceLiNGAM 0.9951 0.9993 0.9951 0.9993 0.9996 0.9969 0.9617 0.9788 0.4661

PWLiNGAM 0.7663 0.6223 1.0000 0.7979 0.6598 1.0000 1.0000 0.9788

GC 1.0000 0.8790 1.0000 1.0000 0.5446 0.6223 0.0801

GS 0.7663 1.0000 1.0000 0.3926 0.4661 0.0422

Patel 0.9006 0.7979 1.0000 1.0000 0.9360

GES 1.0000 0.5830 0.6598 0.0935

P-corr 0.4285 0.5050 0.0505

AIAEC 1.0000 0.9981

ACOEC 0.9951

p-values are 0.0038, 0.0242, 0.0242, and 0.0117, respectively. The
results indicate that the ACOEC-FD algorithm perform well on
the REC metric.

From Table 7, we can see that the ACOEC-FD algorithm is
significantly better than LiNGAM and GS. However, there is
no significant difference between other algorithms. These results
indicate that the ACOEC-FD algorithm has a better performance
on the F1 metric.

The results in Table 8 clearly show that the AIAEC and
ACOEC-FD algorithms are significantly better than GC, with P-
values of 0.0256 and 0.0010, respectively. Additionally, only the

ACOEC-FD algorithm is significantly better than LiNGAM and
GS. From these experimental results, we can draw the conclusion
that ACOEC-FD is superior to the other 10 algorithms on the
four evaluate metrics and has a significant difference in some
performances when compared to some algorithms.

4.5. Application of ACOEC-FD on
Alzheimer’s Disease
In this section, we present an application example that we use
ACOEC-FD on, in four real Alzheimer’s Disease datasets to
discriminate EMCI, LMCI, and AD from HC. The EC networks
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TABLE 8 | The post-hoc test results of p-values on SHD value.

ParceLiNGAM PWLiNGAM GC GS Patel GES P-corr AIAEC ACOEC ACOEC-FD

LiNGAM 0.8811 0.2109 1.000 1.000 0.3965 0.9895 0.9510 0.0948 0.1654 0.0056

ParceLiNGAM 0.9928 0.6265 0.9895 0.9997 1.000 1.000 0.9510 0.9850 0.4719

PWLiNGAM 0.0795 0.5036 1.0000 0.9003 0.9358 1.0000 1.0000 0.9969

GC 0.9981 0.1655 0.9023 0.7695 0.0256 0.0519 0.0010

GS 0.7359 1.0000 0.9981 0.2958 0.4335 0.0312

Patel 0.9792 0.9970 1.0000 1.0000 0.9211

GES 1.0000 0.7359 0.8568 0.1879

P-corr 0.8811 0.9510 0.3290

AIAEC 1.0000 0.9989

ACOEC 0.9928

learned for four different groups are graphically rendered in a
circular diagram format in Figure 8. For each circular diagram,
the outermost rings denote the brain regions and the lines in
the center express the EC. The labels are achieved by the AAL
template, which consists of 116 ROIs. Each brain regions is
represented by a circle with differentiated colors (some may
be the same), and the arrow colors are consistent with their
parent nodes.

Following the chain of HC-EMCI-LMCI-AD in Figure 8, the
EC number in each group is 356, 251, 205, and 191, respectively.
That is, as the disease worsens, the EC number will be less
and less. In detail, the number of reduced directions and the
number of reversed directions between the HC and AD group
are 165 and 58, respectively. In particular, there are significant
decreases of EC in the Precuneus, Occipital, Precentral, Insula,
and Hippocampus brain regions etc. These findings once again
verify previous studies implicating that there are changes in
these regions related to MCI and AD, which can help explain
and predict the progression and evolution of AD disease (He
et al., 2008; Ribeiro et al., 2015). From Figure 8 we find that
the brain EC in the hippocampus has a significant reduction
from the ECMI group to the LMCI group and to the AD group,
and there are very few ECs in the AD group. The reason may
be that the center of memory function is mainly located in
the temporal lobe, especially in the hippocampus. Therefore,
the reduction of the EC in the hippocampus directly leads to
brain memory function degradation, causing people to have mild
cognitive impairment. As the disease continues to worsen, the
brain EC of the hippocampal region becomes less and less. In fact,
structural decline usually occurs earlier than functional decline,
so ACOEC-FD utilizes the probabilities of structural connections
between regions as supplemental criteria for establishing these
effective connectivity networks, whose constructed networks are
more in line with the physiological structure of the human
brain. Moreover, we find that some regions of the cerebellum in
AD patients also show decreased EC compared to those of HC
subjects, which is different frommany results under single modal
data (Wang et al., 2007; Qi et al., 2010). This phenomenon may
be related to compensatory processes for MCI and AD patients,
however, the implicative mechanism behind the phenomenon
remains unclear, and it needs to be further discussed and studied.

