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We report experimental observation of the formation of phononic band structure in one-dimensional
periodically and quasiperiodically (based on the Fibonacci and Thue-Morse number sequences) area
modulated waveguide structures. The experimental results are compared to model calculations
considering the interference of multiply reflected waves using a transfer matrix method formulation.
It was found that both the scattering due to the changes in area (causing an impedance discontinuity)
and also the radiation impedance acting at each area discontinuity must be considered to accurately
model the experimental results. For the quasiperiodic structures, complicated transmission spectra
are seen to result, characterized by wide acoustic pseudo-band-gaps interrupted by narrow defect
modes around the center of the gap. © 2007 American Institute of Physics.

[DOLI: 10.1063/1.2749483]

I. INTRODUCTION

Structures which have a regular distribution of scattering
centers have been seen to possess a distinct and interesting
array of acoustical properties, perhaps most strikingly fre-
quency bandwidths within which sound cannot propagate
through the structure—a so-called acoustic (or phononic)
band gap (ABG). Such phononic crystals have been the sub-
ject of intense investigation in recent years,l_10 both in their
own right as acoustical systems but also as an acoustical
analog to the electronic behavior of crystal solids'""'? and the
optical behavior of photonic crystals.13 As such, this topic
forms an interesting bridge between the often uncorrelated
disciplines of solid state physics, optics, and acoustics.

The scattering centers in a one-dimensional phononic
crystal can be provided by a discontinuity in the open area of
a rigid waveguide, and structures where these discontinuities
are arranged periodically have long been known' to provide
effective filtering mechanisms for use, for example, in
mechanoacoustic systems such as forced air heating, exhaust
systems, and mufflers. An understanding of these systems
can, however, be significantly enhanced by analyzing them
as phononic crystals, rather than as lumped-element systems.
A rectangular waveguide offers (under certain assumptions)
a suitable system in which we can model the propagation of
plane waves through a one-dimensional lossless medium. As
such, they are systems which allow analytically tractable the-
oretical models to be verified experimentally. In this paper
the acoustic transmission properties of such waveguides
whose area is modulated in a periodic manner are consid-
ered; the acoustic transmission coefficient of such systems is
investigated experimentally and compared to model calcula-
tions derived using a transfer matrix method (TMM).

In addition to periodic systems, structures where the
scattering centers are distributed in a quasiperiodic manner
are also considered. Anderson' first showed that electronic
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localization (spatial confinement of electrons in a crystal) in
random media was a wave phenomena. This led to consider-
able interest in the localization of electromagnetic and acous-
tic waves in random,'®™"® but also quasiperiodic media. The
acoustical (and equivalently optical) case can be used for
investigation of the fundamental properties of localization,
having distinct advantages over the electronic investigation,
where electron-electron and spin-orbit interactions must be
incorporated. A quasiperiodic system based on the Fibonacci
number sequence was investigated by x-ray diffraction and
Raman scattering by Merlin et al."® These structure types
have since received considerable interest in the optical
domain;zo’21 the acoustical work, however, lags somewhat
behind the optical work in this area. Some work has been
performed on the transmission of acoustic phonons in Fi-
bonacci superlattice‘,s22’23 where discrete dips in transmission
have been seen. Additionally, pseudo-band-gaps have been
shown (theoretically) to occur in a tube-loop structure (that is
similar to a modulated waveguide) by Aynaou ef al. ** and the
existence of defect modes within the pseudogap is also pre-
dicted. An experimental investigation of this phenomena is
therefore warranted. This paper reports an experimental veri-
fication of these results in the audible frequency range.

Il. THEORY

There are many methods with which we can model the
acoustic response of a one-dimensional
waveguide:.7’9’l6’22’24‘25 We choose a transfer matrix method
due to its flexibility. Consider a periodic system (of period
A) of the type shown schematically in Fig. 1. The pressure,
W, and volume velocity U at the right of each “unit cell” can
be related by a transfer matrix p*

\Irn \I}n+1
=P, , (1)
Un Un+l
where
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~ ( cos(2ka,)cos(k€,) — (§,/S,)sin(2ka,,)sin(k{,,)

(j/poc)[S, sin(2ka,)cos(kl,) + S, cos(2ka,)sin(k€,,)]

where k is the wave number, 2a, is the length of the nth
perturbation, S; (S,) is the area of the unperturbed (per-
turbed) section of waveguide, and

¢,=(A,-2a,) (3)

is the length of the nth “normal” waveguide section between
each perturbation where the subscript n allows for potential
structure variation between each unit cell. Additionally, a ra-
diation impedance due to the change in area can be included
into the model by concatenating a transfer matrix

1 ZAa
Prad = (0 1r ¢ ) s (4)

[where Zy, is the radiation impedance (in acoustic units)
due to the fluid medium into which the acoustic wave is
radiating] before and after the transfer matrix describing each
perturbation of the waveguide.

