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Abstract. It is a deceptively simple question to ask how acoustic disturbances propagate
in a non-homogeneous flowing fluid. Subject to suitable restrictions, this question can be
answered by invoking the language of Lorentzian differential geometry. This paper begins
with a pedagogical derivation of the following result: if the fluid is barotropic and inviscid, and
the flow is irrotational (though possibly time dependent), then the equation of motion for the
velocity potential describing a sound wave is identical to that for a minimally coupled massless
scalar field propagating in a(3+ 1)-dimensional Lorentzian geometry

1ψ ≡ 1√−g ∂µ
(√−g gµν ∂νψ) = 0.

The acoustic metricgµν(t,x) governing the propagation of sound depends algebraically on the
density, flow velocity, and local speed of sound. Even though the underlying fluid dynamics
is Newtonian, non-relativistic, and takes place in flat space plus time, the fluctuations (sound
waves) are governed by an effective(3+ 1)-dimensional Lorentzian spacetime geometry. This
rather simple physical system exhibits a remarkable connection between classical Newtonian
physics and the differential geometry of curved(3+ 1)-dimensional Lorentzian spacetimes, and
is the basis underlying a deep and fruitful analogy between the black holes of Einstein gravity
and supersonic fluid flows. Many results and definitions can be carried over directly from one
system to another. For example, it will be shown how to define the ergosphere, trapped regions,
acoustic apparent horizon, and acoustic event horizon for a supersonic fluid flow, and the close
relationship between the acoustic metric for the fluid flow surrounding a point sink and the
Painlev́e–Gullstrand form of the Schwarzschild metric for a black hole will be exhibited. This
analysis can be used either to provide a concrete non-relativistic analogy for black-hole physics,
or to provide a framework for attacking acoustics problems with the full power of Lorentzian
differential geometry.

PACS numbers: 0420C, 0440, 0470B, 0490, 0340G

1. Introduction

In 1981 Unruh developed a way of mapping certain aspects of black-hole physics into
problems in the theory of supersonic acoustic flows [1]. The connection between these two
seemingly disparate systems is both surprising and powerful, and has been independently
rediscovered several times over the ensuing decade and a half [2]. Over the last six
years, a respectable body of work has been developed using this analogy to investigate
micro-physical models that might underly the Hawking radiation process from black holes
(or acoustic holes—‘dumb holes’), and to investigate the extent to which the Hawking
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radiation process may be independent of the physics of extremely high-energy trans-
Planckian modes [3–14].

In this paper, I wish to take another look at the derivation of the relationship between
curved spacetimes and acoustics in flowing fluids, to provide a pedagogically clear and
precise derivation using a minimum of technical assumptions, and to develop the analogy
somewhat further in directions not previously envisaged. In particular, I will show how to
define the notions of ergo-region, trapped regions, acoustic apparent horizons and acoustic
event horizons (both past and future) for supersonic fluid flows, and show that in general it
is necessary to keep these notions distinct.

As a particular example of a simple model exhibiting such behaviour, I write down the
acoustic metric appropriate to a draining bathtub ((2+ 1) dimensions), and the equivalent
vortex filament sink ((3+ 1) dimensions).

I shall further show that the relationship between the Schwarzschild geometry and
the acoustic metric is clearest when the Schwarzschild metric is written in the Painlevé–
Gullstrand† form [15–19], and that while the relationship is very close it is not exact. (It is
in fact impossible to obtain an acoustic metric that isidentical to the Schwarzschild metric,
the best that one can achieve is to obtain an acoustic metric that is conformally related to
the Schwarzschild metric.) If all one is interested in is either the Hawking temperature or
the behaviour in the immediate region of the event horizon, then the analogy is much closer
in that the conformal factor can be neglected.

For an arbitrary steady flow the ‘surface gravity’ (mutatis mutandis, the Hawking
temperature) of an acoustic horizon will be shown to be proportional to a combination
of the normal derivative of the local speed of sound and the normal derivative of the
normal component of the fluid velocity at the horizon. In general, the ‘surface gravity’ is

gH = 1

2

∂(c2− v2
⊥)

∂n
= c ∂(c − v⊥)

∂n
. (1)

(This generalizes the result of Unruh [1, 5] to the case where the speed of sound is position
dependent and/or the acoustic horizon is not the null surface of the time translation Killing
vector. This result is also compatible with that deduced for the solid-state black holes of
Reznik [14], and with the ‘dirty black holes’ of [20].)

Finally, I shall show how to formulate the notion of a static (as opposed to merely
stationary) acoustic metric and exhibit the constraint that must be satisfied in order to put
the acoustic metric into Schwarzschild coordinates. I point out that while this is a perfectly
acceptable and correct mathematical step, and a perfectly reasonable thing to do in general
relativity, it is (I claim) a good way to get confused when doing acoustics—from the
Newtonian view underlying the equations of fluid motion, the Schwarzschild coordinate
system corresponds to a very peculiar way of synchronizing (or rather, de-synchronizing)
your clocks.

To begin the discussion, I address the deceptively simple question of how acoustic
disturbances propagate in a non-homogeneous flowing fluid. It is well known that for a
static homogeneous inviscid fluid the propagation of sound waves is governed by the simple
equation [21–24]

∂2
t ψ = c2∇2ψ. (2)

(Here c denotes the speed of sound.) Generalizing this result to a fluid that is non-
homogeneous, or to a fluid that is in motion, possibly even in non-steady motion, is more
subtle than it at first would appear.

† This is also often called the Lemaı̂tre form of the Schwarzschild metric.
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An important aspect of this paper is to provide a pedagogical proof of the following
theorem:

Theorem.If a fluid is barotropic and inviscid, and the flow is irrotational (though possibly
time dependent) then the equation of motion for the velocity potential describing an acoustic
disturbance is identical to the d’Alembertian equation of motion for a minimally coupled
massless scalar field propagating in a(3+ 1)-dimensional Lorentzian geometry

1ψ ≡ 1√−g ∂µ
(√−g gµν ∂νψ) = 0. (3)

Under these conditions, the propagation of sound is governed by anacoustic metric
gµν(t,x). This acoustic metric describes a(3 + 1)-dimensional Lorentzian (pseudo-
Riemannian) geometry. The metric depends algebraically on the density, velocity of flow
and local speed of sound in the fluid. Specifically

gµν(t,x) ≡ ρ

c

 −(c2− v2)
... −v

· · · · · · · · · · · · · · · · · · ·
−v ... I

 . (4)

(Here I is the 3× 3 identity matrix.) In general, when the fluid is non-homogeneous and
flowing, theacoustic Riemann tensorassociated with this Lorentzian metric will be non-zero.

It is quite remarkable that even though the underlying fluid dynamics is Newtonian,
non-relativistic, and takes place in flat space plus time, the fluctuations (sound waves)
are governed by a curved(3+ 1)-dimensional Lorentzian (pseudo-Riemannian) spacetime
geometry.

For practitioners of general relativity, this paper describes a very simple and concrete
physical model for certain classes of Lorentzian spacetimes, including black holes. On the
other hand, the discussion of this paper is also potentially of interest to practitioners of
continuum mechanics and fluid dynamics in that it provides a simple concrete introduction
to Lorentzian differential geometric techniques.

2. Fluid dynamics

2.1. Fundamental equations

The fundamental equations of fluid dynamics [21–24] are the equation of continuity

∂tρ +∇ · (ρ v) = 0, (5)

and Euler’s equation

ρ
dv

dt
≡ ρ [∂tv + (v · ∇)v] = F . (6)

I start the analysis by assuming the fluid to be inviscid (zero viscosity), with the only forces
present being those due to pressure, plus Newtonian gravity, and with the inclusion of any
arbitrary gradient-derived and possibly even time-dependent externally-imposed body force,
then

F = −∇p − ρ∇φ − ρ∇8. (7)

Hereφ denotes the Newtonian gravitational potential, while8 denotes the potential of the
external driving force (which may in fact be zero)†.
† These two terms are lumped together without comment in [1], and are neglected in [5].
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Using standard manipulations, the Euler equation can be rewritten as

∂tv = v × (∇× v)− 1

ρ
∇p −∇ ( 1

2v
2+ φ +8) . (8)

Now take the flow to bevorticity free, that is, locally irrotational†. Introduce the velocity
potentialψ such thatv = −∇ψ , at least locally‡. If one further takes the fluid to be
barotropic§ (this means thatρ is a function ofp only), it becomes possible to define

h(p) =
∫ p

0

dp′

ρ(p′)
; so that ∇h = 1

ρ
∇p. (9)

Thus the specific enthalpy,h(p), is a function ofp only. Euler’s equation now reduces to

−∂tψ + h+ 1
2(∇ψ)2+ φ +8 = 0. (10)

This is a version of Bernoulli’s equation in the presence of external driving forces.

