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Acoustic Birefringence and Poisson’s Ratio Determined by Ultrasound: Tools to Follow-Up 

Deformation by Cold Rolling and Recrystallization
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Poisson’s ratio and birefringence, both measured by ultrasound, are used to follow the evolution 

of the anisotropy in ASTM A-36 steel plates cold-rolled between 5 and 50% deformation, and then 

subjected to recrystallization at 900 and 1000 °C. Times of flight of longitudinal and shear waves along 
the thickness of the plates were measured. As orthotropy increases, both birefringence and the difference 
between Poisson’s ratios measured using a shear wave polarized along the length and another wave 

polarized along the width of the plate, are linearly related to the degree of deformation and cold-rolled 

hardness. In addition, the ultrasonic methods used clearly detected the complex changes in anisotropy 

produced by the austenization and recrystallization heat treatments. Thus, Birefringence or Poisson’s 

ratio, measured by ultrasound, can be used to follow-up nondestructively changes in the anisotropy 

of rolled plates as a function of both, degree of deformation and recrystallization heat treatment.
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1. Introduction

The use of ultrasound to measure second order elastic 

constants in multiphase or polycrystalline materials is based 

on the Christoffel equation, which relates them with the phase 
velocity of three non-dispersive ultrasonic waves with mutually 

perpendicular polarization directions (i.e., of displacement of 

the medium’s particles), propagating in specified directions1. 

This equation comes from considering that the passage of 
a wave through a body generates small elastic stresses and 

deformations, setting up a dynamic equilibrium described 
by the equations of motion, wherefrom the equation that 
governs wave propagation in a homogeneous elastic medium 

is obtained by considering the generalized form of Hooke’s 

law. The Christoffel equation is finally obtained by assuming 
the propagation of harmonic elastic waves as a solution for 

the equation of motion:

     (1)

where C
ijkl

 are the second order elastic constants; (n
1
,n

2
,n

3
), 

the direction cosines of the normal to the wavefront, indicating, 

therefore, the direction of propagation of the wave; u
l
 is 

the displacement or polarization vector; ρ, the density of 
the medium, and δ

il
, the Kroenecker delta. The equation 

corresponds to three homogeneous equations from which, 
for every propagation direction considered, three different 
velocity values arise from the cubic equation in v2, obtained 

by making the determinant of the coefficient matrix equal to 
zero. These three velocities correspond to three waves with 

mutually perpendicular polarization vectors.

The solution to the inverse problem of determining the 

elastic constants from experimental measurements of wave 

velocity is well established, and the measuring protocols 

are clearly defined in the literature1. Most materials used 

in engineering either have isotropic symmetry, with two 

independent elastic constants, or orthotropic symmetry, 

with nine independent constants. The following relations 

are obtained for the isotropic case, where C
11

 = C
22

 = C
33

, 

C
44

 = C
55

 = C
66

 = ½(C
11

-C
12

):

             (2)

with v
ii
, the velocity of the longitudinal wave (longitudinally 

polarized to its direction of propagation i), and v
ij
, with i ≠ j, 

the velocity of the shear wave (polarized in the direction j, 

transverse to its direction of propagation i). Thus, the values 

of the elastic constants may be obtained just by measuring 

the velocities of a longitudinal wave and a shear wave in any 

direction of propagation. From the theory of elasticity2, which 

for the isotropic case relates the elastic stiffness constants 
with Young’s and shear moduli, and with Poisson’s ratio ν, 

these parameters may be expressed in terms of the velocities 
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of the longitudinal and shear waves3, as Equation (3) shows 
for Poisson’s ratio:

                (3)

Since in an isotropic material v
L
 and v

T
 are independent 

of their directions of propagation and polarization, access to 

any one plane is enough to calculate its elastic properties.

In order to obtain the independent constants of an 

orthotropic material, nine measurements are required. 
These are the velocities of longitudinal and shear waves in 

the three symmetry directions of the material, allowing to 

obtain C
11

, C
22

, C
33

, C
44

, C
55

 and C
66

; and the velocities of 

either quasi-longitudinal or quasi-shear waves in the three 
symmetry planes, but at an angle with respect to the axes, 

obtaining C
12

, C
13

 and C
23

. Now, using only normal incidence 

for propagation along the z-axis (Figure 1), the following 

relations are obtained:

            (4)

