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Abstract: In this work, a hybrid radio frequency (RF)- and acoustic-based activity recognition system
was developed to demonstrate the advantage of combining two non-invasive sensors in Human
Activity Recognition (HAR) systems and smart assisted living. We used a hybrid approach, employing
RF and acoustic signals to recognize falling, walking, sitting on a chair, and standing up from a chair.
To our knowledge, this is the first work that attempts to use a mixture of RF and passive acoustic
signals for Human Activity Recognition purposes. We conducted experiments in the lab environment
using a Vector Network Analyzer measuring the 2.4 GHz frequency band and a microphone array.
After recording data, we extracted the Mel-spectrogram feature of the audio data and the Doppler
shift feature of the RF measurements. We fed these features to six classification algorithms. Our result
shows that using a hybrid acoustic- and radio-based method increases the accuracy of recognition
compared to just using only one kind of sensory data and shows the possibility of expanding for a
variety of other different activities that can be recognized. We demonstrate that by using a hybrid
method, the recognition accuracy increases in all classification algorithms. Among these classifiers,
five of them achieve over 98% recognition accuracy.

Keywords: human activity recognition; machine learning; hybrid activity recognition; acoustic-based
HAR; RF-based HAR; data fusion

1. Introduction

Smart assisted living has attracted a lot of attention in recent years. This is due to the
increasing need for smart living as the population age increases, especially in developed
countries [1]. Specifically, falls in elderly people are considered as one of the major causes
of severe injuries. This is because most elderly people live alone, and delay in rescue might
put their lives in danger.

One solution is to provide Human Activity Recognition (HAR) devices as a smart
assisted living system to detect falls. Existing HAR techniques use a wide variety of sensors,
such as visual, inertial, acoustic, pressure, etc. HAR using visual techniques has made
significant progress and gained high recognition accuracy [2]; however, these techniques
raise privacy issues [2]. Furthermore, these visual techniques require hardware installation
and high computational power, increasing the cost of deployment [2].

In wearable-sensors-based HAR, the subject puts on a wearable device, usually on
their wrist, and the sensors embedded in the device are used to track the subject’s activity
and gather data. Based on their embedded sensors, these devices can be used to detect
falls, steps, walking speed, heart rate, oxygen level, etc. [2]. However, the challenge with
wearable devices is that their operation is limited to just one subject and requires the subject
to wear the device, which can cause discomfort and noncompliance, especially in older
people who are the target populations for HAR.

Given the shortcomings of the visual and wearable sensor devices, one solution is
to employ less intrusive sensors with cheaper deployment costs, such as Device-Free
Radio-Based Activity Recognition (DFRAR) devices and acoustic sensors.
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In DFRAR, the received signal is affected by the human activities in the channel. As
a result of these activities, the received signal may exhibit distinct features that can be
exploited for HAR purposes. Wang et al. [3] showed that when human activity is performed,
it has a distinct effect on the radio channel which can be utilized for HAR.

In acoustic-based HAR, the system detects and recognizes human activities as well as
the environment by analyzing the audio signals. Acoustic-based HAR leverages the distinct
sound of each activity as a specific signature to detect and recognize human activities and
events. Related research topics to the sound-based HAR can be categorized as activity and
event detection and recognition, scene classification, and localization. In this work, our
focus is to recognize activities that extract distinct sound signatures from the input data to
recognize activities such as falling, walking, watching TV, reading, sleeping, etc.

Nevertheless, each of the abovementioned HAR methods suffer from major drawbacks,
such as limited resolution of DFRAR systems in detecting fine-grained activities, and
the ineffectiveness of acoustic-based HAR in detecting silent and low-volume activities,
especially in noisy environments. Hence, a new solution is required for tackling these
shortcomings, and in doing so, increasing the number of recognizable activities.

2. State of the Art

Among DFRAR systems, Wi-Fi-based methods are commonly utilized due to their
available infrastructure and low employment cost [4]. In WiFall [3], the authors design a
fall detection and activity recognition system using the 5 GHz frequency band of the IEEE
802.11n standard. The proposed system extracts Channel State Information (CSI) data using
the 802.11n CSI Tool [5] and then uses a Local Outlier Factor (LOF)-based algorithm to
detect the periods of activity by spotting these intervals as anomalies from the steady-state
(intervals of no activity). The authors extract seven statistical features and then feed these
features to two classifiers, namely Support Vector Machines (SVMs) and Random Forests.
Their work shows an overall precision of 89% in a dormitory environment, which was
lower than the accuracy acquired in the lab environment, indicating the importance of the
environmental factors in recognition accuracy. In [6], an attention-based bi-directional Long
Short-Term Memory (ABLSTM) network is utilized to classify six activities given only the
amplitude information of the raw CSI data, resulting in 97% accuracy. In [7], the authors
propose a 1D CNN architecture as a replacement for conventional classifiers and show how
it matches (or even outperforms) the performance of high scoring models, given only raw,
unprocessed data.

WiAct [8] is another system that tries to classify nine human activities and steady-state
periods using CSI amplitude data. In WiAct, the data are preprocessed by a low-pass
Butterworth filter to reduce the effect of noise. Then, an adaptive activity cutting algorithm
based on signal variance is applied to detect the onset and offset of activities. After activity
detection, WiAct uses a three-layer Extreme Learning Machine (ELM) network to classify
the activities based on their Doppler shift correlation values and achieve an accuracy of
94.2%. Ding, J. and Wang, Y. [9] used a decision tree to detect activities based on statistical
features of the CSI data. The authors used wavelet transform to denoise the data and
leveraged aRecurrent Neural Network (RNN) on channel power variation and Short Time
Fourier Transform (STFT) of the data to recognize and classify six activities with an accuracy
of 98%.