2.2. Fluctuations

Now linearize these equations of motion around some assumed background(ρ0, p0, ψ0).
Set ρ = ρ0 + ερ1 + O(ε2), p = p0 + εp1 + O(ε2) and ψ = ψ0 + εψ1 + O(ε2). The
gravitational potentialφ, and driving potential8, are taken to be fixed and external‖.
Sound isdefinedto be these linearized fluctuations in the dynamical quantities. Please note
that this is thestandard definitionof sound and more generally of acoustical disturbances.
In principle, of course, one is really interested in solving the complete equations of motion
for the fluid variables(ρ, p,ψ). In practice, it is both traditional and extremely useful to
separate the exact motion, described by the exact variables,(ρ, p,ψ), into some average
bulk motion, (ρ0, p0, ψ0), plus low amplitude acoustic disturbances,(ερ1, εp1, εψ1). See,
for example, [21–24].

Since this is a subtle issue that I have seen cause considerable confusion in the past, let
me be even more explicit by asking the rhetorical question:‘How can we tell the difference
between a wind gust and a sound wave?’The answer is that the difference is to some
extent a matter of convention—sufficiently low-frequency long-wavelength disturbances
(wind gusts) are conventionally lumped in with the average bulk motion. Higher-frequency,
shorter-wavelength disturbances are conventionally described as acoustic disturbances. If
you wish to be hyper-technical, we can introduce a high-pass filter function to define the
bulk motion by suitably averaging the exact fluid motion. There are no deep physical
principles at stake here—merely an issue of convention.

† The irrotational condition is automatically satisfied for the superfluid component of physical superfluids. This
point has been emphasized by Comer [25], who has also pointed out that in superfluids there will be multiple
acoustic metrics (and multiple acoustic horizons) corresponding to first and second sound. Even for normal fluids,
vorticity free flows are common, especially in situations of high symmetry.
‡ It is sufficient that the flow be vorticity free,∇ × v = 0, so that velocity potentials exist on an atlas of open
patches—this enables us to handle vortex filaments, where the vorticity is concentrated into a thin vortex core,
provided we do not attempt to probe the vortex core itself.ψ does not need to be globally defined.
§ An unstated assumption of this type is implicit, though not explicit, in the analysis of [1]. On the other hand, [5]
explicitly makes the stronger assumption that the fluid isisentropic. (That is, the specific entropy density is taken to
be constant throughout the fluid.) This is a stronger assumption than is actually required, and the weaker barotropic
assumption used here is sufficient. In particular, the present derivation also applies to isothermal perturbations of
an isothermal fluid.
‖ Fixed means that I do not allow the back-reaction to modify the gravitational or driving potentials. Fixed does
not necessarily mean time independent, as I explicitly wish to allow the possibility of time-dependent external
driving forces.
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The place where we are making a specific physical assumption that restricts the validity
of our analysis is in the requirement that the amplitude of the high-frequency short-
wavelength disturbances be small. This is the assumption underlying the linearization
programme, and this is why sufficiently high-amplitude sound waves must be treated by
direct solution of the full equations of fluid dynamics.

Linearizing the continuity equation results in the pair of equations

∂tρ0+∇ · (ρ0 v0) = 0, (11)

∂tρ1+∇ · (ρ1 v0+ ρ0 v1) = 0. (12)

Now, the barotropic condition implies

h(p) = h(p0+ εp1+O(ε2)) = h0+ ε p1

ρ0
+O(ε2). (13)

Using this result in linearizing the Euler equation, we obtain

−∂tψ0+ h0+ 1
2(∇ψ0)

2+ φ +8 = 0. (14)

−∂tψ1+ p1

ρ0
− v0 · ∇ψ1 = 0. (15)

This last equation may be rearranged to yield

p1 = ρ0(∂tψ1+ v0 · ∇ψ1). (16)

Use the barotropic assumption to give the relation

ρ1 = ∂ρ

∂p
p1 = ∂ρ

∂p
ρ0 (∂tψ1+ v0 · ∇ψ1). (17)

Now substitute this consequence of the linearized Euler equation into the linearized equation
of continuity. We finally obtain, up to an overall sign, the wave equation:

−∂t
(
∂ρ

∂p
ρ0 (∂tψ1+ v0 · ∇ψ1)

)
+∇ ·

(
ρ0∇ψ1− ∂ρ

∂p
ρ0 v0 (∂tψ1+ v0 · ∇ψ1)

)
= 0.

(18)

This wave equation describes the propagation of the linearized scalar potentialψ1. Onceψ1

is determined, (16) determinesp1, and (17) then determinesρ1. Thus this wave equation
completely determines the propagation of acoustic disturbances. The background fieldsp0,
ρ0 andv0 = −∇ψ0, which appear as time-dependent and position-dependent coefficients in
this wave equation, are constrained to solve the equations of fluid motion for an externally-
driven, barotropic, inviscid and irrotational flow. Apart from these constraints, they are
otherwise permitted to havearbitrary temporal and spatial dependences.

Now, written in this form, the physical import of this wave equation is somewhat less
than pellucid. To simplify things algebraically, observe that the local speed of sound is
defined by

c−2 ≡ ∂ρ

∂p
. (19)

Now construct the symmetric 4× 4 matrix

f µν(t,x) ≡ ρ0

c2

 −1
... −vj0

· · · · · · · · · · · · · · · · · · ·
−vi0

... (c2δij − vi0vj0)

 . (20)
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(Greek indices run from 0 to 3, while Latin indices run from 1 to 3.) Then, introducing
(3+ 1)-dimensional spacetime coordinatesxµ ≡ (t; xi), the above wave equation (18) is
easily rewritten as

∂µ(f
µν ∂νψ1) = 0. (21)

This remarkably compact formulation is completely equivalent to (18) and is a much
more promising stepping-stone for further manipulations. The remaining steps are a
straightforward application of the techniques of curved space(3+1)-dimensional Lorentzian
geometry.

3. Lorentzian geometry

In any Lorentzian (that is, pseudo-Riemannian) manifold, the curved space scalar
d’Alembertian is given in terms of the metricgµν(t,x) by (see, for example, [26–30])

1ψ ≡ 1√−g ∂µ
(√−g gµν ∂νψ) . (22)

The inverse metricgµν(t,x) is pointwise the matrix inverse ofgµν(t,x), while g ≡
det(gµν). Thus one can rewrite the physically-derived wave equation (18) in terms of
the d’Alembertian, provided one identifies

√−g gµν = f µν. (23)

This implies, on the one hand

det(f µν) = (√−g)4 g−1 = g (24)

and, on the other hand, from the explicit expression (20), expanding the determinant in
minors

det(f µν) =
(ρ0

c2

)4 [
(−1)(c2− v2

0)− (−v0)
2
] [
c2
] [
c2
] = −ρ4

0

c2
, (25)

thus

g = −ρ
4
0

c2
; √−g = ρ2

0

c
. (26)

We can therefore pick off the coefficients of the inverse acoustic metric†

gµν(t,x) ≡ 1

ρ0c

 −1
... −vj0

· · · · · · · · · · · · · · · · · · ·
−vi0

... (c2δij − vi0vj0)

 . (27)

We could now determine the metric itself simply by inverting this 4× 4 matrix. On the
other hand, it is even easier to recognize that one has in front of one an example of the
Arnowitt–Deser–Misner split of a(3 + 1)-dimensional Lorentzian spacetime metric into
space+ time, more commonly used in discussing initial value data in Einstein’s theory of
gravity—general relativity (see, for example, [28] pp 505–8). The acoustic metric is

gµν ≡ ρ0

c

 −(c2− v2
0)

... −vj0
· · · · · · · · · · · · · · · · · · ·
−vi0

... δij

 . (28)

† There is a minor typographic error, a missing factor ofc, in [5].
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Equivalently, the acoustic interval can be expressed as

ds2 ≡ gµν dxµ dxν = ρ0

c

[− c2 dt2+ (dxi − vi0 dt) δij (dx
j − vj0 dt)

]
. (29)

A few brief comments should be made before proceeding:

• Observe that the signature of this metric is indeed(−+++), as it should be to be
regarded as Lorentzian.