Thus, the pressure and volume velocity at the left of the
structure can be related to those at the right of the structure
by the simple concatenation of the transfer matrices,

N-1
N4 v
( °)=(HP,-)( ”>. 5)
Uo i=0 Uy
If all the transfer matrices are equal (the structure is locally
periodic),

)= () ®
Uy Uy

where the transfer matrix is simply raised to the power of the
number of periods in the structure. By noting that the transfer
matrix P is unimodular, the Cayley-Hamilton theorem can be
used to determine a closed form expression for the Nth

power of the matrix in terms of Chebychev polynomials25
and the resulting transfer matrix of the complete system,

pY_ (PHUN_I@) ~Una(  PUya(9 )
Py Uy1(8) PpuUy(8) = Uyo(8) )
)
where P;; are the (i,j) elements of the single period transfer

matrix, Uy(§) is the Chebychev polynomial of the second
kind,
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FIG. 1. Schematic representation of N periodic repetitions (of period length
A) of abrupt expansions (of length 2a) and contractions in a waveguide.
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U =—7"—"", (8)
sin 7y
where
y=cos™'(9), )

and ¢ is related to the trace of the single period transfer
matrix
1
&= ETr(P) . (10)

From the total transfer matrix, the intensity transmission and
reflection coefficients can be easily calculated.

lll. EXPERIMENTAL DETAILS

The basic waveguide structure used in this work is
formed from an impedance tube (rigid rectangular plane
walled metal tube). The total waveguide length (from loud-
speaker to measurement position) is 3 m, and the waveguide
is terminated with an anechoic termination behind the mea-
surement position to prevent reflections from the end of the
tube. Reflections from the source (loudspeaker) end of the
waveguide, reflecting waves that were previously reflected
from the modulated structure, were also problematic. These
were partially removed by inserting some loosely packed
fibreous absorbent at this end of the tube.

The internal dimensions of each waveguide section are
square with side length of 54.0+£0.5 mm. This places an up-
per limit on the range of validity of the measurements as the
analysis assumes that plane waves propagate within the tube.
For a square tube, this gives an upper limiting frequency27 of
approximately 3 kHz.

The cross-sectional area of the waveguide is modulated
by inserting rigid aluminium blocks into the waveguide. The
blocks have square cross section with side length 38 mm,
giving a ratio of areas in the waveguide of 7=S5,/5,=2.02.
The resulting waveguide is no longer square when the per-
turbations are present. This is not, however, important at the
frequency ranges considered as the plane wave limit applies.
Vaseline is used on the surfaces of the block in contact with
the waveguide structure to ensure a good seal and to avoid
any absorption effects that would be associated with small
gaps between the blocks and the original waveguide struc-
ture. It was found that identical results were obtained if the
blocks were placed in contact with two edges or if placed in
contact with only one edge of the original waveguide struc-
ture.

The measurements were performed using a maximum
length sequence (MLS) signal to generate an impulse and
frequency response of the structure.”® The system was ex-
cited with a standard loudspeaker. The MLS signal, after
propagating through the structure, was received by a 1/4 in.
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FIG. 2. (Color online) The measured intensity transmission coefficient of a three to eight [(a)—(f)] period Bragg stack (solid line) with period A=0.172 m. The
theoretical modeling results (dashed line) are also shown including a radiation impedance ZAmd=4 jw at each area discontinuity. A good agreement is seen
between the measured and theoretical results with clear acoustic band gaps forming for the higher numbers of periods.

free field microphone, which has a flat frequency response
(to within 1 dB) between 10 Hz and 40 kHz. This was con-
nected to a preamplifier and then a measuring amplifier be-
fore being captured by the computer’s sound card.