G. Qinhua et al. [10] used multichannel CSI data to construct a radio image and
showed that radio frequency (RF) image features could yield better recognition results.
In [11], the authors tackle the problem of small datasets and different environmental effects
on HAR using the CSI. To overcome these challenges, they extract the activity-related
information from the CSI data by eliminating the environment’s static information. Then,
they feed the CSI correlation features to Convolutional Neural Network (CNN) layers with
bi-directional Long Short-Term Memory (LSTM) to recognize six activities. The proposed
method can recognize activities with only one training sample from a new environment
and one from a previously seen environment for each activity, facilitating one-shot learning
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and overcoming environmental dependencies. In [12], the CSI acquired from multiple
access points (APs) is utilized to recognize four different activities. The classification is
performed using CNN layers which are fed with heatmaps of the CSI data. The accuracy
of the proposed method is evaluated with a different number of APs and people present
in the environment. The results show that increasing the number of APs can improve
accuracy. However, having more than one person present in the environment decreases
the accuracy. In [13], the CSI phase difference acquired from commodity Wi-Fi devices is
used to monitor humans’ breathing and heartbeat. The authors apply wavelet transform
to separate heartbeat and breathing signals and use root-Multiple Signal Classification
(MUSIC) for multiple persons’ breathing rate and a Fast Fourier Transform (FFT)-based
method for heart rate estimation. TW-See [14] is another HAR system that uses CSI data
to recognize human activities behind a wall. TW-See uses an Opposite Robust Principal
Component Analysis (PCA) to extract features and identify six activities with an accuracy
of 94.4% using an Artificial Neural Network (ANN). In [15], authors show that increasing
bandwidth and using higher frequency bands could improve the accuracy and range of
activities to be recognized by increasing the limiting resolution between different activities
that results from using narrow-band channels. In [16], authors represent Splicer, a method
to obtain an accurate power delay profile of the channel by increasing the bandwidth
via using several neighboring channels, which could be useful for more accurate radio
frequency (RF)-based localization tasks. In [17], authors addressed the problem of temporal
phase rotation of CSI data and proposed a calibration method using a Vector Network
Analyzer (VNA) to mitigate this adverse effect in order to obtain more accurate motion
sensing using CSI data.

Based on the recent work in the RF-based HAR, we can conclude the following
remarks [2–6,8–19]:

1. Most RF-based HAR systems use machine learning methods, specifically SVM and
ANN, for classifying human activities based on extracted features in the frequency
domain involving Fourier or wavelet transform.

2. The domain of activities that can be recognized is limited to physical activities, mainly
walking, falling, sitting, bending, etc., or they have strict constraints such as low
distance between the sensor and the subject, or stationary subject, etc.

3. The accuracy of activity recognition is correlated with the number of individuals and
the number of sensors deployed in the environment.

4. CSI data experience temporal phase rotation, which limits their performance for HAR.

Therefore, despite the non-invasive nature and excellent performance of Wi-Fi-based
methods in an ideal scenario, they suffer from two drawbacks: The range of activities that
can be detected is limited or highly constrained. Second, the environment plays a crucial
role in the detection rate [3], meaning that the accuracy and range of these methods are
limited to the received signal strength and CSI, which are external factors in a DFRAR
system. In fact, this becomes crucial when the people’s lives depend on the functionality
of the device. The first drawback is due to the nature of the electromagnetic waves;
nevertheless, DFRAR methods in [20,21] tried to overcome the second limitation, by using
a separate device for HAR purposes instead of using the available Wi-Fi devices.

In [22], the author presents a fall detection system based on smartphone audio features.
Four audio features and four classification algorithms were investigated. The results
showed the best performance for ANN using spectrogram as the input feature, yielding over
98% accuracy. In [23], the authors use sparsely deployed microphones in the environment
to first localize the sound event. After localization, they separate the sound event source
and use a combination of CNN and convolutional LSTM to classify ten household sound
events based on the Mel-spectrogram feature. Kim, Jinwoo et al. [24] investigated the
classification of 12 sound events, half of which were considered emergency sound events,
such as screams and explosions. The authors extracted the Log-scaled Mel-spectrogram
as input features for two classification algorithms, CNN and LSTM, and demonstrated
the superiority of CNN in classification over LSTM. In [25], a Residual Neural Network
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(ResNet) with convolutional layers is used to classify ten household activities using Log
Mel-band energies and achieved an overall accuracy of 87.2%. Wireless Acoustic Sensor
Network (WASN) is another system proposed by Alsina-Pagès et al. [26]. The proposed
system collects and analyzes the audio data collected from several points in the home
environment and categorizes fourteen events using Mel Frequency Cepstral Coefficients
(MFCC) and Discrete Cosine Transform (DCT) as input features to a combination of K-
means, Extended K-means, and SVM. In [27], an ensemble learning method is proposed
for fall detection in an indoor environment. This method uses an ensemble of K-Nearest
Neighbors (KNN), SVM, and CNN to classify actual fall and fall-like sounds. MFCC
and spectrogram were the extracted features for classification. This method improves the
accuracy from 87% to 94% compared to single classifiers. In [28], the authors propose a
new feature for fall detection, namely, acoustic Local Ternary Patterns, and use an SVM
classifier to detect falls.