• It should be emphasized that there are two distinct metrics relevant to the current
discussion:

– The physical spacetime metricis just the usual flat metric of Minkowski space

ηµν ≡ (diag[−c2
light , 1, 1, 1])µν. (30)

(Hereclight denotes the speed of light.) The fluid particles couple only to the physical
metric ηµν . In fact, the fluid motion is completely non-relativistic‖v0‖ � clight .

– Sound waves, on the other hand, do not ‘see’ the physical metric at all. Acoustic
perturbations couple only to theacoustic metricgµν .

The geometry determined by the acoustic metric does, however, inherit some key
properties from the existence of the underlying flat physical metric.

• For instance, the topology of the manifold does not depend on the particular metric
considered. The acoustic geometry inherits the underlying topology of the physical
metricR4 with possibly a few regions excised (due to imposed boundary conditions).

• The acoustic geometry automatically inherits the property of ‘stable causality’ [29, 30].
Note that

gµν (∇µt) (∇ν t) = − 1

ρ0c
< 0. (31)

This precludes some of the more entertaining causality-related pathologies that
sometimes arise in general relativity. (For a discussion of causal pathologies see, for
example, [31]).

• Other concepts that translate immediately are those of ‘ergo-region’, ‘trapped surface’,
‘apparent horizon’ and ‘event horizon’. These notions will be developed fully in the
following section.

• The properly normalized 4-velocity of the fluid is

V µ = (1; vi0)√
ρ0 c

. (32)

This is related to the gradient of the natural time parameter by

∇µt = (1, 0, 0, 0); ∇µt = − (1; v
i
0)

ρ0 c
= − V µ√

ρ0c
. (33)

Thus the integral curves of the fluid velocity field are orthogonal (in the Lorentzian
metric) to the constant time surfaces. The acoustic proper time along the fluid flow
lines (streamlines) is

τ =
∫ √

ρ0c dt, (34)

and the integral curves are geodesics of the acoustic metric if and only ifρ0c is position
independent.
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• Observe that in a completely general(3+1)-dimensional Lorentzian geometry the metric
has six degrees of freedom per point in spacetime. (A 4× 4 symmetric matrix has 10
independent components; then subtract four coordinate conditions). In contrast, the
acoustic metric is more constrained. Being specified completely by the three scalars
ψ0(t,x), ρ0(t,x) andc(t,x), the acoustic metric has at most three degrees of freedom
per point in spacetime. The equation of continuity actually reduces this to two degrees
of freedom which can be taken to beψ0(t,x) andc(t,x).

• A point of notation: where the general relativist uses the word ‘stationary’ the fluid
dynamicist uses the phrase ‘steady flow’. The general-relativistic word ‘static’ translates
to a rather messy constraint on the fluid flow (to be discussed more fully below).

• Finally, I should add that in Einstein gravity the spacetime metric is related to the
distribution of matter by the nonlinear Einstein–Hilbert differential equations. In
contrast, in the present context, the acoustic metric is related to the distribution of
matter in a simple algebraic fashion.

4. Ergo-regions, trapped surfaces and acoustic horizons

Let us start with the notion of an ergo-region: consider integral curves of the vector
Kµ ≡ (∂/∂t)µ = (1, 0, 0, 0)µ. (If the flow is steady then this is the time translation
Killing vector. Even if the flow is not steady the background Minkowski metric provides
us with a natural definition of ‘at rest’.) Then†

gµν (∂/∂t)
µ (∂/∂t)ν = gtt = −[c2− v2]. (35)

This changes sign when‖v‖ > c. Thus any region of supersonic flow is an ergo-region.
(And the boundary of the ergo-region may be deemed to be the ergosphere.) The analogue
of this behaviour in general relativity is the ergosphere surrounding any spinning black
hole—it is a region where space ‘moves’ with superluminal velocity relative to the fixed
stars [28–30].

A trapped surface in acoustics is defined as follows: take any closed 2-surface. If
the fluid velocity is everywhere inward-pointing and the normal component of the fluid
velocity is everywhere greater than the local speed of sound, then no matter what direction
a sound wave propagates, it will be swept inward by the fluid flow and be trapped inside
the surface. The surface is then said to be outer-trapped. (For comparison with the usual
situation in general relativity see [29, pp 319–23] or [30, pp 310–1].) Inner-trapped surfaces
(anti-trapped surfaces) can be defined by demanding that the fluid flow is everywhere
outward-pointing with supersonic normal component. It is only because of the fact that
the background Minkowski metric provides a natural definition of ‘at rest’ that we can
adopt such a simple definition. In ordinary general relativity we need to develop additional
machinery, such as the notion of the ‘expansion’ of bundles of ingoing and outgoing null
geodesics, before defining trapped surfaces—that the above definition is equivalent to the
usual one follows from the discussion on pp 262–3 of Hawking and Ellis [29]. The acoustic
trapped region is now defined as the region containing outer-trapped surfaces, and the
acoustic (future) apparent horizon as the boundary of the trapped region. (We can also
define anti-trapped regions and past apparent horizons, but these notions are of limited
utility in general relativity.)

The event horizon (absolute horizon) is defined, as in general relativity, by demanding
that it be the boundary of the region from which null geodesics (phonons) cannot escape.

† Henceforth, in the interests of notational simplicity, I shall drop the explicit subscript 0 on background field
quantities unless there is risk of confusion.
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This is actually the future event horizon. A past event horizon can be defined in terms of
the boundary of the region that cannot be reached by incoming phonons—strictly speaking
this requires us to define notions of past and future null infinities, but I will simply take all
relevant incantations as understood. In particular, the event horizon is a null surface, the
generators of which are null geodesics.

In all stationary geometries the apparent and event horizons coincide, and the distinction
is immaterial. In time-dependent geometries the distinction is often important. When
computing the surface gravity I shall restrict attention to stationary geometries (steady flow).
In fluid flows of high symmetry, (spherical symmetry, plane symmetry) the ergosphere may
coincide with the acoustic apparent horizon, or even the acoustic event horizon. This is the
analogue of the result in general relativity that for static (as opposed to stationary) black
holes the ergosphere and event horizon coincide.

5. Vortex geometries

As an example of a fluid flow where the distinction between ergosphere and acoustic event
horizon is critical, consider the ‘draining bathtub’ fluid flow. I model a draining bathtub
by a (2+ 1)-dimensional flow with a sink at the origin. The equation of continuity implies
that for the radial component of the fluid velocity we must have

ρ vr̂ ∝ 1

r
. (36)

In the tangential direction, the requirement that the flow be vorticity free (apart from a
possible delta-function contribution at the vortex core) implies, via Stokes’ theorem, that

vθ̂ ∝ 1

r
. (37)

On the other hand, assuming conservation of angular momentum (this places a constraint on
the external body forces by assuming the absence of external torques) implies the slightly
different constraint

ρ vθ̂ ∝ 1

r
. (38)

Combining these constraints, the background densityρ must be constant (position-
independent) throughout the flow (which automatically implies that the background pressure
p and speed of soundc are also constant throughout the fluid flow). Furthermore, for the
background velocity potential we must then have

ψ(r, θ) = A ln(r/a)+ Bθ. (39)

Note that, as we have previously hinted, the velocity potential is not a true function (because
it has a discontinuity when going through 2π radians). The velocity potential must be
interpreted as being defined patch-wise on overlapping regions surrounding the vortex core
at r = 0. The velocity of the fluid flow is

v = (Ar̂ + Bθ̂)
r

. (40)

Dropping a position-independent prefactor, the acoustic metric for a draining bathtub is
explicitly given by

ds2 = −c2 dt2+
(

dr − A
r

dt

)2

+
(
r dθ − B

r
dt

)2

, (41)
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or, equivalently,

ds2 = −
(
c2− A

2+ B2

r2

)
dt2− 2

A

r
dr dt − 2B dθ dt + dr2+ r2 dθ2. (42)

A similar metric, restricted toA = 0 (no radial flow), and generalized to an anisotropic
speed of sound, has been exhibited by Volovik [32], that metric being a model for the
acoustic geometry surrounding physical vortices in superfluid3He. (For a survey of the
many analogies and similarities between the physics of superfluid3He and the standard
electroweak model see [33], this reference is also useful as background to understanding
the Lorentzian geometric aspects of3He fluid flow.) Note that the metric given above isnot
identical to the metric of a spinning cosmic string, which would instead take the form [31]

ds2 = −c2(dt − Ã dθ)2+ dr2+ (1− B̃)r2 dθ2. (43)

In conformity with previous comments, the vortex fluid flow is seen to possess an acoustic
metric that is stably causal and which does not involve closed timelike curves. (At large
distances it is possible toapproximatethe vortex geometry by a spinning cosmic string [32],
but this approximation becomes progressively worse as the core is approached.)