IV. PERIODIC SYSTEMS
A. Results and modeling

Initially, the waveguide structure was constructed in a
periodic arrangement of the form shown in Fig. 1 with a
period length of A=0.172 m and a perturbation length 2a
=A/2. This arrangement will be termed a Bragg stack in
analogy with the familiar optical Bragg stacks.” The mea-
sured intensity transmission coefficient for varying numbers
of periods of the Bragg stack is shown in Fig. 2.

For all numbers of periods, the transmission shows a
complex nonmonotonic dependence on the frequency, with
significant dips around 1 kHz and slightly less well defined
dips around 2 kHz. A further significant dip is seen at higher
frequencies (approximately around 3 kHz), although this dip
cannot be fully resolved due to the plane wave limit of the
waveguide. The large dips in frequency are seen to become
deeper and flatter with increasing numbers of periods and,
above approximately six periods, form complete band gaps
in the material—extended regions of frequency in which
acoustic waves cannot propagate through the structure. Be-
tween each of the large dips in transmission, significant in-
terference fringes are observed.

The theoretical modeling of transmission through the
Bragg stacks are also shown in Fig. 2. In order to achieve

agreement between the experimental and theoretical results,
it was found necessary to include the radiation impedance
which naturally occurs at every change in cross-sectional
area. Without the radiation impedance, the dip at ~2 kHz is
not predicted.

In a lumped-element approximation, at the change in
area, the air acts as a plane piston, and the radiation imped-
ance acts on this piston. The radiation impedance is modified
by the periodicity both perpendicular (due to image sources)
and parallel to the sidewalls of the waveguide structure; stan-
dard formulations®® are therefore not applicable. Conse-
quently, the value of the radiation impedance was estimated
from the experimental results, and good agreement was
found with a value of ZArad=4 jw.

Including this mass loading effect (radiation impedance),
good agreement is seen between the experimental data and
the theoretical predictions for all numbers of periods of the
structure. It should be noted that, for small numbers of peri-
ods, the transmission coefficients display some small oscil-
latory behavior not theoretically present and not observed
with larger numbers of periods. It was found experimentally
that this was due to reflections from the loudspeaker at the
source end of the waveguide. The extra oscillations seen in
the transmission coefficients of modulated waveguides with
a low number of periods (with respect to the theoretical pre-
dictions) can therefore be judged to be due to experimental
error, and not theoretical inaccuracies. In addition, the mag-
nitude of the measured transmission coefficient peaks is
slightly lower than that of the theoretical results. This is due
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to losses in the medium, which was treated as lossless in the
modeling.

B. Discussion

Significant insight can be gained into these results by
considering the waveguide structure in the infinitely periodic
limit. Invoking the Bloch-Floquet the:orc:m,30’3 ! the wave-
function (pressure) at a location x is given by

Yr(x) = e Fug (), (11)

where K is the Bloch wave vector and ug(x) is the Bloch
function which is a function with the periodicity of the struc-
ture,

ug(x+ A) = ug(x). (12)

Using this condition, and Eq. (1), it can be shown that the
Bloch wave vector is given by

1
K:Xcos‘1 £, (13)

where ¢ is defined by Eq. (10).

If |£]<1, K is entirely real and so the Bloch waves are
propagating waves. Thus, acoustic waves incident on the
phononic crystal with frequencies such that |£ <1 are able to
propagate through the structure, and this therefore corre-
sponds to allowed energy bands in the structure. If, however,
|§>1, K is complex and the Bloch waves are evanescent
(they decay exponentially with distance into the phononic
crystal). Therefore, frequencies such that |§]>1 correspond
to forbidden energy bands within the phononic crystal (i.e.,
to band gaps, regions where propagation is not allowed).
Indeed, by further mapping the real component of the Bloch
wave number in terms of frequency, a plot of the band struc-
ture can be built up, showing the dispersion relation of the
medium and the allowed and forbidden bands. Although this
analysis only holds for an infinitely periodic medium, it pro-
vides insight into the transmission properties of the locally
periodic structures investigated here.