One of the rich resources for audio-related research topics is the Detection and Classifi-
cation of Acoustic Scenes and Events (DCASE) challenges held annually since 2016. DCASE
challenges include several tasks such as acoustic scene classification and sound event
localization and detection. This challenge provides a dataset and a baseline model for each
task [29–32]. The proposed model in [33] was the winner of the acoustic scene classification
task of the DCASE 2020 challenge. The proposed system used Mel-spectrogram and delta
features of Mel-spectrogram with three parallel ResNets to improve the classification accu-
racy from 54% in the baseline model to 74.4%. In [34], the authors used data augmentation
to increase the training dataset for the sound event localization and detection task. They
became the winner of the 2020 challenge by using ensemble learning, Convolutional Recur-
rent Neural Networks (CRNN), and CNN as classifiers and Mel-spectrogram, Generalized
Cross-Correlation (GCC), and acoustic intensity vector as input features.

Based on the recent work in the acoustic-based HAR, we can conclude the following
remarks [22–34]:

1. Spectrogram, Mel-spectrogram, or MFCC are the most common features for acoustic-
based activity recognition. This is due to the anti-noise ability of Mel-spectrogram
and MFCC, and also the 2D nature of a spectrogram, which enables employing
image-based classification techniques.

2. A majority of the literature use CNNs and SVMs as part of their classification module.
3. Silent activities such as sitting down or standing up are not part of the recognizable activities.
4. Noise removal is usually not discussed in acoustic-based HAR since noise (back-

ground sounds) has the same characteristics as the source signal.
5. Noise removal requires multiple microphones and involves source localization.

Each of the RF- or acoustic-based HAR techniques mentioned above has its merits and
shortcomings. RF-based methods require high frequency or high bandwidth to recognize
small-scale activities such as reading a book or sleeping with high accuracy, or they require
high constraints such as close range or limited movement of the subject. These drawbacks
prevent the current RF-based HAR system to be practical for recognizing a wide range
of activities. Likewise, acoustic-based methods are unable to detect quiet activities such
as breathing, sitting, etc., in noisy environments. They require a quiet environment or
sophisticated source localization and denoising techniques to separate the activities’ sound
signatures from the environmental sounds. These limitations prompted us to propose a
hybrid method using both RF and acoustic signals to recognize human activities. We believe
by employing a hybrid method, the number of activities that could be recognized increases,
and they will not be limited to the constraints set by each of the individual methods.

This paper combines both RF and acoustic-based methods to detect falling, walking,
sitting down, and standing up from a chair. The only hybrid method close to our proposed
techniques is DeepMV [35], which uses the amplitude information of CSI and phase shift
of the reflected near-ultrasound (i.e., 20 kHz) signal from the human body. However,
the focus of DeepMV is the deep learning aspect of the HAR. It also uses active sound
recognition by emitting near-ultrasound waves in the environment, whereas we use a
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passive acoustic-based HAR. To our knowledge, this is the first work to combine DFRAR
and passive acoustic-based HAR for detecting human activities. Our results show the
superiority of the proposed hybrid RF–acoustic HAR over each RF- and acoustic-based
approach used separately. Specifically, our main contributions in this paper are:

1. Presenting a hybrid RF–acoustic approach for HAR.
2. Demonstrating the superiority of RF-acoustic data over single sensory data for HAR

regardless of the classification model.
3. Presenting an environment-invariant HAR system capable of near-perfect recognition

accuracy (for the considered activities).

The rest of the paper is organized as follows. In Section 3, we discuss the system design
of the hybrid RF–acoustic-based HAR along with the implementation procedure. Section 4
is dedicated to results and discussion of our proposed method. Section 5 concludes this
paper with the conclusion and future works.

3. System Design

The overall system design of the proposed method is shown in Figure 1. We observe
two types of signals from the environment, namely radio frequency signals and acoustic
signals. Important features such as the Doppler shift from the RF data and Mel-spectrogram
from the acoustic data are extracted. The features are then fussed using a data fusion
technique and sent to activity classifiers. Each part is discussed below.
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3.1. RF-Based Recognition Module

In the RF module, the aim is to extract the characteristics of the time-varying channel
due to human activity. In this regard, RF signals with specific frequencies and phases are
transmitted in the environment. Then, these signals are recorded by the receivers in the
environment. The recorded signals contain information about the RF channels and their
time-varying characteristics due to human activities. Analysis of these received signals can
determine the type of activity being performed in the environment.

The overall steps in RF-based HAR are: (i) acquiring the CFR data, (ii) preprocessing
the collected RF data, (iii) feature extraction, and (iv) activity classification using machine
learning methods or mathematical modeling [18].

3.1.1. Wideband Channel Measurement

Wideband channel measurements are either performed in the frequency domain or
the time domain. To measure the channel in the frequency domain, stepped frequency
sweeping is utilized to measure the channel at different frequency tones in the desired
bandwidth. This process is performed by a Vector Network Analyzer (VNA), which extracts
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the complex frequency response of the channel by calculating the S21 parameter [36]. The
channel transfer function is a function of the S21 parameter as [36]

H(ω) ∝ S21(ω) (1)

Considering the frequency span used in VNA as the trigger, we can say S21(t, f ′) ∝
H(t, f ′), where f ′ is a member of the frequency span.