The ergosphere forms at

rergosphere =
√
A2+ B2

c
. (44)

Note that the sign ofA is irrelevant in defining the ergosphere and ergo-region: it does not
matter if the vortex core is a source or a sink.

The acoustic event horizon forms once the radial component of the fluid velocity exceeds
the speed of sound, that is at

rhorizon = |A|
c
. (45)

The sign ofA now makes a difference. ForA < 0 we are dealing with a future acoustic
horizon (acoustic black hole), while forA > 0 we are dealing with a past event horizon
(acoustic white hole).

Though this construction has been phrased in(2+ 1) dimensions we are of course free
to add an extra dimension by going to(3+ 1) dimensions and interpreting the result as a
superposition of an ordinary vortex filament and a line source (or line sink).

ds2 = −c2 dt2+
(

dr − A
r

dt

)2

+
(
r dθ − B

r
dt

)2

+ dz2. (46)

6. Slab geometries

A popular model for the investigation of event horizons in the acoustic analogy is the
one-dimensional slab geometry where the velocity is always along thez direction and the
velocity profile depends only onz. The continuity equation then implies thatρ(z)v(z) is a
constant, and the acoustic metric becomes

ds2 ∝ 1

v(z)c(z)

[−c(z)2 dt2+ {dz− v(z) dt}2+ dx2+ dy2
]
, (47)

that is

ds2 ∝ 1

v(z)c(z)

[− {c(z)2− v(z)2} dt2− 2v(z) dz dt + dx2+ dy2+ dz2
]
. (48)



Acoustic black holes 1777

If we setc = 1 and ignore the conformal factor, we have the toy model acoustic geometry
discussed by Unruh [5, p 2828, equation (8)] Jacobson [8, p 7085, equation (4)], Corley and
Jacobson [9] and Corley [11]. (Since the conformal factor is regular at the event horizon, we
know that the surface gravity and Hawking temperature are independent of this conformal
factor [34].) In the general case it is important to realize that the flow can go supersonic
for either of two reasons: the fluid could speed up, or the speed of sound could decrease.
When it comes to calculating the ‘surface gravity’ both of these effects will have to be
taken into account.

7. The Painlev́e–Gullstrand line element

To see how close the acoustic metric can get to reproducing the Schwarzschild geometry,
it is first useful to introduce one of the more exotic representations of the Schwarzschild
geometry: the Painlevé–Gullstrand line element, which is simply an unusual choice of
coordinates on the Schwarzschild spacetime†. In modern notation the Schwarzschild
geometry in ingoing (+) and outgoing (−) Painlev́e–Gullstrand coordinates may be written
as:

ds2 = −dt2+
(

dr ±
√

2GM

r
dt

)2

+ r2
(
dθ2+ sin2 θ dφ2

)
, (49)

or, equivalently,

ds2 = −
(

1− 2GM

r

)
dt2±

√
2GM

r
dr dt + dr2+ r2

(
dθ2+ sin2 θ dφ2

)
. (50)

This representation of the Schwarzschild geometry is not particularly well known and
has been rediscovered several times this century. See, for instance, Painlevé [15],
Gullstrand [16], Lemâıtre [17], the related discussion by Israel [18], and more recently,
the paper by Kraus and Wilczek [19]. The Painlevé–Gullstrand coordinates are related to
the more usual Schwarzschild coordinates by

tPG = tS ±
[

4M tanh−1

(√
2GM

r

)
− 2
√

2GMr

]
, (51)

or, equivalently,

dtPG = dtS ±
√

2GM/r

1− 2GM/r
dr. (52)

With these explicit forms at hand, it becomes an easy exercise to check the equivalence
between the Painlevé–Gullstrand line element and the more usual Schwarzschild form of
the line element. It should be noted that the+ sign corresponds to a coordinate patch that
covers the usual asymptotic region plus the region containing the future singularity of the
maximally extended Schwarzschild spacetime. It thus covers the future horizon and the
black-hole singularity. On the other hand, the− sign corresponds to a coordinate patch that
covers the usual asymptotic region plus the region containing the past singularity. It thus
covers the past horizon and the white-hole singularity.

As emphasized by Kraus and Wilczek, the Painlevé–Gullstrand line element exhibits a
number of features of pedagogical interest. In particular, the constant-time spatial slices
are completely flat—the curvature of space is zero, and all the spacetime curvature of the

† The Painlev́e–Gullstrand line element is often called the Lemaı̂tre line element.
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Schwarzschild geometry has been pushed into the time–time and time–space components
of the metric.

Given the Painlev́e–Gullstrand line element, it might seem trivial to force the acoustic
metric into this form: simply takeρ andc to be constants, and setv = √2GM/r. While
this certainly forces the acoustic metric into the Painlevé–Gullstrand form, the problem with
this is that this assignment is incompatible with the continuity equation∇ · (ρv) 6= 0 that
was used in deriving the acoustic equations.

The best we can actually do is this: pick the speed of soundc to be a position-
independent constant, which we normalize to unity (c = 1). Now setv = √2GM/r, and
use the continuity equation∇ · (ρv) = 0 to deduceρ|v| ∝ 1/r2 so thatρ ∝ r−3/2. Since
the speed of sound is taken to be constant, we can integrate the relationc2 = dp/dρ to
deduce that the equation of state must bep = p∞ + c2ρ and that the background pressure
satisfiesp − p∞ ∝ c2r−3/2. Overall the acoustic metric is now

ds2 ∝ r−3/2

[
− dt2+

(
dr ±

√
2GM

r
dt

)2

+ r2
(
dθ2+ sin2 θ dφ2

) ]
. (53)

The net result is conformal to the Painlevé–Gullstrand form of the Schwarzschild geometry
but not identical to it. For many purposes this is quite good enough: we have an event
horizon, we can define surface gravity, we can analyse Hawking radiation. Since surface
gravity and Hawking temperature are conformal invariants [34] this is sufficient for analysing
basic features of the Hawking radiation process. The only way in which the conformal factor
can influence the Hawking radiation is through back-scattering off the acoustic metric. (The
phonons are minimally coupled scalars, not conformally coupled scalars so there will in
general be effects on the frequency-dependent greybody factors.)

If we focus attention on the region near the event horizon, the conformal factor can
simply be taken to be a constant, and we can ignore all these complications.

8. The canonical acoustic black hole

We can turn this argument around and ask: given a spherically symmetric flow of
incompressible fluid, what is the acoustic metric? What is the corresponding line element
in Schwarzschild coordinates? If we start by assuming incompressibility and spherical
symmetry then, sinceρ is position independent, the continuity equation impliesv ∝ 1/r2.
But if ρ is position independent then (because of the barotropic assumption) so is the
pressure, and hence the speed of sound as well. So we can define a normalization constant
r0 and set

v = c r
2
0

r2
. (54)

The acoustic metric is therefore, up to an irrelevant position-independent factor,

ds2 = −c2 dt2+
(

dr ± c r
2
0

r2
dt

)2

+ r2(dθ2+ sin2 θ dφ2). (55)

If we make the coordinate change

dτ = dt ± r2
0/r

2

c[1− (r4
0/r

4)]
dr, (56)

then

ds2 = −c2[1− (r4
0/r

4)] dτ 2+ dr2

1− (r4
0/r

4)
+ r2(dθ2+ sin2 θ dφ2). (57)
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This is not any of the standard geometries typically considered in general relativity but is,
in the sense described above, the canonical acoustic black hole.

It is very important to realize that a time-dependent version of this canonical acoustic
metric is very easy to set up experimentally [35], since the time-dependent version of this
canonical black hole metric is exactly the acoustic metric that is set up around a spherically-
symmetric bubble with oscillating radius. For a bubble of radiusR we have

r0 = R
√
Ṙ

c
. (58)

We should only use this canonical metric for the fluid region outside the bubble, and only
in the approximation that the ambient fluid is incompressible (e.g. water). For the typically
gaseous and necessarily compressible medium inside the bubble (e.g. air) we should use a
separate acoustic metric. The two acoustic metrics need not be continuous across the bubble
wall.