TABLE 9 | The ROIs of DMN and ECN.

Net ROI Detailed description Location

DMN (1)PCC Posterior Cingulate Cortex –9, –54, 24

(2)LHIP Left Hippocampus –26, –20, –10

(3)RHIP Right Hippocampus 28, –19, –10

(4)MPFC Medial Prefrontal Cortex 48, –57, 24

ECN (5)LDLPFC Left Dorsolateral Prefrontal Cortex –48, 27, 21

(6)RDLPFC Right Dorsolateral Prefrontal Cortex 54, 33, 24

(7)LPPC Left Posterior Parietal Cortex –30, –69, 39

(8)RPPC Right Posterior Parietal Cortex 36, –66, 48

(9)APFC Anterior Prefrontal Cortex –6, 33, 45

Neuroimaging studies have shown that there are
abnormalities in brain function and structural networks in
AD and patients with a pre-existing condition, especially in
the Default Mode Network (DMN) and the Executive Control
Network (ECN) (Dennis and Thompson, 2014; Zhu et al.,
2016; Badhwar et al., 2017; Liu et al., 2018). We therefore
used ACOEC-FD on the two networks to further explore the
difference between AD patients and HC subjects. We chose nine
regions of interest (ROIs) from the two networks based on the
literature (Power et al., 2011). Detailed information is provided
in Table 9.

Figure 9 summarizes the brain effective connectivity networks
learned by ACOEC-FD. Compared with the HC subjects’ EC
network (Figure 9B), the AD patients’ EC network (Figure 9A)
has fewer connections. We also find that there are some opposing
directions in AD patients between the left and right brain
compared to HC subjects. This finding seems interesting as the
neural influence and information transfer between the left and
right brain may differ between HC and AD groups. In the current
study, the reduction of EC has been confirmed to be closely
related to AD disease, while the situation of reverse connection is
rarely reported. However, the reverse of the brain EC may also be
a cause of illness, which cannot be confirmed through common
brain connectivity network research. Therefore, the ACOEC-FD
algorithm can provide a new perspective for the diagnosis and
analysis of AD disease.
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FIGURE 8 | Comparison of four EC networks for HC (A), EMCI (B), LMCI (C), and AD (D) groups on real fMRI data.

In this study, our research was focused on AD
patients, but actually the new method can also
be applied to other brain diseases, i.e., epilepsy,

schizophrenia, and autism, etc. Our future work will
aim at applying the proposed methodology to other
brain diseases.
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FIGURE 9 | Brain effective connectivity networks learned by ACOEC-FD. (A,B) are graphical illustrations of the brain effective connectivity networks for AD patients

and HC subjects, respectively. The red arrows in (B) indicate that the effective connectivity is the same as (A), whereas blue arrows show additional connections, while

green arrows show reversed connections.

5. CONCLUSIONS

By allowing stronger structural connectivity to lead to a greater
probability of non-zero functional or effective connectivity,
structural information has been incorporated into some studies
to identify FC and EC. This paper proposes a new method,
called ACOEC-FD, to learn EC from fMRI and DTI data. It
uses DTI data to acquire anatomical constraint information, and
constrains the search space of EC estimations. Then, by merging
anatomical constraint information into the heuristic function,
ACOEC-FD can select those ideal structures with stronger AC
evidence.We used the generated data and real fMRI-DTI datasets
to test our new algorithm in this study, and our experiments
show some promising results and interesting observations. In
general, our work contributes a novel EC learning framework
of ACO merged DTI and fMRI data, which may have significant
application potentials in cognitive neuroscience in the future.