3.1.2. Channel Impulse Response Estimation

In Wi-Fi-based HAR methods, usually Received Signal Strength Indicator (RSSI) and
CSI are utilized to gain insight into the channel and the effect of human activities [18].
However, by obtaining the channel impulse response (CIR), we can provide much more
data than RSSI or CSI. Indeed, CIR can give us information pertaining to the RF channel
and its transformations due to the environment and human activity. Each CIR element
contains the information about the wireless propagation channel from the transmitter to
the receiver [18], which can be defined as [37]

h[k; τ] =
M

∑
m=1

cm[k] e−j(2π fcτm [k]+θm)δ(τ − τm[k]), k ∈ {0, . . . , K− 1} (2)

where K is the total number of samples, M is the number of scatterers, cm and τm are the
corresponding amplitude and delay of the m-th scatterer, fc is the center frequency, and θm
is the random initial phase. By using WB measurements, we would have a span frequency
of f ′ ∈

{
n(δ f )

∣∣∣−[N
2

]
< n <

[
N
2

]}
where [.] is the floor function, N is the number of

subcarriers, and δ f is the spacing between subcarriers. In this way, we can define the
channel transfer function as

H[k; f ′] =
M

∑
m=1

cm [k]e−j(2π( fc+ f ′)τm [k]+θm). (3)

3.1.3. Detection Problem

Assuming that all the undesired scatterers are static, and only one activity is happening
in the environment, Equation (3) will be changed into

H[k; f ′] = cd [k]e−j(2π( fc+ f ′)τd [k]+θd) +
M

∑
m=1

cm e−j(2π( fc+ f ′)τm+θm), (4)

where cd(t) and τd(t) are the time-varying amplitude and delay of the activity we want to
recognize. We define the detection problem as{

H0 : H[k; f ′] = n[ f ′],
H1 : H[k; f ′] = s[k; f ′] + n[ f ′], (5)

where
s[k; f ′]= cd [k]e−j(2π( fc+ f ′)τd [k]+θd),

n
[

f ′
]
= ∑M

m=1 cm e−j(2π( fc+ f ′)τm+θm).
(6)

By taking the Discrete Fourier Transform (DFT) of H[k; f ′] with respect to k, we have

Ĥ
[

f ; f ′
]
=

K−1

∑
k=0

s
[
k; f ′

]
e−j(2π f ) k

K +
K−1

∑
k=0

n
[

f ′
]
e−j(2π f ) k

K

=
K−1

∑
k=0

cd [k]e−j(2π( fc+ f ′)τd [k]+(2π f ) k
K +θd) + n

[
f ′
]
δ[ f ].

(7)
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3.1.4. Doppler Shift Estimation

In the static environment scenario, Doppler shift is an effective technique to eliminate
the effects of stationary signals [8,15,18,38,39]. In fact, during an activity, movement of the
desired scatterer (e.g., human body parts) causes a Doppler shift with a distinct pattern. In
this paper, we use the mean Doppler shift defined as [40]

B[ f ′] =
∑K−1

f=0 f
∣∣Ĥ[ f ; f ′]

∣∣2
∑K−1

f=0

∣∣Ĥ[ f ; f ′]
∣∣2 , (8)

The mean Doppler shift is fed to the activity recognition module as the RF feature for
the RF data.

3.2. Acoustic-Based Recognition Module

In sound-based HAR, the objective is to analyze the input audio and detect the
activity being performed in the environment. However, unlike RF-based techniques,
the environment and the objects are not irrelevant to activity detection. Knowing the
environment and distinct sound signatures can help detect the kind of activity being
performed. For instance, detecting the sound of running water can indicate washing hands
or washing dishes.

This module comprises two stages, representational stage and the classification stage.
The aim of the representational stage is to extract the features pertaining to audio events
from the raw input audio signal frames. In the classification stage, the extracted features
are fed to a machine learning classification algorithm for activity recognition.

3.2.1. Received Signal Model

In general, for an environment with M audio source and N receivers (microphones),
the received signal model in matrix form is [23]

X = Gs + z (9)

in which X = [x1, x2, . . . , xN ] is the received signal in N microphones, s = [s1, s2, . . . , sM]
is the signals from M sources in the environment, z is the noise vector received in the
microphones, and

G =

 G11 · · · G1M
...

. . .
...

GN1 · · · GNM

, Gnm = ejkrnm /rnm (10)

is the steering matrix, with rnm representing the distance between source m and n.

3.2.2. Preprocessing and Feature Extraction

In the preprocessing step, we need to equalize input data samples by truncating or
zero-padding, since the classification module is sensitive to the input data size. Then, we
need to extract the desired feature. Features that are most useful for audio classification
include spectrogram, MFCCs, GCC, and intensity vector. In this paper, we chose the
Mel-spectrogram as an acoustic feature due to the following reasons:

1. The inherent nature of the Mel-spectrogram to use the Mel scale instead of the fre-
quency scale is beneficial in classifying audio data with distinct frequency specifica-
tions based on the human auditory system.

2. We can interpret spectrograms as images and benefit from the state-of-the-art image
classification techniques on our data.

3. The anti-noise ability of the Mel-spectrogram.
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4. Mel-spectrogram uses a decibel scale that can illustrate the auditory data better for
image-based classification techniques.

5. Since our RF features are of the spectrogram nature, using the spectrogram for the
acoustic feature is beneficial for data fusion.

Figure 2 shows the overall preprocessing and feature extraction steps.
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Furthermore, because of the sensitivity of some classification algorithms to the input
data scale, including SVM and ANN, it is good practice to standardize the input data,
especially in our case since RF and acoustic features have different scales. Hence, to
standardize our features, we remove the mean and scale the features to unit variance [41].