It is experimentally easy to generate (non-stationary) acoustic apparent horizons in this
manner: in cavitating bubbles (typically air bubbles in water) it is experimentally easy to
get the bubble wall moving at supersonic speeds (up to Mach 10 in extreme cases). Once
the bubble wall is moving supersonically an acoustic apparent horizon forms. It first forms
at the bubble wall itself but then will typically detach itself from the bubble wall (since
the apparent horizon will continue to be the surface at which the fluid achieves Mach 1)
as the bubble wall goes supersonic. Since the bubble must eventually stop its collapse and
re-expand, there is strictly speaking no acoustic event horizon (no absolute horizon) in this
experimental situation, merely a temporary apparent horizon. (The apparent horizon must,
by construction, last less than one sound-crossing time for the collapsing bubble.)

To set up a geometry of this particular type with a true event horizon (or at the very
least, an apparent horizon that lasts for many sound-crossing times) requires a rather different
physical setup: a big tank of fluid with a long thin pipe leading to the centre. Then apply
pressure to the tank till the outflow of fluid escaping through the pipe goes supersonic,
being careful to maintain laminar flow and avoid turbulence. This would appear to be a
technologically challenging project.

9. Hawking radiation and ‘surface gravity’

Establishing the existence of acoustic Hawking radiation follows directly from the original
Hawking argument [36, 37] once one realizes that the acoustic fluctuations effectively couple
to the Lorentzian acoustic metric introduced above. The only subtlety arises in correctly
identifying the ‘surface gravity’ of an acoustic black hole. Because of the definition of an
event horizon in terms of phonons (null geodesics) that cannot escape the acoustic black
hole, the event horizon is automatically a null surface, and the generators of the event
horizon are automatically null geodesics.

In the case of acoustics there is one particular parametrization of these null geodesics that
is ‘most natural’, which is the parametrization in terms of the Newtonian time coordinate of
the underlying physical metric. This allows us to unambiguously define a ‘surface gravity’
even for non-stationary (time-dependent) acoustic event horizons, by calculating the extent
to which this natural time parameter fails to be an affine parameter for the null generators
of the horizon. (This part of the construction fails in general relativity where there is
no universal natural time coordinate unless there is a timelike Killing vector—this is why
extending the notion of surface gravity to non-stationary geometries in general relativity is
so difficult.)
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When it comes to explicitly calculating the surface gravity in terms of suitable gradients
of the fluid flow, it is nevertheless very useful to limit attention to situations of steady flow
(so that the acoustic metric is stationary). This has the added bonus that for stationary
geometries the notion of ‘acoustic surface gravity’ in acoustics is unambiguously equivalent
to the general relativity definition.

It is also useful to take cognizance of the fact that the situation simplifies considerably
for static (as opposed to merely stationary) acoustic metrics.

9.1. Static acoustic geometries

To set up the appropriate framework, write the general stationary acoustic metric in the
form

ds2 = ρ

c

[−c2 dt2+ (dx− v dt)2
]
. (59)

The time translation Killing vector is simplyKµ = (1; 0), with

K2 ≡ gµνKµKν ≡ −‖K‖2 = −ρ
c

[c2− v2]. (60)

The metric can also be written as

ds2 = ρ

c

[−(c2− v2) dt2− 2v · dx dt + (dx )2] . (61)

Now suppose that the vectorv/(c2 − v2) is integrable, then we can define a new time
coordinate by

dτ = dt + v · dx
c2− v2

. (62)

Substituting this back into the acoustic line element gives†

ds2 = ρ

c

[
−(c2− v2) dτ 2+

{
δij + vivj

c2− v2

}
dxi dxj

]
. (63)

In this coordinate system the absence of the time–space cross-terms makes it manifest that
the acoustic geometry is in fact static (the Killing vector is hypersurface orthogonal). The
condition that an acoustic geometry be static, rather than merely stationary, is thus seen to
be

∇×
{

v

(c2− v2)

}
= 0, (64)

that is

v ×∇(c2− v2) = 0. (65)

This requires the fluid flow to be parallel to another vector that is not quite the acceleration
but is closely related to it. (Note that, because of the vorticity-free assumption,1

2∇v2 is just
the 3-acceleration of the fluid; it is the occurrence of a possibly position-dependent speed
of sound that complicates the above.)

Once we have a static geometry, we can of course directly apply all of the standard
tricks [38] for calculating the surface gravity developed in general relativity. We set up a
system of fiducial observers (FIDOS) by properly normalizing the time-translation Killing
vector

VFIDO ≡ K

‖K‖ =
K√

(ρ/c)[c2− v2]
. (66)

† The corresponding formula in [5] is missing a factor ofc and a bracket.
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The 4-acceleration of the FIDOS is defined asAFIDO ≡ (VFIDO ·∇)VFIDO , and using the
fact thatK is a Killing vector, it may be computed in the standard manner

AFIDO = +1

2

∇‖K‖2

‖K‖2
, (67)

that is

AFIDO = 1

2

[∇(c2− v2)

(c2− v2)
+ ∇(ρ/c)

(ρ/c)

]
. (68)

The surface gravity is now defined by taking the norm‖AFIDO‖, multiplying by the lapse
function, ‖K‖ =

√
(ρ/c)[c2− v2], and taking the limit as one approaches the horizon:

|v| → c, remember this is the static case. The net result is

‖AFIDO‖ ‖K‖ = 1
2v · ∇(c

2− v2)+O(c2− v2), (69)

so that the surface gravity is given in terms of a normal derivative by†

gH = 1

2

∂(c2− v2)

∂n
= c ∂(c − v)

∂n
. (70)

This is not quite Unruh’s result [1, 5], since he implicitly took the speed of sound to
be a position-independent constant. The fact thatρ drops out of the final result for the
surface gravity can be justified by appeal to the known conformal invariance of the surface
gravity [34]. Though derived in a totally different manner, this result is also compatible with
the expression for ‘surface-gravity’ obtained in the solid-state black holes of Reznik [14],
wherein a position dependent (and singular) refractive index plays a role analogous to the
acoustic metric. As a further consistency check, one can go to the spherically symmetric
case and check that this reproduces the results for ‘dirty black holes’ enunciated in [20].

Since this is a static geometry, the relationship between the Hawking temperature and
surface gravity may be verified in the usual fast-track manner—using the Wick rotation trick
to analytically continue to Euclidean space [39]. If you do not like Euclidean signature
techniques (which are in any case only applicable to equilibrium situations) you should go
back to the original Hawking derivations [36, 37].

One final comment to wrap up this section: the coordinate transform we used to put the
acoustic metric into the explicitly static form is perfectly good mathematics, and from the
general relativity point of view is even a simplification. However, from the point of view
of the underlying Newtonian physics of the fluid, this is a rather bizarre way of deliberately
de-synchronizing your clocks to take a perfectly reasonable region—the boundary of the
region of supersonic flow—and push it out to the infinite future. From the fluid dynamics
point of view, this coordinate transformation is correct but perverse, and it is easier to keep
a good grasp on the physics by staying with the original Newtonian time coordinate.

9.2. Stationary but non-static acoustic geometries

If the fluid flow does not satisfy the integrability condition which allows us to introduce an
explicitly static coordinate system, then defining the surface gravity is a little trickier. The
situation is somewhat worse than for general relativity since in the acoustic case we have no
reason to believe that anything like the zeroth law of black-hole mechanics holds [40], nor
do we have any reason to believe that stationary event horizons have to be Killing horizons.

† Because of the background Minkowski metric there can be no possible confusion as to the definition of this
normal derivative.
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Recall that the zeroth law of black-hole mechanics (constancy of the surface gravity
over the event horizon) is proved in general relativity by appealing to the Einstein equations
and imposing suitable energy conditions. In the acoustic paradigm we have no analogue
for the Einstein equations and no particular reason to suspect the existence of anything like
a zeroth law. Sufficiently convoluted supersonic flows would seem to be able to set up
almost any pattern of surface gravity one wants.