The band structure for the Bragg stack considered here is
shown in the reduced zone scheme in Fig. 3. Regions of
frequency (for example, around 1 kHz) can be clearly seen
where there is no allowed solution of the Bloch wave vector
(a gap is seen between the allowed states). This corresponds
to the band gaps of the structure, and comparison with Fig. 2
shows that these gaps occur over the same frequency range
as the transmission stop bands are forming. In these regions,
the Bloch wave number is complex, leading to an evanescent
wave and hence zero transmission (for the infinite structure).
Thus, the dispersion relation of the structure can be seen to
be separated into allowed bands separated by forbidden re-
gions, or band gaps. As the number of periods is increased,
the decay of the evanescent waves through the structure is
more complete, leading to the acoustic band gaps forming
more fully.

A simple qualitative justification of these band gaps can
also be given. At each discontinuity in the area of the struc-
ture, the incident wave is partially reflected. If the reflected
waves are in phase with each other, a standing wave will be
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FIG. 3. The band structure for the infinitely periodic Bragg stack system
with period A=0.172 m and a radiation impedance ZAmd=4jcu acting every
A/2. Acoustic band gaps (where no acoustic waves can propagate) are rep-
resented by shading.

formed, and sound will not propagate through the material
leading to the formation of band gaps.g’32 The frequencies at
which the reflected waves are exactly in phase are the center
frequencies of the band gaps, f.=c/2A,3c/2A,..., justifying
the formation of the band gaps observed here at ~1 and
~3 kHz. Conversely, when the period length is not close to a
half-wavelength of the incident wave, the reflected waves are
not in phase, a standing wave is not formed, and so sound at
these frequencies can propagate through the structure (with
some attenuation depending on the exact interference of in-
cident and reflected waves).

The band gap at ~2 kHz can be understood by consid-
ering the radiation impedance. This occurs at every change
of cross-sectional area, i.e., with a periodicity that is half that
of the main structure. This therefore introduces small (due to
the small magnitude of the impedance) band gaps to open up
at ~2 kHz (i.e., twice the center frequency of the primary
band gap reflecting the reduced period length). Note, with
the current period length, the fundamental band gap would
be expected, from the above discussion, to open up centered
at exactly 1 kHz. However, there is an effective increase in
length of each perturbation in the waveguide by end correc-
tions due to the radiation impedamce.33 This causes a slight
decrease to the exact center frequencies of the band gaps, as
observed here.

V. FIBONACCI SYSTEMS

Systems based on the Fibonacci number sequence (FS)
were also investigated in this work. In the current context,
such systems are composed of layers denoted as A and B of
cross-sectional area S, and §,, respectively (where B there-
fore denotes a perturbation to the original waveguide), where
the layer sequence of the structure (of order n) is given by
the recursion relation

Sn = {Sn—l’Sn—Z}’ (14)

with
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TABLE I. The sequence of the Fibonacci multilayer structure definitions up
to seventh order. A denotes a “normal” section of waveguide and B a section
with a perturbed cross section (i.e., an expansion or contraction in the wave-
guide).

Symbol Fibonacci layer sequence No. of layers
So B 1
S, A 1
S, BA 2
S3 ABA 3
S, BAABA 5
Ss ABABAABA 8
Se BABAABABAABA 13
S5 ABABAABABAABAABABAABA 21
So=1{B},

S 1= {A} .

The sequence of the Fibonacci multilayer structure defini-
tions up to seventh order is given in Table I.

A. Results and modelling

The measured transmission coefficients for single period
Fibonacci structures, with a single (A or B) layer thickness of
0.086 m, of order four to seven are shown in Fig. 4.

The interference of acoustic waves scattered from the
discontinuities in the waveguide now combine to give a more
complicated transmission spectrum than in the case of the
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periodic Bragg stack considered above. Clear pseudogaps
can be seen to result. Note, these are termed pseudogaps as
the medium is not periodic, and so full band gaps (as defined
by the Bloch phase) do not form. The gaps occur spaced
around the central frequency of the band gap that would
result from a Bragg stack with the same layer thicknesses
(~1 kHz). The pseudogaps form more fully as the order of
the FS structure is increased, with full pseudogaps only
forming for the highest order structure investigated here.
Note, a dip in transmission is seen to form at ~2 kHz as for
the periodic structures. This is due to the radiation imped-
ance effects discussed previously.