3.3. Data Fusion

After extracting the Doppler shift and Mel-spectrogram features from input data and
standardization, we need to fuse the input data. Fusion methods fall under 3 categories:
data-level fusion, feature-level fusion, and decision-level fusion [19]. Since our sensory
data are of a heterogeneous nature, we require a feature-level fusion for combining our
sensory data. Feature aggregation, which is the process of concatenating extracted features,
is in the category of feature-level fusion techniques. However, this procedure will result
in a high-dimensional feature vector in orders of hundred thousand. Figure 3 illustrates
samples of extracted features from input data for the 4 recorded activities.

We can derive 2 points from Figure 3:

• As mentioned earlier, the scale of the acoustic and RF features is different.
• Extracted features have sparse data.

Since sparse features can increase the complexity of the classification models, and cause
additional problems such as overfitting, we need to further process these features and make
the features denser. As a result, after flattening and aggregating the multi-dimensional
features, we apply PCA [41,42] and select from the most important components, in our
case 50 components. By applying PCA, in addition to reducing the sparse feature space,
we further fuse the features.

3.4. Classification

To demonstrate the increased performance due to RF–acoustic fusion regardless of
the classification technique, we include 6 classifiers in this work. We implemented the
following classifiers for our proposed approach: (i) Multi-Layer Perceptron (MLP), (ii) SVM,
(iii) Random Forest, (iv) Extremely Randomized Trees (ERT), (v) K-Nearest Neighbors
(KNN), and (vi) Gradient Tree Boosting (GTB).
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3.4.1. MLP

Given the dense and highly processed nature of input data, despite the superior
performance of more complicated models such as CNN, to avoid overfitting, MLP seems a
more appropriate choice for our data. We chose 2 layers with 100 neurons, ReLu activation,
and adam optimizer for our MLP to evaluate the classification performance of neural
networks on our data [41,43].

3.4.2. SVM

SVM is one of the well-known kernel method classification algorithms [44,45]. SVM
aims to find a boundary among different classes by transferring the features to higher
dimensions. SVMs perform well on high-dimensional data and are adaptable for different
tasks because of their different kernel functions [41]. In this work, we used an SVM
with Radial Basis Function (RBF) kernel, degree of 3, random state of zero, and default
parameters stated in [41].

3.4.3. Random Forest

Random Forest is among the ensemble learning methods. In Random Forests, the
output decision is the average of an ensemble of weak classifiers (randomized decision
trees) which are defined based on the training set of data. Including randomization in the
structure of this classifier improves its performance by avoiding overfitting [41,46]. We
used the Random Forest classifier in [41] with default parameters and random state of zero,
with bootstrapping set to false.

3.4.4. ERT

In ERT, the randomness of the classifier structure increases by generating a random
threshold for each feature and choosing the best threshold for the splitting rule. This
technique further prevents overfitting of the model [41,47]. For this classifier, we use the
default parameters in [41] with bootstrapping set to false and random state equal to zero.

3.4.5. KNN

In the KNN algorithm, the model classifies the input based on K-Nearest Neighbors
close to the input data [41,48]. We used the default parameters set in [41] for this classifier.

3.4.6. GTB

GTB belongs to the group of ensemble classifiers. However, unlike Random Forest,
GTB is an ensemble of weak learners, hm, and the goal is to minimize a defined loss function
by adding newer weak learners to the ensemble as in (10). For classification, a SoftMax
function is applied to obtain the probability of each class prediction [49].

ŷi = FM(xi) =
M
∑
1

hm(xi)

Fm(x) = Fm−1(x) + hm(x)
(11)

For the GTB, we used a validation fraction of 0.2, with early stopping with tolerance of
1× 10−3 for 10 iterations. We implemented all the classifiers using the Scikit-Learn python package.

3.5. Implementation

Figure 4 shows a schematic of our measurement setup in the lab environment. We did
not modify the environment to keep the scene as close to the real-world environment as
possible. As shown in Figure 3, the Omni-directional antennas are 2.5 m apart, and the
microphone array is placed in the middle of the room on the table. We used two separate
Windows-operated laptops to record RF and acoustic data simultaneously, synced with
the computers’ online clock. We performed our approach in 4 steps as recording module
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setup, performing selective activities, recording the RF–acoustic hybrid dataset, and activity
recognition module.
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Figure 4. Schematic of the data recording environment. The activities of walking and falling are
performed with 1 m distance to the path connecting the 2 antennas. Walking is performed from
one antenna to another, parallel to the line-of-sight. The falling activity is performed in the middle
section without blocking (or disturbing) the line-of-sight between the antennas, and in different
falling angles. The sitting and standing activities are performed on a chair which is placed in front of
the microphone, between the antennas, without blocking the line-of-sight path.

3.5.1. Recording Module Setup

CSI tools, VNAs, and software-defined radio (SDR) platforms can provide us with CFR.
Here, we chose VNA because it can provide us with complete RF channel information, and
unlike the CSI tool, it is more robust to noise and phase temporal rotation [17]. Furthermore,
VNAs are more configurable in comparison with other RF recording devices and are not
acquainted with the Wi-Fi sensing (CSI) challenges such as “Coexistence of Wi-Fi Sensing
and Networking” [18].

To make a fair comparison with Wi-Fi-based HAR devices, we abided by the IEEE
802.11n standard. Specifically, we used the lowest grouping of the IEEE 802.11n standard
to collect 58 subcarrier data points in the 40 MHz channel bandwidth. We chose the wider
40 MHz bandwidth over the 20 MHz band because it can provide us with richer information
about the environment [15].