DATA AVAILABILITY STATEMENT

Publicly available datasets were analyzed in this study. This data
can be found here: https://ida.loni.usc.edu/login.jsp?project=
ADNI&page=HOME.

ETHICS STATEMENT

The studies involving human participants were reviewed
and approved by ADNI. Written informed consent

for participation was not required for this study
in accordance with the national legislation and the
institutional requirements.

AUTHOR CONTRIBUTIONS

JJ conceived the work. JL and AZo performed the
experimental analysis. JJ and JL prepared the manuscript
with revisions by AZh. All authors read and approved the
final manuscript.

FUNDING

This work was partly supported by the National Natural Science
Foundation of China (NSFC) under Grant Nos. 61672065,
61906010, and 61906007.

ACKNOWLEDGMENTS

We thank the reviewers for their insightful comments. In part
data collection and sharing of this article were obtained from the
Alzheimer’s Disease Neuroimaging Initiative (ADNI) database
(adni.loni.usc.edu). As such, the investigators within the ADNI
contributed to the design and implementation of ADNI and/or
provided data but did not participate in analysis or writing
of this paper.

REFERENCES

Badhwar, A., Tam, A., Dansereau, C., Orban, P., Hoffstaedter, F., and

Bellec, P. (2017). Resting-state network dysfunction in Alzheimer’s

disease: a systematic review and meta-analysis. Alzheimers Dement.

Diagn. Assess. Dis. Monit. 8, 73–85. doi: 10.1016/j.dadm.2017.

03.007

Dang, S., Chaudhury, S., Lall, B., and Roy, P. K. (2017). Tractography-

based score for learning effective connectivity from multimodal imaging

data using dynamic bayesian networks. IEEE Trans. Biomed. Eng. 99, 1.

doi: 10.1109/TBME.2017.2738035

Dauwels, J., Vialatte, F., Musha, T., and Cichocki, A. (2010). A comparative study

of synchrony measures for the early diagnosis of Alzheimers disease based on

EEG. J. Neurosci. Methods 49, 668–693. doi: 10.1016/j.neuroimage.2009.06.056

Frontiers in Neuroscience | www.frontiersin.org 14 December 2019 | Volume 13 | Article 1290

https://ida.loni.usc.edu/login.jsp?project=ADNI&page=HOME
https://ida.loni.usc.edu/login.jsp?project=ADNI&page=HOME
http://adni.loni.usc.edu/
https://doi.org/10.1016/j.dadm.2017.03.007
https://doi.org/10.1109/TBME.2017.2738035
https://doi.org/10.1016/j.neuroimage.2009.06.056
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Ji et al. ACOEC-FD

Dennis, E. L., and Thompson, P. M. (2014). Functional brain connectivity

using fMRI in aging and Alzheimer’s disease. Neuropsychol. Rev. 24, 49–62.

doi: 10.1007/s11065-014-9249-6

Friston, K. J. (2011). Functional and effective connectivity: a review. Brain Connect.

1, 13–36. doi: 10.1089/brain.2011.0008

Havlicek, M., Roebroeck, A., Friston, K. J., Gardumi, A., Ivanov, D., and

Uludag, K. (2017). On the importance of modeling fMRI transients

when estimating effective connectivity: a dynamic causal modeling study

using ASL data. Neuroimage 155, 217–233. doi: 10.1016/j.neuroimage.2017.

03.017

He, Y., Chen, Z., and Evans, A. (2008). Structural insights into aberrant topological

patterns of large-scale cortical networks in Alzheimer’s disease. J. Neurosci. 4,

4756–4766. doi: 10.1523/JNEUROSCI.0141-08.2008

Honey, C. J., Kotter, R., Breakspear, M., and Sporns, O. (2007). Network structure

of cerebral cortex shapes functional connectivity on multiple time scales. Proc.