Including the mass loading effects, with the same value
for the radiation impedance as used for the periodic struc-
tures, good general agreement is achieved between the ex-
perimental and theoretical results. For low orders of structure
sequence, the measured transmission coefficient can be seen
to display extra oscillations that are not present in the theo-
retical results. These can again be explained by small reflec-
tions from the loudspeaker. The experimental and theoretical
results show good qualitative agreement with the theoretical
calculations for the FS tube-loop structure (a similar configu-
ration to that used here) of Aynaou er al.**

For the higher order structures, the higher values of
transmission can be seen to be reduced somewhat below
their theoretical values. This is most likely due to absorption
within the waveguide structure, which is more important for
the higher order structures as the propagation distance is
much longer (the structures are much larger). The central
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FIG. 4. (Color online) The measured intensity transmission coefficient (solid line) for fourth, fifth, sixth, and seventh order FS modulated waveguide
structures. The theoretical modeling results (dashed line) are also shown including a radiation impedance ZAnd=4jw at each area discontinuity. Good general

agreement is seen between the measured and theoretical results.
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transmission peak of the seventh order FS system is substan-
tially reduced below the theoretical value. This will be dis-
cussed in further detail below.

B. Discussion

The structures considered here are quasiperiodic—
indeed, their autocorrelation functions are strongly peaked at
delays equal to the Fibonacci numbers. It has been shown®*
that this quasiperiodicity (where some periodicity exists
along with some disorder) results in sets of critical states
with transmission coefficient 0 <a,<<1 which correspond to
states intermediate between extended periodic Bloch states
(a,=1) and fully disordered (Anderson) localized states («,
=0). Thus, bands of allowed and forbidden states still form
leading to the pseudo-band-gaps seen here.

Three regions warrant specific consideration. First, in the
middle of allowed bands, extended Bloch-like states are
formed and the transmission therefore approaches unity, as
seen in Fig. 4. Second, at the band edges (~600 and
~1400 Hz for the first band gap in the current case) band
edge resonances have been shown to occur in optical Fi-
bonacci structures> which decay by a power law. Analysis of
the local density of states by Aynaou et al.** shows that these
states show a marked similarity to band edge states in a
periodic structure. Thus, these states can be seen to mark a
transition from periodic properties (band gaps) to disorder
induced properties (critically localized states). The power
law decay of these states compared to the exponential decay
of the gap states results in an increase of transmission, as in
finite length structures, the field does not decay to zero.

Third, the middle of the pseudogap deserves attention.
States at these frequencies have been shown to exhibit a
self-similar behavior around the central peak, providing evi-
dence of critical localization of these states, rather than ex-
tended or Anderson localized states forming. Note, the theo-
retical calculations used in this work exhibit this self-similar
behavior, although due to experimental size constraints, suf-
ficiently larger structures could not be constructed to display
this self-similarity experimentally. These critically localized
states are largely equivalent to the defect states introduced
when a periodic system is perturbed by a defect element.”?
The number of defect peaks observed in the FS structure
pseudogaps increases with increasing order of the structure.
Due to their localized nature, waves propagating within these
defect modes are expected24 to have a slower group velocity
than waves propagating through the unmodulated plane
waveguide. The increasing numbers of defect modes with
increasing order of the structure would therefore lead to ex-
tended frequency bands within which the speed of sound in
the tube may be reduced below its standard value. This is in
contrast to the anomalous dispersion that occurs within the
band gaps increasing the group velocity above the speed of
sound in an unmodulated waveguide.

As a simple example, the defect transmission exactly at
the center of the gap can be analyzed analytically. At this
frequency, a “double thickness” layer (AA or BB) is one-half
wavelength thick and therefore has no effect on propagation
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of acoustic waves. At this frequency, the S¢ structure, for
example, can therefore be reduced as follows:

BAABAABABAABA — BBBABBA — BAA =B. (15)

Thus, at f., the structure acts as if it is composed of only a
single B layer, equivalent to a single period of the Bragg
stack considered previously, resulting in the only partially
reduced transmission seen at this frequency. The other de-
fectlike peaks are more difficult to analyze directly, but result
due to the exact interference conditions between reflections
from each discontinuity in the area of the structure. This
holds for the S5 structure also. Conversely, the S, and S5
structures reduce, at f.., to a single unperturbed (A) layer, and
therefore perfect transmission would be expected. This is
seen to occur in the modeling results at this frequency and is
seen in the S, experimental results.