One difference between our RF setup and the setup provided by the Wi-Fi-based
devices is the more accurate phase shift response. Based on the findings of [3], we chose
one meter as the height of our antennas. To obtain the maximum sampling rate of the VNA
without introducing too much noise in the data, we set the Intermediate Frequency (IF) of
the VNA to 100 kHz. This setup gives us a sampling rate of 110 samples per second, which
is fast enough to detect the targeted activities even though it is lower than the highest
sampling rate provided by the CSI tool (1000 sample/s and higher). This means that the
computation load of the system will be lower.

For the acoustic data collection, we chose the Zylia ZM-1 spherical microphone array.
This microphone provides us with 19 Micro-electromechanical system (MEM) microphones
and can provide richer content with 19 channels in comparison with single microphones.
We chose the usual sampling rate of COTS microphones, which is 48 kHz. In addition, this
microphone is compatible with MATLAB software, which enables us to have a synchronized
data collection session with the VNA, operated remotely with the MATLAB software. For
the Mel-spectrum, we utilized ‘Hann’ window in our case.
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3.5.2. Selected Activities

To show the performance increase due to RF–acoustic data fusion, we chose walking,
falling, sitting, and standing as our activities. We choose walking and falling because
audio-based HAR models perform well on these activities, and unlike RF-based HAR, they
are more robust to walking and falling pattern and location changes. Sitting and standing
activities were chosen because RF-based HAR models perform well on recognizing these
activities. However, audio-based HAR systems do not perform well on these activities
because of their silent nature, and they are usually not included in audio-based HAR
literature. These 4 activities were performed in the Lab environment as described below:

• Walking: Walking activities were performed parallel to the line-of-sight (LOS) with a
1 m distance from the LOS. Furthermore, 40 samples of walking activity by one subject
were performed without any evident pattern (i.e., walking randomly in the room) for
evaluation purposes.

• Falling: Falling activities were performed between the antennas in 4 different direc-
tions, falling toward the receiver with a zero degree angle, toward the receiver with a
45 degree angle, and likewise toward the transmitter.

• Sitting: Sitting activities were performed on two different chairs between the antennas.
In this activity, the subjects were asked to sit on the chair from a standing position
during each recording session.

• Standing: Standing activities were performed the same way as the sitting activity. The
subjects were asked to stand up from the chair during the recording sessions.

3.5.3. Collected Dataset

We asked 4 participants to perform four activities, including falling, walking, standing,
and sitting on a chair. Each activity was recorded in a 5 s period to avoid spotting activity
intervals (activity detection) and focusing on activity recognition. Table 1 summarizes the
number of activities performed by four persons. Furthermore, we recorded 40 data samples
while no one was present in the room as steady-state data.

Table 1. Summary of the number of activities performed by the participants.

Subject Walking Falling Standing Sitting Walking Randomly Steady-State

Male 1 80 40 80 80 40

Female 1 40 50 40 40 -

Male 2 40 15 - - -

Male 3 40 40 40 40 -

Total 200 145 160 160 40 40

3.5.4. Activity Recognition Module

In this module, we trained the 6 classifiers in Section 3.4 using 80% of the data collected
by Male 1, Male 2, Female 1, and all the steady-state data as the training set (excluding
waking randomly) and allocated the rest as the test set. Furthermore, to evaluate the
performance and robustness of the trained models on data collected from a new person,
and the effect of pattern-less walking, we fed the data of Male 3 (unseen set) and the walking
randomly of Male 1 (random set) to the classifiers, respectively. The results obtained from
the trained models are presented in the following section.

4. Results and Discussion

To compare the effect of hybrid data, we trained our classifiers using hybrid data,
RF data, and acoustic data. We trained and evaluated the network with 50 components
extracted from Mel-spectrogram and Doppler features after applying PCA. Our evaluation
metric is the overall accuracy. Nevertheless, other metrics such as precision and recall
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can be calculated using the provided confusion matrixes for the unseen set, but they are
omitted here for brevity.

4.1. RF-Based HAR

Table 2 shows the results obtained from training the models with top 50 PCA compo-
nents extracted from Doppler features. Confusion matrixes of all models on the unseen set
is shown in Figure 5.

Table 2. Accuracy of classification models for RF features.

Model Test Set Acc Unseen Set Acc Random Set Acc

MLP 1.0 0.812 0.95

SVM 1.0 0.925 1.0

Random Forest 1.0 0.825 1.0

ERT 1.0 0.781 1.0

KNN 1.0 0.812 0.875

GTB 0.99 0.825 0.875
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4.2. Acoustic-Based HAR

Table 3 shows the results obtained from training the models with top 50 PCA compo-
nents extracted from Mel-spectrogram features. Confusion matrixes of all models on the
unseen set is shown in Figure 6.
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Table 3. Accuracy of classification models for Acoustic features.

Model Test Set Acc Unseen Set Acc Random Set Acc

MLP 0.91 0.731 0.925

SVM 0.97 0.75 1.0

Random Forest 0.97 0.762 1.0

ERT 0.97 0.762 1.0

KNN 0.92 0.831 1.0

GTB 0.94 0.806 1.0
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4.3. Hybrid RF–Acoustic-Based HAR

As mentioned before, for hybrid data, we used aggregation to fuse Doppler and
Mel-spectrogram features before applying PCA. The results are shown in Table 4 and the
confusion matrixes of all models on the unseen set are shown in Figure 7.