That is, although to obtain all of the constants of an 

orthotropic material, three perpendicular planes must necessarily 

be accessed, variations in the degree of orthotropy may be 

studied by having access to only one plane and measuring 

the velocities of the shear waves v
31

 and v
32

, thus determining 

the difference between the elastic constants C
44

 and C
55

. This 

difference gives rise to the acoustic birefringence B, which 
is quantified as the ratio of the difference of velocities v

31
 

and v
32

 to their average, as Equation 5 shows, so that for a 
perfectly isotropic material, B = 0:

            (5)

where t
ij
 corresponds to the times of flight of the waves 

along the z-axis. The equation shows that birefringence can 
be quantified without measuring the distance, usually the 
thickness as in the case of rolled metal plates, of the material 

through which the wave travels, because the ratio of the 

velocities of two waves traveling the same distance becomes 

a ratio of the times of flight of those waves. Therefore, on 
the one hand, an important source of error in measurement 

is omitted, and on the other hand, it allows the study to be 

made under conditions in which it is difficult or impossible 
to measure the thickness4-7.

Notice that Equation (3) indicates that the thickness can 
also be omitted to calculate Poisson’s ratio. This equation is 
valid for an isotropic material; for an orthotropic material, the 

difference between the elastic constants C
44

 and C
55

 should 

generate two values for Poisson’s ratio, depending on the 

polarization direction of the shear wave, that is:

            

                                                                                  (6)

              (7)/
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Figure 1. Waves for the determination of elastic constants, with 

longitudinal and shear waves propagating along z. The longitudinal 

wave is polarized along the z-axis, while the shear waves of velocities 

v
31

 and v
32

 are polarized along the x and y axes, respectively.

Therefore, it should be possible to relate Poisson’s 

ratio with the effect of deformation processes and post 
deformation heat treatments on the anisotropy, without 

specifying the thickness of the material under study. There 

is no information in the literature with respect to the use of 

Poisson’s ratio for this purpose. The objective of this paper 

is, then, to study the feasibility of relating Poisson’s ratio 

and acoustic birefringence measured by ultrasound with 

the degree of cold-working and the temperature and time of 

austenization after cold deformation of an structural steel. 

For this research, the traditional contact ultrasonic technique 
was used (as Figure 1 suggests), which readily lends itself 

to some industrial use, though it might be a limitation when 

contact between transducers and the part becomes an issue. 

However, the method is suitable for any non-contact technique, 
such as Electromagnetic Acoustic Transducer (EMAT) and 

Laser Ultrasonic (LUS), as long as longitudinal and shear 

waves may be induced in the part.

2. Experimental Procedure

Seven samples measuring 505 mm x 54 mm x 15 mm 

were cut for cold rolling from a hot-rolled ASTM A-36 steel 

plate. Their surfaces were adequately prepared to readily 
accommodate the transducers and propagate the ultrasonic 

waves. Before rolling each sample, 21 points were identified 
along the central line of the top surface, separated by 10 

mm each. The thickness at every point was measured with 

a micrometer. Then, the seven samples were rolled each at a 

different degree of deformation. Afterwards, the seven rolled 
samples were each cut into four equal parts, all of which were 
heat-treated in a 20-kW Lindberg model 56667-E furnace, 
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previously heated at the required temperature as shown in 
Table 1. Thus, four heat treatments were performed for each 

degree of deformation.

The longitudinal velocity v
33

, whose polarization vector 

is perpendicular to the rolling direction, has a decreasing 

trend as the degree of deformation increases beyond 

17.9%, reaching, at 42%, a maximum difference of 46 m/s 
(0.78%) compared to its original average value without cold 

deformation. On the other hand, it is observed that for the 

original non-cold rolled sample, the difference between the 
average values of velocities of the perpendicularly polarized 

shear waves, v
31

 and v
32

, is barely 3 m/s. From Equation 
4, this gives rise to a difference of a mere 0.18% between 
C

44
 and C

55
, rendering the sample nearly isotropic. As cold 

deformation increases, the shear wave velocity v
31

, polarized 

parallel to the rolling direction, increases constantly from 

its original average value, so that the velocity is 2 m/s 
higher (0.06%), at ε = 5.4% and 28 m/s higher (0.86%) at ε 
= 49.7%; meanwhile, v

32
 (perpendicularly polarized to the 

rolling direction) decreases between 5 and 86 m/s (0.15% and 
2.65%), relative to its respective original value. Following 

Equation 4, this implies that C
55

 increases and C
44

 decreases 

because of the deformation, while the effect on C
33

 is more 

complex, although it clearly tends to decrease.