Similarly, in general relativity the fact that stationary but non-static black holes possess
Killing horizons is related to the axisymmetry that is deduced from the fact that non-
axisymmetric black holes are expected to lose energy via gravitational radiation, and so
dynamically relax to an axisymmetric configuration—in the fluid dynamic models discussed
here I have explicitly allowed for external driving forces and explicitly excluded back-
reaction effects, therefore there is no particular reason to expect acoustic black holes to
dynamically relax to axisymmetry. In particular, this means that even for stationary acoustic
geometries there is no particular reason to expect the acoustic event horizon in general to
be a Killing horizon.

So what does survive of our usual general relativistic notions for acoustic event horizons
in stationary but non-static geometries? Recall that, by construction, the acoustic apparent
horizon is in general defined to be a 2-surface for which the normal component of the fluid
velocity is everywhere equal to the local speed of sound, whereas the acoustic event horizon
is characterized by the boundary of those null geodesics (phonons) that do not escape to
infinity. In the stationary case these notions coincide, and it is still true that the horizon is a
null surface, and that the horizon can be ruled by an appropriate set of null curves. Suppose
we have somehow isolated the location of the acoustic horizon, then in the vicinity of the
horizon we can split up the fluid flow into normal and tangential components

v = v⊥ + v‖; where v⊥ = v⊥n̂. (71)

Here (and for the rest of this section) it is essential that we use the natural Newtonian time
coordinate inherited from the background Newtonian physics of the fluid. In additionn̂ is
a unit vector field that at the horizon is perpendicular to it, and away from the horizon is
some suitable smooth extension. (For example, take the geodesic distance to the horizon
and consider its gradient.) We only need this decomposition to hold in some open set
encompassing the horizon and do not need to have a global decomposition of this type
available. Furthermore, by definition we know thatv⊥ = c at the horizon. Now consider
the vector field

Lµ = (1; vi‖). (72)

Since the spatial components of this vector field are by definition tangent to a constant time
slice through the horizon, the integral curves of this vector field will be generators for the
horizon. Furthermore, the norm of this vector (in the acoustic metric) is

‖L‖2 = −ρ
c

[−(c2− v2)− 2v‖ · v + v‖ · v‖
] ∝ (c2− v2

⊥). (73)

In particular, on the acoustic horizonLµ defines a null vector field, the integral curves of
which are generators for the acoustic horizon. I shall now verify that these generators are
geodesics, though the vector fieldL is not normalized with an affine parameter, and in
this way shall calculate the surface gravity. (For clarity, I will drop the conformal factor
because it is known that it will not affect the surface gravity [34].)

Consider the quantity(L · ∇)L and calculate

Lα∇αLµ = Lα(∇αLβ −∇βLα)gβµ + 1
2∇β(L2)gβµ. (74)
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To calculate the first term note that

Lµ = ρ

c
(−[c2− v2

⊥];v⊥). (75)

Thus

L[α,β] = −
 0

... −∇i
[
(ρ/c)(c2− v2

⊥)
]

· · · · · · · · · · · · · · · · · · ·
+∇j

[
(ρ/c)(c2− v2

⊥)
] ...

(
(ρ/c) v⊥

)
[i,j ]

 (76)

and so

LαL[β,α] =
(
v‖ · ∇

[
ρ

c
(c2− v2

⊥)
]
; ∇j

[
ρ

c
(c2− v2

⊥)
]
+ vi‖

(
ρ

c
v⊥
)

[j,i]

)
. (77)

On the horizon, wherec = v⊥, this simplifies tremendously to

(LαL[β,α])|horizon = −ρ
c

(
0; ∇j (c2− v2

⊥)
)
. (78)

Similarly, for the second term we have

∇β(L2) =
(

0; ∇j
[
ρ

c
(c2− v2

⊥)
])
. (79)

On the horizon this again simplifies to

∇β(L2)|horizon = +ρ
c

(
0; ∇j (c2− v2

⊥)
)
. (80)

There is partial cancellation between the two terms, and so

Lα∇αLµ = + 1

2c2

(
vj∇j [(c2− v2

⊥)]; (c2δij − vivj )∇j [(c2− v2
⊥)]
)
. (81)

But, as we have already seen, at the horizon the gradient term is purely normal, thus

Lα∇αLµ = + 1

2c

∂(c2− v2
⊥)

∂n
(1; vi‖). (82)

Comparing this with the standard definition of surface gravity [30]†

Lα∇αLµ = +gH
c
Lµ, (83)

we finally have

gH = 1

2

∂(c2− v2
⊥)

∂n
= c ∂(c − v⊥)

∂n
. (84)

This is in agreement with the previous calculation for static acoustic black holes and,
insofar as there is overlap, is also consistent with the results of Unruh [1, 5], Reznik [14],
and the results for ‘dirty black holes’ [20]. From the construction it is clear that the surface
gravity is a measure of the extent to which the Newtonian time parameter inherited from
the underlying fluid dynamics fails to be an affine parameter for the null geodesics on the
horizon.

† There is an issue of normalization here. On the one hand, we want to be as close as possible to general
relativistic conventions. On the other hand, we would like the surface gravity to really have the dimensions of an
acceleration. The convention adopted here is the best compromise I have come up with.
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10. Geometric acoustics

Up to now, we have been developing general machinery to force acoustics into Lorentzian
form. This can be justified either with a view to using fluid mechanics to teach us more
about general relativity, or to using the techniques of Lorentzian geometry to teach us more
about fluid mechanics.

For example, given the machinery developed so far, taking the short wavelength/high-
frequency limit to obtain geometrical acoustics is now easy. Sound rays (phonons) follow
the null geodesicsof the acoustic metric. Compare this to general relativity where in the
geometrical optics approximation light rays (photons) follownull geodesicsof the physical
spacetime metric. Since null geodesics are insensitive to any overall conformal factor in
the metric [28–30], one might as well simplify life by considering a modified conformally
related metric

hµν ≡

 −(c2− v2
0)

... −vj0
· · · · · · · · · · · · · · · · · · ·
−vi0

... δij

 . (85)

This immediately implies that, in the geometric acoustics limit, sound propagation is
insensitive to the density of the fluid. In this limit, acoustic propagation depends only
on the local speed of sound and the velocity of the fluid. It is only for specifically wave
related properties that the density of the medium becomes important.

We can rephrase this in a language more familiar to the acoustics community by invoking
the eikonal approximation. Express the linearized velocity potential,ψ1, in terms of an
amplitudea and phaseϕ by ψ1 ∼ aeiϕ . Then, neglecting variations in the amplitudea, the
wave equation reduces to theeikonal equation

hµν ∂µϕ ∂νϕ = 0. (86)

This eikonal equation is blatantly insensitive to any overall multiplicative prefactor
(conformal factor).

As a sanity check on the formalism, it is useful to re-derive some standard results. For
example, let the null geodesic be parametrized byxµ(t) ≡ (t;x(t)). Then the null condition
implies

hµν
dxµ

dt

dxν

dt
= 0 ⇐⇒ −(c2− v2

0)− 2vi0
dxi

dt
+ dxi

dt

dxi

dt
= 0

⇐⇒
∥∥∥∥dx

dt
− v0

∥∥∥∥ = c. (87)

Here the norm is taken in the flat physical metric. This has the obvious interpretation that
the ray travels at the speed of soundc relative to the moving medium.

Furthermore, if the geometry is stationary one can do slightly better. Letxµ(s) ≡
(t (s);x(s)) be some null path fromx1 to x2, parametrized in terms of physical arc length
(i.e. ‖dx/ds‖ ≡ 1). Then the tangent vector to the path is

dxµ

ds
=
(

dt

ds
; dxi

ds

)
. (88)

The condition for the path to be null (though not yet necessarily a null geodesic) is

gµν
dxµ

ds

dxν

ds
= 0. (89)
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Using the explicit algebraic form for the metric, this can be expanded to show

−(c2− v2
0)

(
dt

ds

)2

− 2vi0

(
dxi

ds

)(
dt

ds

)
+ 1= 0. (90)

Solving this quadratic gives

(
dt

ds

)
=
−vi0

(
dxi/ds

)+√c2− v2
0 +

(
vi0 dxi/ds

)2

c2− v2
0

. (91)

Therefore, the total time taken to traverse the path is

T [γ ] =
∫ x2

x1

(dt/ds) ds

=
∫
γ

1

c2− v2
0

{√
(c2− v2

0) ds2+ (vi0 dxi)2− vi0 dxi
}
. (92)

If we now recall that extremizing the total time taken is Fermat’s principle for sound rays,
we see that we have checked the formalism for stationary geometries (steady flow) by
reproducing the discussion on p 262 of Landau and Lifshitz [22].