Table 4. Accuracy of classification models for hybrid RF–acoustic features.

Model Test Set Acc Unseen Set Acc Random Set Acc

MLP 0.99 0.843 1.0

SVM 0.99 1.0 0.975

Random Forest 1.0 0.987 1.0

ERT 0.99 0.993 1.0

KNN 0.99 1.0 1.0

GTB 1.0 0.987 1.0
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4.4. Discussion

Since the test set and training set are complementary subsets of the activities performed
by Male 1 and Male 2 and Female 1 (excluding waking randomly), they are expected to yield
better results, as is seen in the previous section. This is why we consider the performance
of the models on the unseen and random sets as our evaluation criteria, since these sets can
better represent the real-life scenarios. Based on the classification results, we can conclude
the following statements:

1. Looking at Table 2, we observe that three of the shallow models were able to recognize
the pattern-less (random set) walking activity. We believe this is due to applying PCA
on the input data before feeding them to the model. Figure 5 shows that five of the
six models correctly classified the falling and walking activities. However, the main
drawback of all the models is the misclassification of the sitting and standing activities
as falls, and the best performance belongs to the SVM classifier.

2. Table 3 shows that audio features are more robust to pattern changes of the walking
activity, and all the models except MLP achieve 100% accuracy on the random set.
However, as seen in Table 3 and Figure 6, the performance of the models on the unseen
set using acoustic features is lower than that of the RF features. The lower performance
of the models is mainly due to misclassification of the sitting and standing activities
with each other, which was expected given the silent nature of these activities. Looking
at Figures 5 and 6 and disregarding the MLP, we can see that audio features perform
better on walking and falling activities in terms of precision and recall. For acoustic
features, despite lower accuracy of KNN for the test set, KNN outperforms the rest of
the classifiers.

3. The results obtained from hybrid data classification, Table 4 and Figure 7, show
that the hybrid method matches or outperforms the state of the art, and we can
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see the increased performance for all models. By fusing RF and acoustic data, the
problem of false positives in the falling activity with RF-based classification and
misclassification of the silent activities in acoustic-based classification is solved. In
other words, RF and acoustic features can complement each other; the RF feature can
recognize silent activities, which audio features lack, and audio features are more
invariant to environment setup, activity pattern, and subject location, in comparison
with RF features. Figure 7 shows that the SVM and KNN classifiers perform better
than ERT, Random Forest, and GTB by a close margin.

4.4.1. Acoustic Noise Effects

As mentioned in previous sections, acoustic-based HAR systems are unable to detect
silent activities, especially in noisy environments. We thus separately added ambient noise
recorded in the lab environment and additive white gaussian noise (AWGN) to examine
the effect of noise on acoustic-based as well as on the proposed hybrid-based systems.
To do so, we added ambient noise and AWGN with different signal-to-noise ratio (SNR)
levels to all the acoustic raw data and evaluated the systems on three evaluation datasets.
Furthermore, to show the effect of noise on silent activities (sitting and standing up), we
recorded the accuracy of the models for the sitting and standing up activities of the unseen
dataset. Figure 8 shows the accuracy of the three top performing classifiers on the unseen
dataset from the previous section for different levels of the SNR.
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Figure 8. Effect of ambient noise and AWGN on performance of the acoustic-based and hybrid-based
HAR system. Different SNR levels are included for each kind of noise. Accuracy of acoustic and
hybrid systems with SVM, KNN, and ERT are shown. Dashed lines correspond to the performance of
the hybrid system. Sit and stand, unseen, random, and test refer to the corresponding datasets used
for evaluation.

Based on the results from Figure 8, we can see that in every case, the hybrid-based
system outperforms the acoustic-based system. Furthermore, we can observe that the
ERT and SVM classifiers are more robust to noise and have better performance than the
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KNN classifier in the presence of AWGN. In addition, we can see that the acoustic-based
system performance on sitting and standing up activities is lower for all the classifiers, and
these activities, because of their silent nature, are more prone to noise, as indicated in the
introduction section. However, we can see that by employing a hybrid approach, we can
counteract the unwanted effect of noise on our system’s performance.

4.4.2. Sensor Setup and Environmental Effects

To analyze the effect of the environment and the RF sensor placement, and further
distinguish among different classifiers, we recorded 10 falling and 60 walking samples for
Male 1 in a new room with more acoustic reverberation. In the new room, the walking
activity was performed without a specific pattern and the falling activity was performed
like the falling activity in the lab. The schematics of the room and sensor placements are
shown in Figure 9.
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Figure 9. Schematic of the new room data recording setup. Walking and falling activities were
performed in the dashed area without blocking the line-of-sight path between Tr and Rx. The walking
activity was performed without any pattern, similar to the walking activity in the random set. The
falling was performed in different directions in the dashed area. Measurement device placements in
this room were different from that of the lab environment.

We evaluated the recorded data in the new room with all the models. Table 5 shows
the precision, recall, and overall accuracy of the models evaluated by recorded data in the
new room.
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Table 5. Precision, recall, and overall accuracy of models for recorded data in the new room (Hyb:
hybrid data; RF: RF data; Aco: acoustic data).