3.2 Effect of cold rolling on poisson’s ratio and 
birefringence

According to Equations 5, 6 and 7, the changes in the 
elastic constants modify B and ν. To illustrate the effect of 
cold rolling, Figure 2a compares Poisson’s ratios at the 21 

locations of a sample before and after cold rolled to 12.3% 

deformation, and Figure 2b does the same for the sample 

rolled to 42%. On the non-rolled samples of Figure 2, the 

average values of Poisson’s ratios determined from Equations 
6 and 7 are ν̅

31
 = 0.2817 and ν̅

32
 = 0.2810, respectively. Figure 

2 also shows that the individual values of ν
31

 and ν
32

 before 

deformation slightly fluctuate around their respective mean 
values, with a maximum difference between ν

31
 and ν

32
 of 

0.0019 at locations 4 and 10. On the other hand, when the 

samples are rolled, fluctuations around the respective averages 
increase somehow, but more importantly, as the deformation 

increases, ν
31

 decreases while ν
32

 increases at every location. 

Hence, the difference between the mean values for the sample 
rolled to 12.3% grows to ν ̅

31
 – ν ̅

32
 = 0.0042, while for the 

one rolled to 42%, climbs to ν
3̅1

 – ν
3̅2

 = 0.0168, that is, more 

than an order of magnitude greater than ν
3̅1

 – ν ̅
32 

= -0.0007, 

the difference between the mean values for the non-rolled 
samples. The effect of cold deformation, from 0 to 49.7%, 

Table 1. Time and temperature for heat treatment of rolled samples.

Temp. ºC 900 900 1000 1000

Time, min. 15 30 15 30

To determine birefringence and Poisson’s ratio, normal 

incidence from longitudinal and shear contact piezoelectric 

transducers and pulse-echo technique were used. Ultrasonic 
tests were carried out before and after each deformation and 

after each heat treatment in the 21 locations corresponding 

to the marked points. The waves propagated from the top 

surface (xy plane in Figure 1) and along the thickness of the 

samples (z-axis in Figure 1). Naturally, longitudinal waves 

were always polarized along the z-axis. On the other hand, 

by alternatively placing the shear wave transducer on the 

surface with its polarization direction perpendicular to and 

along the rolling direction, shear waves polarized along the 

principal axes (x and y axes in Figure 1) of the samples were 

propagated. The ultrasonic system consisted of a Panametrics 

5077PR pulser-receiver, on pulse-echo mode; 5-MHz, 11 mm 

in diameter Panametrics contact transducers for longitudinal 

and shear waves; and an HS805 TiePie oscilloscope emulator 

plate to obtain and store the echoes for later processing.

To relate results to standard techniques, metallographic 
samples were prepared by common procedures, and Rockwell 

B hardness was measured before and after deforming the 

samples, and after the heat treatments. Five measures were 

taken on each sample for averaging.

3. Results and Discussion

3.1 Effect of cold rolling on wave velocities

After obtaining and storing the ultrasonic signals, the 

times of flight of the waves were measured, quantified as 
the difference between the times of the maxima of the first 
two echoes.

Table 2 shows the propagation velocity values before 

and after rolling the samples; each value corresponds to 

the average of the measurements for each of the 21 points 

marked along the samples before deformation.

Table 2. Averages of the wave velocities and hardness in the rolled samples.

Sample Original 1 2 3 4 5 6 7

Deformation ε (%) 0.0 5.4 12.3 17.9 21.2 30.8 42.0 49.7

v
33

 (m/s) 5882 5905 5884 5890 5866 5843 5836 5859

v
31

 (m/s) 3243 3245 3247 3251 3254 3250 3261 3271

v
32

 (m/s) 3246 3241 3225 3215 3206 3194 3174 3160

H (HRB) 82 90 92 93 94 95 98 101
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on the average values of ν
31

 and ν
32

 is shown in Figure 2c. 

For comparison, the dotted lines also shown indicate the 

range of fluctuation of the individual values of ν
31

 and ν
32

 

along the 21 points measured on each of the seven samples 

before rolling.