Natl. Acad. Sci. U.S.A. 104, 10240–10245. doi: 10.1073/pnas.0701519104

Honey, C. J., Sporns, O., Cammoun, L., Gigandet, X., Thiran, J. P., and

Meuli, R. (2009). Predicting human resting-state functional connectivity

from structural connectivity. Proc. Natl. Acad. Sci. U.S.A. 106, 2035–2040.

doi: 10.1073/pnas.0811168106

Hyvärinen, A., and Smith, S. M. (2013). Pairwise likelihood ratios for estimation

of non-Gaussian structural equation models. J. Mach. Learn. Res. 14, 111–152.

Available online at: https://dl.acm.org/citation.cfm?id=2567709.2502585

Ide, J. S., Zhang, S., and Chiang-shan, R. L. (2014). Bayesian network models in

brain functional connectivity analysis. Int. J. Approximate Reason. 55, 22–35.

doi: 10.1016/j.ijar.2013.03.013

Ji, J., Liu, J., Liang, P., and Zhang, A. (2016). Learning effective connectivity

network structure from fMRI data based on artificial immune algorithm. PLoS

ONE 11:e0152600. doi: 10.1371/journal.pone.0152600

Karwowski, W., Vasheghani Farahani, F., and Lighthall, N. (2019). Application of

graph theory for identifying connectivity patterns in human brain networks: a

systematic review. Front. Neurosci. 13:585. doi: 10.3389/fnins.2019.00585

Lennartz, C., Schiefer, J., Rotter, S., Hennig, J., and LeVan, P. (2018). Sparse

estimation of resting-state effective connectivity from fMRI cross-spectra.

Front. Neurosci. 12:287. doi: 10.3389/fnins.2018.00287

Liu, J., Ji. J., Zhang, A., and Liang. P. (2016). “An ant colony optimization algorithm

for learning brain effective connectivity network from fMRI data,” in IEEE

International Conference on Bioinformatics and Biomedicine (IEEE: Shenzhen),

360–367. doi: 10.1109/BIBM.2016.7822546

Liu, X., Chen, X., Zheng, W., Xia, M., Han, Y., Song, H., et al. (2018). Altered

functional connectivity of insular subregions in Alzheimer’s disease. Front.

Aging Neurosci. 10:107. doi: 10.3389/fnagi.2018.00107

Mumford, J. A., and Ramsey, J. D. (2014). Bayesian networks for fMRI: a primer.

Neuroimage 86, 573–582. doi: 10.1016/j.neuroimage.2013.10.020

Patel, R. S., Bowman, F. D. B., and Rilling, J. K. (2006). A Bayesian approach to

determining connectivity of the human brain. Hum. Brain Mapp. 27, 267–276.

doi: 10.1002/hbm.20182

Power, J. D., Cohen, A. L., Nelson, S. M., Wig, G. S., Barnes, K. A., Church, J. A.,

et al. (2011). Functional network organization of the human brain. Neuron 72,

665–678. doi: 10.1016/j.neuron.2011.09.006

Qi, Z., Wu, X., Wang, Z., Zhang, N., Dong, H., and Yao, L. (2010). Impairment and

compensation coexist in amnestic mci default mode network. Neuroimage 50,

48–55. doi: 10.1016/j.neuroimage.2009.12.025

Ramsey, J. D., Hanson, S. J., Hanson, C., Halchenko, Y. O., Poldrack, R. A., and

Glymour, C. (2010). Six problems for causal inference from fMRI. Neuroimage

49, 1545–1558. doi: 10.1016/j.neuroimage.2009.08.065

Ribeiro, A. S., Lacerda, L. M., Silva, N. A. D., and Ferreira, H. A. (2015).