Model
Fall Precision Fall Recall Walking Precision Walking Recall Overall Accuracy

Hyb RF Aco Hyb RF Aco Hyb RF Aco Hyb RF Aco Hyb RF Aco

MLP 1.0 1.0 1.0 0.16 0.3 1.0 0.12 0.58 1.0 1.0 1.0 1.0 0.24 0.64 1.0

SVM 1.0 1.0 1.0 0.23 0.29 0.14 0.43 0.55 0 1.0 1.0 0 0.51 0.61 0.14

Random Forest 1.0 1.0 1.0 0.45 0.3 0.2 0.8 0.58 0.32 1.0 1.0 1.0 0.83 0.64 0.41

ERT 1.0 1.0 1.0 1.0 0.33 0.25 1.0 0.63 0.5 1.0 1.0 1.0 1.0 0.69 0.57

KNN 1.0 0.7 1.0 1.0 0.21 1.0 1.0 0.45 1.0 1.0 1.0 1.0 1.0 0.49 1.0

GTB 0.9 1.0 1.0 1.0 0.24 0.71 1.0 0.45 0.93 0.98 1.0 1.0 0.99 0.53 0.94

Looking at Table 5 we can see that KNN, ERT, and GTB classifiers are more robust to
environment change and sensor setup given hybrid data and KNN, MLP, and GTB yield
100% accuracy for acoustic data. Furthermore, none of the classifiers achieve 100% accuracy
for RF data.

Overall, the ERT classifier is able to achieve 100% accuracy for the random and new
room dataset. Given its robustness against AWGN compared to KNN, we can say that ERT
outperforms the rest of the classifiers.

One of the existing challenges in HAR is to increase the range of recognizable ac-
tivities. Previous works in RF-based HAR suggest using higher frequency bands with
larger bandwidths to increase the range of recognizable activities, including fine-grained
activities such as typing. However, these solutions have their own constraints given the
limited available bandwidth in lower frequency bands, and higher power loss and noise
contamination in higher frequency bands. Seeing how fusing RF and acoustic features
enabled the recognition of silent activities, which were recognized poorly by acoustic-based
models, and increased precision and recall of falling and walking activities compared to
RF-based models, we believe RF–acoustic fusion can be an answer for expanding the range
of recognizable activities by means of non-invasive sensors.

5. Conclusions

In this paper, we presented a hybrid RF–acoustic HAR system. We chose RF and acoustic
sensors because of their non-invasive nature, privacy preservation, and lack of need for on-
body sensors. We configured our RF module with IEEE standards to have a fair comparison
with existing CSI-based HAR systems and make our model more adaptable for COTS devices.
In doing so, given the available RF and acoustic infrastructure in every household, we believe
our proposed system has the potential for easy implementation and commercialization.

By training the models using RF data, we demonstrated some limitations of RF-based
HAR. Since we extracted Doppler features from RF data and mitigated the effect of the
environment, the low overall accuracies achieved by RF features in Table 5 show the
dependency of the model performance on sensor setup. In addition, the misclassification
of siting and standing activities with falling points to the other limitation of RF-based
methods in identifying activities with similar RF signatures. To overcome this problem,
using higher frequency bands with larger bandwidths is suggested in the literature.

To show the advantages and disadvantages of acoustic-based HAR, we also trained
our models with Mel-spectrogram features. As seen in Figure 6, acoustic features are more
suited for falling and walking activities, whereas they do not perform well on silent activi-
ties, especially in the presence of noise. Therefore, overall when an activity has a distinct
sound signature, acoustic-based HAR can outperform the RF-based HAR. Nevertheless, the
other drawback of acoustic-based HAR is performance degradation due to reverberation
and background noise. Figure 8 shows how acoustic-based systems are prone to noise
in comparison with hybrid systems. Furthermore, looking at Table 5, we see how room
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reverberation lowered the performance of SVM, Random Forest, ERT, and GTB compared
to their performance in Table 3.

In this work, given the benefits and drawbacks of RF-based and acoustic-based HAR,
we proposed a hybrid RF–acoustic-based HAR. For data fusion, given the heterogenous
nature of the input data, we used a feature-level aggregation data fusion technique followed
by PCA to counter the sparse nature of input data (Figure 3). The proposed hybrid system
showed performance improvement regardless of the classification model. For evaluating
the performance of the models, in addition to using the common test set, we employed
three additional sets (random, unseen, new room) with distinct differences from the train
and test set. By comparing the models’ performance on the unseen set (Figures 5–7), we
showed that none of the models are able to achieve over 92.5% recognition accuracy with
only one type of sensor. By analyzing the results obtained from the effect of acoustic noise
(in Figure 8) and the new room dataset (in Table 5), we showed how ERT outperforms the
rest of the models and is more robust to noise, environmental factors, and sensor setup.

Finally, analyzing the performance of the models for the falling, sitting down, and
standing up activities revealed how RF and acoustic signals can complement each other.
Based on this observation, we believe using RF–acoustic data fusion could increase the
range of recognizable activities in addition to increased performance. RF-based HAR
systems can recognize activities that involve motion; however, they are unable to detect
motionless activities such as talking on the phone, speaking, watching TV, etc., and alarming
events such as explosions, screams, gunshots, etc. The same stands for acoustic-based
activities in recognizing silent activities such as sitting, standing, punching, etc. Therefore,
by using a fusion of these two sensory data types, we can increase the set of recognizable
activities and events, as we showed for the sitting and standing activity in this paper.

For future work, we plan to include more activities and events, especially activities
which are poorly recognized by RF features. In addition, the effect of the background
acoustic noise on the performance of the models and countering it by adding source-
localization-based denoising techniques will be analyzed. Other directions for future work
could also involve the analysis of human subject localization with RF–acoustic data fusion.
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