Figure 3 summarizes the effect of cold rolling on the 
difference between average values of Poisson’s ratios (that 
is, the difference between the curves of Figure 2c), and on 
birefringence. It is seen that ∆ν = (ν̅

31
 – ν̅

32
) increases linearly 

with deformation from -0.0007 to 0.0213. Likewise, the 

average birefringence B, which is barely -0.0011 in the hot 

rolled condition, reflecting its nearly isotropic behavior, 
increases linearly with cold deformation to 0.0346. Equations 
(8) and (9) give the respective relations:

            (8)

Figure 2. Poisson’s ratios measured at 21 locations on samples; 

(a) non-cold rolled and rolled to ε=12.3%; (b) non-cold rolled and 
rolled to ε=42%. (c) Average of Poisson’s ratios ν

31
 and ν

32
 versus 

cold deformation (dotted lines indicate the range of fluctuation of 
values of ν

31
 and ν

32
 before rolling).
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            (9)

Thus, it is possible to establish a linear relation between 

the difference of Poisson’s ratios and birefringence. Such 
relation is given by:

          (10)
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Figure 3. Effect of deformation on birefringence B and on the 
difference between Poisson’s ratios ∆ν = (ν̅

31
 – ν

3̅2
).

3.2.1 Relationship to hardness

Average values of hardness for the samples are shown in 

Table 2. The average value for the original hot rolled plate 

was 82 (HRB). As expected, hardness increases with cold 

rolling, and from the data in Table 2 is seen that it does it 

linearly as deformation increases between 5.4 and 49.7%. 

The resultant relation is given by Equation (11), where, H 
stands for hardness.

        (11)

As a consequence, both birefringence and the difference 
of Poisson’s ratios are linearly related to hardness. The 

respective relations are given by:

          (12)

          (13)

Therefore, it is possible to estimate precisely the level 

of deformation as well as the hardness achieved by rolling 

from measurements of the time of flight of shear waves 
for birefringence, and of longitudinal and shear waves for 

Poisson’s ratios.

. . .H r0 2302 88 8 0 978
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3.3 Effect of heat treatment on poisson’s ratio and 
birefringence

For high levels of deformation, Figures 4 and 5 show 

that the heat treatments to which the rolled samples were 

subjected tend to return the values of Poisson’s ratio to the 

original values, which are shown by the dotted lines that 

indicate the range of fluctuation of the ratios, both ν
31

 and 

ν
32

, considering the 21 points measured on each of the seven 

samples before rolling. However, at 900º C (Figures 4a and 

4b), it is seen that regardless of treatment time, between 17.9% 

and 30.8% deformations, the ν
31

 curves show a maximum, 

shifting even more from the original values. This implies 

that the material behaves more anisotropically after the heat 

treatment within that deformation range.

would recrystallize below curve A
1
, followed by a partial 

transformation above curve A
1
 and a total transformation 

above curve A
3
. Then, on cooling the γ → α and γ → α 

+ cementite transformations would occur. The onset of 

recrystallization and the recrystallized fraction depend on 

both the degree of deformation applied and the time at the 

recrystallization temperature. For low levels of deformation, 

the α → γ → α transformations could take place without prior 

recrystallization. If so is the case, the deformed α structure 

(α
DEF

) can be expected to be transformed into deformed γ 

(γ
DEF

) upon heat treatment, and then on cooling it would 

transform back into α
DEF

.

Then, graphs a and b of Figure 4 suggest that up to 21.2% 

deformation, at 900 ºC the α
DEF

 → γ
DEF

 → α
DEF

 transformation 

cycle may take place, whether the heat treatment lasts 15 

or 30 minutes. 

At 1000 ºC, on the other hand, the α
DEF

 → γ
DEF

 → α
DEF

 

transformation cycle is valid only for 15 minutes of heat 

treatment. Apparently, as time at 1000 ºC is increased all the 

γ grains would adopt a gray texture, giving rise to α grains 

without a preferred orientation. The same would happen with 

30.8% deformation at the two heat treatment temperatures. 

The analysis suggests that for 42% deformation at 900 ºC 

(Figures 4a and 4b) the α
DEF

 → γ
DEF

 → α
DEF

 cycle still takes 

place in a time of 15 minutes, however, at a temperature of 

1000 ºC (Figures 5a and 5b) there would be recrystallization 

prior to the α → γ transformation. A 49.70% deformation is 

Figure 4. Effect of heat treatment on Poisson’s ratio ν
31

 and ν
32

 in 

rolled samples. (a) 900 °C, 15 min.; (b) 900 °C, 30 min. (Dotted lines 

indicate the range of fluctuation of values of ν
31

 and ν
32

 before rolling).