Multimodal imaging of brain connectivity using themibca toolbox: preliminary

application to Alzheimer disease. IEEE Trans. Nucl. Sci. 6, 604–611.

doi: 10.1109/TNS.2015.2417764

Rykhlevskaia, E., Gratton, G., and Fabiani, M. (2008). Combining structural

and functional neuroimaging data for studying brain connectivity: a

review. Psychophysiology 45, 173–187. doi: 10.1111/j.1469-8986.2007.

00621.x

Seth, A. K. (2011). A MATLAB toolbox for Granger causal connectivity

analysis. J. Neurosci. Methods 186, 262–273. doi: 10.1016/j.jneumeth.2009.

11.020

Shimizu, S., Hoyer, P. O., Hyvainen, A., and Kerminen, A. (2006). A linear non-

Gaussian acyclic model for causal discovery. J. Mach. Learn. Res. 7, 2003–2030.

Available online at: https://dl.acm.org/citation.cfm?id=1248619

Smith, S. M., Miller, K. L., Salimi-Khorshidi, G., Webster, M., Beckmann, C. F.,

Nichols, T. E., et al. (2011). Network modelling methods for fMRI.Neuroimage

54, 875–891. doi: 10.1016/j.neuroimage.2010.08.063

Stephan, K. E., Tittgemeyer, M., Knsche, T. R., Moran, R. J., and Friston, K. J.

(2009). Tractography-based priors for dynamic causal models. Neuroimage 47,

1628. doi: 10.1016/j.neuroimage.2009.05.096

Sui, J., Adali, T., Yu, Q., Chen, J., and Calhoun, V. D. (2012). A review of

multivariate methods for multimodal fusion of brain imaging data. J. Neurosci.

Methods 204, 68–81. doi: 10.1016/j.jneumeth.2011.10.031

Tashiro, T., Shimizu, S., Hyvärinen, A., and Washio, T. (2014). ParceLiNGAM: a

causal ordering method robust against latent confounders. Neural Comput. 26,

57–83. doi: 10.1162/NECO_a_00533

van den Heuvel, M. P., Mandl, R. C. W., Kahn, R. S., and Hulshoff Pol, H.

E. (2009). Functionally linked resting-state networks reflect the underlying

structural connectivity architecture of the human brain. Hum. Brain Mapp. 30,

3127–3141. doi: 10.1002/hbm.20737

Wang, K., Liang, M., Wang, L., Tian, L., Zhang, X., and Li, K. (2007). Altered

functional connectivity in early Alzheimer’s disease: a resting-state fMRI study.

Hum. Brain Mapp. 28, 967–978. doi: 10.1002/hbm.20324

Wu, G., Liao, W., Stramaglia, S., Ding, J., Chen, H., and Marinazzo, D.

(2013). A blind deconvolution approach to recover effective connectivity

brain networks from resting state fMRI data. Med. Image Anal. 17, 365–374.

doi: 10.1016/j.media.2013.01.003

Xu, N., Spreng, R. N., and Doerschuk, P. C. (2017). Initial validation for the

estimation of resting-state fMRI effective connectivity by a generalization of the

correlation approach. Front. Neurosci. 11:271. doi: 10.3389/fnins.2017.00271

Xue, W., Bowman, D. B., Pileggi, A. V., and Mayer, A. R. (2015). A

multimodal approach for determining brain networks by jointly modeling

functional and structural connectivity. Front. Comput. Neurosci. 9:22.

doi: 10.3389/fncom.2015.00022

Zheng X, Aragam B, Ravikumar P, and Xing, E. P. (2018). DAGs with NO TEARS:

smooth optimization for structure learning. arXiv preprint arXiv:1803.01422.

Zhou, L., Wang, L., Liu, L., Ogunbonam, P., and Shen, D. (2015). Learning

discriminative bayesian networks from high-dimensional continuous

neuroimaging data. IEEE Trans. Pattern Anal. Mach. Intell. 38, 2269–2283.

doi: 10.1109/TPAMI.2015.2511754

Zhu, D., Zhang, T., Jiang, X., Hu, X., Chen, H., Yang, N., et al. (2013). Fusing

DTI and fMRI data: a survey of methods and applications. Neuroimage 102,

184–191. doi: 10.1016/j.neuroimage.2013.09.071

Zhu, H., Zhou, P., Alcauter, S., Chen, Y., Cao, H., Tian, M., et al. (2016).