The nature of these defect states also explains the sig-
nificant differences in magnitude between the theoretical and
measured transmission at f.. in the S; structure. The perfect
transmission holds only for acoustic waves propagating
through the structure at exactly f,. leading to a narrow defect
peak. However, if there is some small variation in the spac-
ings of the blocks, there is some variation in the frequencies
that couple to this defect mode, thus reducing the magnitude
of the transmission at f, and reducing the Q factor and height
of the defect peak with respect to the theoretical value.

VI. THUE-MORSE SYSTEMS

It has previously been seen in electronic systems that
structures based on similar sequences such as the Thue-
Morse sequence display quasiband structure due to extended
and critically localized modes as in the Fibonacci system.36
Two structures based on this sequence are therefore briefly
considered here.

In the current study, the Thue-Morse (TM) structure se-
quence is defined by the recursion relation

Sp=ASu-1:8k n=1, (16)
where S denotes a second recursion relation

S = S-1:Sn}s (17)
with

So={A},

Sy ={B}.

The sequence of the TM multilayer structure definitions up
to fifth order are shown in Table II.

The measured transmission coefficients for single period
TM structures, with a single (A or B) layer thickness of
0.086 m, of order three and four are shown in Fig. 5.
Pseudogaps are indeed seen to form for these structures, but
these are interrupted by more defect peaks than was observed
in the FS structures. This is consistent with the TM layer
sequence being more aperiodic than the Fibonacci layer
sequence37 (its Fourier spectrum is more continuous). The
greater degree of disorder leads to more modes which are
critically localized, leading to a wider frequency range of
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TABLE II. The sequence of the TM multilayer structure definitions up to
fifth order. A denotes a normal section of waveguide and B a section with a
perturbed cross section (i.e., an expansion or contraction in the waveguide).

Symbol Thue-Morse layer sequence No. of layers
So A 1
S AB 2
S, ABBA 4
S5 ABBABAAB 8
S, ABBABAABBAABABBA 16
Ss ABBABAABBAABABBABAABABBAABBABAAB 32

transmission (defect) peaks within the gap than in the FS
structures. The number of these defect peaks increases with
increasing order of structure (as there are more possible in-
terference paths that give rise to high transmission through
the structure due to destructive interference of the back re-
flected waves). As with the other structures investigated, the
pseudogaps become deeper and more clearly defined with
increasing order of the structure, as would be expected due to
its increased length.

VIl. CONCLUSIONS

One-dimensional periodically and quasiperiodically
modulated waveguides have been examined experimentally
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FIG. 5. (Color online) The measured intensity transmission coefficient
(solid line) for third and fourth order TM modulated waveguide structures.
The theoretical modeling results (dashed line) are also shown including a
radiation impedance ZAmd=4jw at each area discontinuity. Good general
agreement is seen between the measured and theoretical results.
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and theoretically. While one-dimensional phononic crystals
have been examined before, previous work has not provided
a detailed comparison of experimental and theoretical re-
sults. The results were accurately modeled by considering
the interference of multiply reflected waves through the
structure. Acoustics is unusual in having to consider radia-
tion impedance. It was shown to be necessary to consider
scattering caused by this radiation impedance, in addition to
the scattering caused by the impedance discontinuity due to
the change in volume velocity at each change in area of the
waveguide, to gain good agreement between measurement
and theory. Also, the introduction of another source of peri-
odicity potentially offers the opportunity to develop addi-
tional band gaps. For Fibonacci structures, a complicated
transmission spectrum was seen to result, characterized by
wide acoustic pseudoband gaps interrupted by narrow defect
modes at the center of the gap. This was discussed in terms
of the existence of critically localized modes within the
structure. Similar transmission spectra were observed for
structures based on the Thue-Morse number sequence. This
work therefore provides experimental verification of the
transmission properties of one-dimensional phononic crystals
based on the quasiperiodic Fibonacci and Thue-Morse num-
ber sequences.

I.p. Dowling, J. Acoust. Soc. Am. 91, 2539 (1992).

M. Sigalas and E. N. Economou, Solid State Commun. 86, 141 (1993).
3R, Martinez-Sala, J. Sancho, J. V. Sanchez, G. V. J. Llinares, and F. Me-
seguer, Nature (London) 378, 241 (1995).