As a second example of the insights arising from the Lorentzian point of view, consider
the ‘reciprocity theorem’. Suppose a pulse of sound is emitted at timet1 at positionx1.
The disturbance propagates according to the inhomogeneous differential equation

1ψ = 1√−g δ
4(xµ − xµ1 ) =

c

ρ2
δ(t − t1) δ3(x− x1). (93)

The solution to this is the retarded scalar Green function

ψ(x)|source at x1 = GR(x, x1). (94)

The Green function has well known symmetry properties that are completely unaffected
by any time dependence in the underlying acoustic metric. We may, in the usual manner,
construct advanced and retarded Green functions that vanish outside the past and future
sound cones, respectively. Then

GR(x2, x1) = GA(x1, x2). (95)

So that the reciprocity theoremfor the velocity potentialis valid in absolute generality

ψ(x2)|source at x1 = ψ(x1)|t ime reversedsource at x2
. (96)

To get a reciprocity theorem forpressureone has to recall that

p1 = ρ0(∂tψ1+ v0 · ∇ψ1). (97)

Then, by restricting to the case of a fluid at rest (v0 = 0, ∂tρ0 = 0, ∂tp0 = 0), using the
time translation invariance of the Green functions and the time reversal propertyGA 
 GR,
one has [

p1

ρ0

]
(x2, t2− t1)|source at x1 =

[
p1

ρ0

]
(x1, t2− t1)|source at x2. (98)

This result is still much more general than the usual reciprocity theorem.
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11. Limitations

The derivation of the wave equation involved two key assumptions—that the flow is
irrotational flow and the fluid is barotropic.

The d’Alembertian equation of motion for acoustic disturbances, though derived only
under the assumption of irrotational flow†, continues to make perfectly good sense in its
own right if the background velocity fieldv0 is given some vorticity. This leads one to hope
that it might be possible to find a suitable generalization of the present derivation that will
work for flows with non-zero vorticity. In this regard, note that if the vorticity is everywhere
confined to thin vortex filaments, the present derivation already works everywhere outside
the vortex filaments themselves.

The technical problem with flows with non-zero vorticity is that the vorticity in the
background flow couples to the perturbations and generates vorticity in the fluctuations.
Then sound waves can no longer be represented simply by a scalar potential and a much
more complicated mathematical structure results. (Phonons are no longer simply minimally
coupled scalar fields and the appropriate generalization is sufficiently unpleasant as to be
intractable.)

The restriction to a barotropic fluid (ρ a function ofp only) is in fact also related to
issues of vorticity. Examples of barotropic fluids are:

• Isothermal fluids subject to isothermal perturbations.
• Fluids in convective equilibrium subject to adiabatic perturbations.

See for example [21], section 311, pp 547–8, and section 313 pp 554–6. Failure of the
barotropic condition implies that the perturbations cannot be vorticity free and thus requires
more sophisticated analysis.

If the fluid is in addition inviscid, then the analysis of this paper implies a hidden
Lorentz invariance in the acoustic equations. This hidden Lorentz invariance is more than
just a formal quirk: if one has ‘atoms’ held together by phonons (Cooper pairs?), then these
atoms, and complex systems built up out of such atoms, will see (hear) an acoustic special
relativity that is as real to them as Einstein’s special relativity is to us. Furthermore, these
systems would with additional observation detect (hear) an acoustic general relativity—but
instead of the Einstein–Hilbert equations of our general relativity they would experience an
acoustic general relativity governed by the hydrodynamic equations.

If the fluid has non-zero viscosity then there will be violations of this acoustic Lorentz
symmetry. These violations are momentum dependent and, as I shall discuss in the next
section, they are small at low momentum.

12. Viscosity: breaking the Lorentz symmetry

After this long build-up, emphasizing the hidden Lorentzian geometry hiding in (inviscid
vorticity-free barotropic) fluid dynamical equations, I will now show how to explicitly break
the Lorentz symmetry. From the atomic perspective underlying continuum fluid mechanics
the eventual breakdown of the Lorentz symmetry governing the notion of the phonons is
no great surprise: eventually, once the wavelength of the phonons is less than the mean
interatomic spacing in the fluid, we should certainly expect modifications to the phonon
dispersion relation [1, 3]. Specificad hoc mutilations of the dispersion relation have been
considered by Jacobson [3], Unruh [5], Corley and Jacobson [9] and Corley [11]. I shall

† But remember that irrotational flow is automatic for superfluids [25], and is natural in situations of high symmetry.
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now show that a similar, but not identical, breakdown of acoustic Lorentz invariance can be
deduced directly from the continuum equations merely by adding the effects of viscosity.

Of course, the fundamental equations of fluid dynamics, the equation of continuity (5)
and Euler’s equation (6) are unaltered. What changes is the expression for the driving force
in Euler’s equation so that (7) becomes [21, section 328, pp 576–7]

F = −∇p − ρ∇φ − ρ∇8+ ρ ν (∇2v + 1
3∇(∇ · v)

)
. (99)

Here ν denotes kinematic viscosity. I again take the flow to bevorticity free, and again
choose the fluid to bebarotropic. Repeating the steps that led to (10) now show that Euler’s
equation reduces to

−∂tψ + h+ 1
2(∇ψ)2+ φ +8+ 4

3ν ∇2ψ = 0. (100)

This again is a well known equation, simply being Burgers’ equation subject to external
driving forces [41]. (In obtaining this equation it is necessary to assume that the kinematic
viscosityν is position independent. In addition it is common practice, though not universal,
to absorb the4

3 into a modified definition of kinematic viscosity.)
Linearization proceeds as previously. For the continuity equation there are no changes,

while linearizing the Euler equation (Burgers’ equation) yields

−∂tψ0+ h0+ 1
2(∇ψ0)

2+ φ +8+ 4
3ν ∇2ψ0 = 0, (101)

−∂tψ1+ p1

ρ0
− v0 · ∇ψ1+ 4

3ν ∇2ψ1 = 0. (102)

Rearranging

p1 = ρ0
(
∂tψ1+ v0 · ∇ψ1− 4

3ν∇2ψ1
)
. (103)

As before, we substitute this linearized Euler equation into the linearized continuity equation,
to obtain the physical wave equation:

−∂t
(
∂ρ

∂p
ρ0
(
∂tψ1+ v0 · ∇ψ1− 4

3ν ∇2ψ1
))

+∇ ·
(
ρ0∇ψ1− ∂ρ

∂p
ρ0 v0

(
∂tψ1+ v0 · ∇ψ1− 4

3ν ∇2ψ1
)) = 0. (104)

Using the same matrixf µν defined previously, the above wave equation is easily rewritten
as†

∂µ(f
µν ∂νψ1) = − 4

3ρ0 ν

(
∂

∂t
+ v0 · ∇

) [
c−2∇2ψ1

]
. (105)

In terms of the d’Alembertian associated with the acoustic metric this reads

1ψ1 = −4

3

νc

ρ0

(
∂

∂t
+ v0 · ∇

) [
c−2∇2ψ1

]
. (106)

The convective derivative appearing here may easily be converted into four-dimensional
form by utilizing the acoustic 4-velocity for the fluid. Recall that

V µ = (1;v )√
ρ0c

. (107)

† I have used the continuity equation for the background fluid flow to pull the factorρ0 outside the convective
derivative.
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It is easy to see that this is a timelike unit vector in the acoustic metric, so that

1ψ1 = −4

3

νc2

√
ρ0c

(
V µ∇µ

) [
c−2∇2ψ1

]
. (108)

The∇2ψ1 term explicitly couples only to the flat spatial metric and can be written in terms
of the acoustic metric by noting that

gµν = −V µV ν + c

ρ

(3)gµνspace. (109)

It is the explicit appearance of the fluid 4-velocity in the above expressions that justifies
my claim that viscosity breaks the acoustic Lorentz invariance.

Sanity check 1. If the background fluid flow is at rest and homogeneous (v0 = 0, and with
ρ0 andc independent of position) then this viscous wave equation reduces to

∂2
t ψ1 = c2∇2ψ1+ 4

3ν ∂t∇2ψ1. (110)

This equation may be found, for instance, in section 359 pp 646–8 of Lamb [21].