The tests carried out at 1000 ºC (Figures 5a and 5b) 

show a behavior similar to the previous one, but only for a 

time of 15 minutes of treatment (Figure 5a). It is also seen 

that for deformations lower than 17.9% and greater than 

30.8%, ν
31

 and ν
32

 are practically identical.

Therefore, only for the treatment at 1000 ºC for 30 

minutes (Figure 5b), the samples, regardless of the degree 

of deformation to which they were subjected, return to a 

practically isotropic behavior.

Those results may be explained as follows: it would be 

expected that a cold-deformed ASTM A-36 steel sample, 

when heated above the upper critical temperature curve, 

Figure 5. Effect of heat treatment on Poisson’s ratio ν
31

 and ν
32

 in 

rolled samples. (a) 1000 °C, 15 min.; (b) 1000 °C, 30 min. (Dotted 

lines indicate the range of fluctuation of the individual values of ν
31

 

and ν
32

 among the 21 points measured on each sample before rolling).
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Figure 7. a) Sample rolled to 21.2%, and annealed at 900 ºC, 30 

min.; b) sample rolled to 49.7%, and annealed at 1000 ºC, 30 min.

apparently sufficient to produce some degree of recrystallization 
prior to the α → γ transformation, because it is seen that 

the values tend toward those of the isotropic material. This 

practically 100% isotropic symmetry is achieved after 30 

minutes at 1000 ºC for all degrees of deformation, as shown 

in Figure 5b, where Poisson’s ratios tend to 0.286, a value 

slightly higher than the range of the original samples from 

the hot rolled material.

As could be expected, the behavior of birefringence 

to the heat treatments is similar to that of Poisson’s ratio.

3.4 Hardness and metallographic analysis

The micrographs shown in this section were taken at a 

magnification of 500X. Figure 6a belongs to a material in 
its original state, showing an equiaxial ferrite plus pearlite 
microstructure, typical of an ASTM A-36 steel. Figure 6b 

shows a micrograph of a rolled sample at a medium degree 

of deformation, where, as expected, no significant change 
is seen in the orientation of the grains. As is well known, 

more sophisticated techniques, such as DRX and EBDS, 
are required to detect such changes. However, the results 
obtained by ultrasound clearly show that it is possible, in a 

nondestructive mode, to detect the increased orthotropy at 

even the lowest degrees of deformation.

Figure 6. a) Material in its original state; b) sample rolled to 21.2%. 

Figures 7a and 7b show that after the heat treatments 

there is a slight difference in ferritic grain size compared 
to the original sample (Figure 6a), and that in the sample 

treated at higher temperature there is the presence of colonies 

of thicker pearlite.

The hardness of all the heat-treated samples fluctuated 
randomly between 77 and 82 (HRB), with no relation to 

the temperature or time of treatment, showing a decrease 

of the hardness down to values lower in most cases than the 

average value obtained for the original plate.

The previous hardness results and the metallographic 

analysis show that those procedures do not allow following 

up the process of modification of anisotropy caused by 
the heat treatment applied to the cold-rolled samples. In 

contrast, the determination of birefringence or Poisson’s 

ratio by ultrasonic methods allows these modifications to 
be distinguished precisely.

4. Conclusions

The main conclusions obtained from this work are the 

following:

• The mapping of Poisson’s ratio on the ASTM A-36 

steel showed it to be nearly isotropic.

• It was shown experimentally that the effect of 
deformation by cold rolling on wave velocity, 

birefringence, and Poisson’s ratio is to shift the 

obtained data from their initial values in proportion 

to the degree of deformation applied.

• The above means that both birefringence and 

Poisson’s ratio make it possible to determine the 

degree of cold deformation and the hardness of 

the materials studied by means of simple linear 

relationships.

• The effect of the heat treatment in the austenitic 
field on cold-rolled samples depends on the degree 
of deformation and on the temperature and time 

of treatment. Medium levels of deformation, low 

temperature and shorter austenization time tend 

to shift the values of birefringence and Poisson’s 

ratio from the original values of the material before 

the deformation; high levels of deformation, high 

temperatures, and longer austenization tend to return 

those values to the original ones of the material 

before its deformation.

It can be concluded, therefore, that even though the 

times of flight of the waves measured in different positions 
show a random dispersion, it is feasible to use Poisson’s 

ratio as well as birefringence, both measured by ultrasound, 

as a simple and nondestructive method to follow up the 

anisotropy changes in rolled plates due to cold rolling and 

to post rolling heat treatments.
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