Changes of intranetwork and internetwork functional connectivity in

Alzheimer’s disease and mild cognitive impairment. J. Neural Eng. 13:046008.

doi: 10.1088/1741-2560/13/4/046008

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Copyright © 2019 Ji, Liu, Zou and Zhang. This is an open-access article distributed

under the terms of the Creative Commons Attribution License (CC BY). The use,

distribution or reproduction in other forums is permitted, provided the original

author(s) and the copyright owner(s) are credited and that the original publication

in this journal is cited, in accordance with accepted academic practice. No use,

distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Neuroscience | www.frontiersin.org 15 December 2019 | Volume 13 | Article 1290

https://doi.org/10.1007/s11065-014-9249-6
https://doi.org/10.1089/brain.2011.0008
https://doi.org/10.1016/j.neuroimage.2017.03.017
https://doi.org/10.1523/JNEUROSCI.0141-08.2008
https://doi.org/10.1073/pnas.0701519104
https://doi.org/10.1073/pnas.0811168106
https://dl.acm.org/citation.cfm?id=2567709.2502585
https://doi.org/10.1016/j.ijar.2013.03.013
https://doi.org/10.1371/journal.pone.0152600
https://doi.org/10.3389/fnins.2019.00585
https://doi.org/10.3389/fnins.2018.00287
https://doi.org/10.1109/BIBM.2016.7822546
https://doi.org/10.3389/fnagi.2018.00107
https://doi.org/10.1016/j.neuroimage.2013.10.020
https://doi.org/10.1002/hbm.20182
https://doi.org/10.1016/j.neuron.2011.09.006
https://doi.org/10.1016/j.neuroimage.2009.12.025
https://doi.org/10.1016/j.neuroimage.2009.08.065
https://doi.org/10.1109/TNS.2015.2417764
https://doi.org/10.1111/j.1469-8986.2007.00621.x
https://doi.org/10.1016/j.jneumeth.2009.11.020
https://dl.acm.org/citation.cfm?id=1248619
https://doi.org/10.1016/j.neuroimage.2010.08.063
https://doi.org/10.1016/j.neuroimage.2009.05.096
https://doi.org/10.1016/j.jneumeth.2011.10.031
https://doi.org/10.1162/NECO_a_00533
https://doi.org/10.1002/hbm.20737
https://doi.org/10.1002/hbm.20324
https://doi.org/10.1016/j.media.2013.01.003
https://doi.org/10.3389/fnins.2017.00271
https://doi.org/10.3389/fncom.2015.00022
https://doi.org/10.1109/TPAMI.2015.2511754
https://doi.org/10.1016/j.neuroimage.2013.09.071
https://doi.org/10.1088/1741-2560/13/4/046008
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

	ACOEC-FD: Ant Colony Optimization for Learning Brain Effective Connectivity Networks From Functional MRI and Diffusion Tensor Imaging
	1. Introduction
	2. Related works
	2.1. Ant Colony Optimization (ACO)
	2.2. ACO for Learning Brain Effective Connectivity (ACOEC)

	3. The ACOEC-FD Algorithm
	3.1. Main Idea
	3.2. Acquiring Anatomical Constraint Information
	3.3. Reducing Search Space by Using Anatomical Constraint Information
	3.4. Revising Heuristic Function by Reusing Anatomical Constraint Information
	3.5. Algorithm Description
	3.6. Algorithm Analysis

	4. Experimental Results
	4.1. Datasets
	4.1.1. Simulation Datasets
	4.1.2. Real Alzheimer's Disease Datasets

	4.2. Evaluation Metrics
	4.3. Contributions of Two New Strategies
	4.4. Comparing ACOEC-FD With Other Algorithms
	4.5. Application of ACOEC-FD on Alzheimer's Disease

	5. Conclusions
	Data Availability Statement
	Ethics Statement
	Author Contributions
	Funding
	Acknowledgments
	References