Sanity check 2. Take the eikonal approximation in the form

ψ1 = a(x) exp(−i[ωt − k · x] ), (111)

with a(x) a slowly varying function of position. Furthermore, agree to ignore derivatives
of the metric. Then the viscous wave equation in the eikonal approximation reduces to

−(ω − v · k)2+ c2k2− iν 4
3(ω − v · k)k2 = 0. (112)

This lets us write down a dispersion relation for sound waves

ω = v · k ±
√
c2k2−

(
2νk2

3

)2

− i
2νk2

3
. (113)

The first term simply arises from the bulk motion of the fluid. The second term specifically
introduces dispersion due to viscosity, while the third term is specifically dissipative. Thead
hoc models introduced in Jacobson [3], Unruh [5], Corley and Jacobson [9] and Corley [11]
are exactly recovered by ignoring the dissipation due to viscosity but retaining the dispersion
due to viscosity.

Note that the violation of Lorentz invariance is suppressed at low momentum. This is
in agreement with general arguments of Nielsenet al [42–44], though it should be borne
in mind that Nielsenet al were dealing with interacting quantum field theories and the
context here is, if not purely classical, at worst one of free phonons propagating on a fixed
classical background. (An alternative model for the breakdown of Lorentz invariance has
been discussed by Everett [45, 46].) The violations of Lorentz symmetry become significant
once

k ≈ k0 ≡ c

ν
. (114)

But from the atomic theory of (normal) fluids

ν ≈ mean free path2

mean free time
≈ c ×mean free path. (115)

This gives the very reasonable result

k0 ≈ 1

mean free path
, (116)

verifying that the breakdown of acoustic Lorentz invariance is explicitly linked to the atomic
nature of matter.
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13. Precursors

It is perhaps surprising that anything new can be said about so venerable a subject as
fluid dynamics. Certainly there are precursors to the discussion of this paper in the fluid
dynamics literature. For instance, take the background to be static, so thatv0 = 0, while
∂tρ0 = 0= ∂tp0, thoughp0 and hencec are permitted to retain arbitrary spatial dependences.
Then the wave equation derived in this paper reduces to

∂2
t ψ = c2 1

ρ0
∇ · (ρ0∇ψ). (117)

This equation is in fact well known. It is equivalent, for instance, to equation (13) of
section 313 of Lamb’s classicHydrodynamics[21]. See also equation (1.4.5) of the recent
book by DeSanto [47]. The superficially similar wave equations discussed by Landau and
Lifshitz [22] (see section 74, equation (74.1)), and by Skudrzyk [24] (see p 282), utilize
somewhat different physical assumptions concerning the behaviour of the fluid.

In a somewhat different vein, the modern study of classical continuum mechanics has
greatly benefited from the use of three-dimensional Riemannian geometry to describe the
physics of the spatial configurations of elastic media and other continua [48–50]. Analyses
of this type have traditionally treated space and time on quite separate footings.

The most direct precursor of the results derived in this paper are due to Unruh [1] and
Jacobson [3], and in the body of work prompted by those papers [4–14].

14. Summary and discussion

Acoustic waves in an inviscid fluid can, under the assumptions of irrotational barotropic
flow, be described by an equation of motion involving the scalar d’Alembertian of a suitable
Lorentzian geometry. For inhomogeneous flows this Lorentzian geometry will exhibit non-
zero Riemann curvature.

Traditionally, Lorentzian geometries have been of interest to physics only within the
confines of Einstein’s theory of gravitation. The results of this paper provide the general
relativity community with a very down to earth physical model for certain classes of
Lorentzian geometry. This is of interest both pedagogically and because it extends the
usefulness of Lorentzian differential geometry beyond the confines of Einstein gravity.

Particularly intriguing is the fact that while the underlying physics of fluid dynamics
is completely non-relativistic, Newtonian, and sharply separates the notions of space and
time, one nevertheless sees that the acoustic fluctuations couple to a full-fledged Lorentzian
spacetime.

As discussed by Unruh [1] (and in the subsequent papers [3–14]), an acoustic event
horizon will emit Hawking radiation in the form of a thermal bath of phonons at a
temperature

kTH = h̄ gH
2πc

. (118)

(Yes, this really is the speed of sound in the above equation, andgH is really normalized
to have the dimensions of a physical acceleration.) Using the numerical expression

TH = (1.2× 10−9 K m)

[
c

1000 m s−1

] [
1

c

∂(c − v⊥)
∂n

]
, (119)

it is clear that experimental verification of this acoustic Hawking effect will be rather
difficult. (Though, as Unruh has pointed out [1], this is certainly technologically easier than
building (general relativistic) micro-black holes in the laboratory.)
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A particularly important side effect of this entire analysis is that it forces us to re-examine
all of black-hole physics to cleanly separate what is intrinsic to general relativity from what
is generic to Lorentzian geometries. The acoustic analogue for black-hole physics accurately
reflects half of general relativity—the kinematics due to the fact that general relativity takes
place in a Lorentzian spacetime. The aspect of general relativity that does not carry over
to the acoustic model is the dynamics—the Einstein equations. Thus the acoustic model
provides a very concrete and specific model for separating the kinematic aspects of general
relativity from the dynamic aspects.

In particular, perhaps the most important lesson to be learned is this: Hawking radiation
from event horizons is a purely kinematic effect that occurs in any Lorentzian geometry
with an event horizon and is independent of any dynamical equations imposed on the
Lorentzian geometry. On the other hand, the classical laws of black-hole mechanics [40]
are intrinsically results of the dynamical equations (Einstein equations) that have no analogue
in the acoustic model. Thus Hawking radiation persists even in the absence of the laws of
black-hole mechanics and, in particular, the existence or otherwise of Hawking radiation is
now seen to be divorced from the issue of the existence or otherwise of thelaws of black-
hole thermodynamics. Hawking radiation is a purely kinematical effect that will be there
regardless of whether or not it makes any sense to assign an entropy to the event horizon—
and attempts at deriving black-hole entropy from the Hawking radiation phenomenon are
thereby seen to require specific dynamical assumptions about the (at least approximate)
applicability of the Einstein equations.

Acknowledgments

This work was supported by the US Department of Energy. I particularly wish to thank
Ted Jacobson for encouraging me to resuscitate this paper, and expand it into its current form.
I also wish to thank John Friedman and Ted Jacobson for bringing the Unruh reference [1]
to my attention when this work was in its preliminary form [2]. Additionally, I wish to
thank Greg Comer [25] and David Hochberg [35] for kindly providing me with access to
unpublished manuscripts.

References

[1] Unruh W G 1981 Experimental black hole evaporation?Phys. Rev. Lett.46 1351–3
[2] Visser M 1993 Acoustic propagation in fluids: an unexpected example of Lorentzian geometryPreprint

gr-qc/9311028 (This is an early version of the present paper, widely circulated in e-print form. The
present paper is greatly expanded, with considerably more discussion, detail and references.)

[3] Jacobson T 1991 Black hole evaporation and ultrashort distancesPhys. Rev.D 44 1731–9
[4] Jacobson T 1993 Black hole radiation in the presence of a short distance cutoffPhys. Rev.D 48 728–41
[5] Unruh W G 1995 Sonic analogue of black holes and the effects of high frequencies on black hole evaporation

Phys. Rev.D 51 2827–38
[6] Brout R, Massar S, Parentani R and Spindel Ph 1995 Hawking radiation without trans-Planckian frequencies

Phys. Rev.D 52 4559–68
[7] Jacobson T 1995 Introduction to black hole microscopyMexican School on Gravitation (1994)pp 87–114
[8] Jacobson T 1996 On the origin of the outgoing black hole modesPhys. Rev.D 53 7082–8
[9] Corley S and Jacobson T 1996 Hawking spectrum and high frequency dispersionPhys. Rev.D 54 1568–86

[10] Corley S and Jacobson T 1997 Lattice black holesPreprint hep-th/9709166
[11] Corley S 1997 Particle creation via high frequency dispersionPhys. Rev.D 55 6155–61
[12] Corley S 1997 Computing the spectrum of black hole radiation in the presence of high-frequency dispersion:

an analytical approachPreprint hep-th/9710075
[13] Reznik B 1997 Trans-Planckian tail in a theory with a cutoffPhys. Rev.D 55 2152–8
[14] Reznik B 1997 Origin of the thermal radiation in a solid-state analog of a black holePreprint gr-qc/9703076



Acoustic black holes 1791
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