“M. S. Kushwaha and P. Halevi, J. Acoust. Soc. Am. 101, 619 (1997).
M. S. Kushwaha, Appl. Phys. Lett. 70, 3218 (1997).

SW. M. Robertson and J. F. Rudy 111, J. Acoust. Soc. Am. 104, 694 (1998).
C. E. Bradley, J. Acoust. Soc. Am. 96, 1844 (1994).

8C. E. Bradley, J. Acoust. Soc. Am. 96, 1854 (1994).

°I. N. Munday, C. B. Bennett, and W. M. Robertson, J. Acoust. Soc. Am.
112, 1353 (2002).

19S. Chen, T. Tang, and Z. Wang, Acta. Acust. Acust. 93, 31 (2007).

"R. de L. Kronig and W. G. Penney, Proc. R. Soc. London, Ser. A 130, 499
(1931).

12N. W. Ashcroft and N. D. Mermin, Solid State Physics (Harcourt College,
London, 1976).

E. Yablonovitch, Phys. Rev. Lett. 58, 2059 (1987).

“LE. Kinsler, A. R. Frey, A. B. Coopens, and J. V. Sanders, Fundamentals
of Acoustics, 3rd ed. (Wiley, New York, 1982).

5P W. Anderson, Phys. Rev. 109, 1492 (1958).

1%V, Baluni and J. Willemsen, Phys. Rev. A 31, 3358 (1985).

D. Sornette and O. Legrand, J. Acoust. Soc. Am. 92, 296 (1992).

'8p Luan and Z. Ye, Phys. Rev. E 63, 066611 (2001).

PR. Merlin, K. Bajema, R. Clarke, F. Y. Juang, and P. K. Bhattacharya,
Phys. Rev. Lett. 55, 1768 (1985).

M. Kohmoto, B. Sutherland, and K. Iguchi, Phys. Rev. Lett. 58, 2436
(1987).

2y, Gellermann, M. Kohmoto, B. Sutherland, and P. C. Taylor, Phys. Rev.
Lett. 72, 633 (1994).

2. Tamura and J. P. Wolfe, Phys. Rev. B 36, 3491 (1987).

S, Tamura and J. P. Wolfe, Phys. Rev. B 38, 5610 (1988).

**H. Aynaou, E. H. El Boudouti, B. Djafari-Rouhani, A. Akjouj, and V. R.
Velasco, J. Phys.: Condens. Matter 17, 4245 (2005).

2D, J. Griffiths and C. A. Steinke, Am. J. Phys. 69, 137 (2001).

2T J. Cox and P. D’Antonio, Acoustic Absorbers and Diffusers: Theory,
Design and Application (Spon, London, 2004).

TBritish Standards Institution, BS EN ISO 10534-1:2001, Acoustics—

Determination of sound absorption coefficient and impedance in imped-

ance tubes. Part 1: Method using standing wave ratio, BSI (2001).

WINMLS, Morset Sound Development, 2004, http://www.winmls.com.

2. Brooker, Modern Classical Optics, Oxford Master Series in Atomic,
Optical and Laser Physics (Oxford University Press, Oxford, 2003).

F. Bloch, Z. Phys. 52, 555 (1928).

28

Downloaded 02 Jul 2007 to 137.205.192.27. Redistribution subject to AIP license or copyright, see http://jap.aip.org/jap/copyright.jsp



014902-8 P. D. C. King and T. J. Cox J. Appl. Phys. 102, 014902 (2007)

3!G. Floquet, Ann. Sci. Ec. Normale Super. 12, 47 (1883). L. D. Negro et al., Phys. Rev. Lett. 90, 055011 (2003).
32p, D. King, M.S. thesis, University of Salford, 2006. *A. Chakrabarti, S. N. Karmakar, and R. K. Moitra, Phys. Rev. Lett. 74,
3L, L. Beranek, Acoustics (Acoustical Society of America, New York, 1403 (1995).

1996). p.w. Mauriz, E. L. Albuquerque, and M. S. Vasconcelos, Phys. Rev. B 63,
3E. Maci4 and F. Dominguez-Adame, Phys. Rev. Lett. 76, 2957 (1996). 184203 (2001).

Downloaded 02 Jul 2007 to 137.205.192.27. Redistribution subject to AIP license or copyright, see http://jap.aip.org/jap/copyright.jsp



