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1. INTRODUCrION

The study of wave propagation in periodic structures began over threr centuries
ago with Newton's attempt to derive the speed of propagation of sound. Since that

time, work concerning waves in periodic structures has branched into such diverse

fields as linear particle accelerator design, microwave antennae and filter design, and
the quantum mechanical theories of condensed matter. While much of the recent
work in this field of study has not addressed acoustic waves, the acoustical case is

still a very active field of study. Nearly all of the work in acoustics, however, concerns
the problem of waves in elastic solids - most of that work concerning phonons, the

quantized elementary acoustic excitation. The present study concentrates on the

behavior of fluid-borne sound in a periodically varying waveguide.

The motivating interest in this study is that the waves which occur in periodic

media, known as Bloch waves (Kittel, 1986), have very unusual dispersion and atten-
uation characteristics. The author's interest in the dispersive nature of Bloch waves

sprung from an interest in nonlinear acoustic propagation in strongly dispersive media.
While the nonlinear case will be treated in a subsequent study, the goal of this work

is to characterize the linear behavior of acoustic waves in a periodic waveguide.

The work presented here is a theoretical and experimental investigation of acoustic

Bloch wave propagation in a periodic waveguide. The waveguide under study is
rectangular and loaded periodically with rigidly terminated rectangular side branches.

The theoretical analysis is for a rigid waveguide filled with an arbitrary homogeneous,

viscous, heat conducting fluid. The experimental portion of the work is the study of

Bloch waves in an air filled aluminum waveguide.

1.1 Characteristic Properties of Bloch Wave Propagation

While nonuniformity of a wave system (the wave medium or the wave medium

and its boundary) certainly affects the propagation of waves in that system, periodic

nonuniformity has a particularly profound effect. The wave system, even a nondis-

sipative wave system, selectively attenuates waves on the basis of their frequency.

The frequency selective property of periodic structures has a banded structure: the

strongly attenuated waves occupy bands of the frequent-y spectrum known as stop-

bands. Between neighboring stopbands are regions of the frequency spectrum known

as passbands, the waves associated with which propagate with little or no attenuation.

I



The dispersion relation for a periodic structure is a functional relationship between

the temporal frequency w and the Bloch spatial frequency or Bloch wave number q

(Brillouin, 1946). The Bloch wave number can frequently be interpreted as being a

sort of "effective" wave number or "net" wave number, though this interpretation

should be used carefully. The same is true of the Bloch wavelength AB = 27r/q.

As might be expected. the stopband waves are exponentially attenuated and are

associated, even in the nondissipative case, with Bloch wave numbers that have an

imaginary component. Figure 1.1 shows a typical Bloch wave dispersion curve (or

Im{qh) Re(qh) passband
2ncolIh

stopband

passband

stopband

LL passband

(0 nlh 21t/h

Bloch Wave Number: q (1/m)

FIGURE 1.1
A typical dispersion curve for forward propagating Bloch waves in a

periodic structure with periodicity h. The stopbands, which occur at
intervals of 7r/h along the Bloch wave number axis, are frequency bands

in which Irn{q} 3 0 and Re{q} = constant.
AS-91-331

Brillouin diagram, as these curves are sometimes called (Elachi, 1976)) for nondis-
sipative propagation. Several noteworthy characteristics of Bloch wave dispersion are

as follows:

* At passband frequencies the Bloch wave number is real and a nonlinear function

oF frequency (i.e., passband Bloch waves are dispersive).

* At stopband frequencies, the Bloch wave number has a nonzero imaginary corn-
pont~nt, which is associated with tile exponential attenuation of the wave.

* At stopband frcquencies the real component of the Bloch wave number remains

constant throughout the band. The stopbands are therefore bands of frequen-

cies associated with a single Bloch wavelength! Like the passband Bloch waves,

therefore, the stopband Bloch waves are dispersive.
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e The passbands and stopbands occur at intervals of ir/h along the Bloch wave

number axis, where h is the periodicity of the periodic structure.

A few words need to be said about the graphical presentation of the Bloch wave

dispersion relation. The variety of presentation schemes appearing in the literature

often leads to confusion. It turns out that if one remains consistent with respect

to several conventions, all of the information regarding the dispersion of the Bloch
waves can be contained in a graph that is confined to the first so called Brillouin

zone (-ir/h < q < +ar/h). Such a presentation, called the "reduced zone" scheme,

is frequently used by solid state physicists (Kittel, 1986). Figure 1.1 is an example

of the "extended zone" scheme, which is used in most of the present work. A third

scheme, the "periodic zone" scheme, is shown in Sec. 3.4 in relation to the so called

travelling wave spectral representation of Bloch wave functions.

1.2 Classes of Periodic Structures

The term "periodic structure" is used as a generic label for a wave system (the

medium or the combination of the medium and its boundary) that has some sort of

spatially repeating structure. Periodic structures can be regarded as belonging to

one of three classes: (1) the periodic medium, (2) the periodically inhomogeneous

medium, and (3) the periodically bounded medium.

The sound speed calculations made by Newton are based on a model of a contin-

uum which defines the first class of periodic structures. Brillouin (1946) points out

that Newton modeled the one-dimensional fluid continuum in the lumped element

approximation: the medium is effectively a series of masses connected by springs.

The mass of each element is related to the fluid density and the spring constant is

related to the bulk modulus of elasticity of the fluid.1 Though Newton did not know

of the atomic lattice arrangement of crystalline solids, his lumped element model of

a fluid is essentially that used currently to model such solids. A wave medium of this

type, in which the fabric of the medium itself is intrinsically periodic, is referred to

as a periodic medium. Tile majority of the works concerning waves in periodic media

is in the area of lattice dynamics in tile field of solid state physics. Tile dispersion
in this case is referred to as phonon dispersion, which is important in the modeling

of tile thermal, optical, and ohmic electrical properties of solids (Kittel, 1986). An

extensive source of information on the periodic medium and, to a lesser extent, the

other two classes of periodic structures is the classic monograph by Brillouin (1946).

1 It is of historical interest to note that Ncwtor, assumed the ratio of pressure to density to he con-

stant (Boyle's law). Though it was not known at the time, impliit in Boyle's law is the awssumptin
that the acoustic process takes place isothermally. Over 100 years later, about 1816. Laplace realized
that the thermodynamic process is more accurately adiabatic and corrected Newton's calculations.
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The second class of periodic structures, the periodically inhomogeneous medium,

is somewhat self explanatory. Periodically inhomogeneous media are simply continua

that exhibit some sort of periodically repeating inhomogeneity. An example from
acoustics is a fluid having a periodic variation in ambient density or sound speed.
Easily the largest body of work involving periodically inhomogeneous media is that
concerning the quantum theory of electrical conductivity. In the quantum theory, the

electron is represented by De Broglie/Schr~dinger matter waves which propagate in

an electrical conductor, which is a crystalline solid. The properties of the "medium"
in which such waves propagate are determined by the potential of the crystal lattice,
which varies periodically. In the quantum mechanical interpretatiol, -he dispersion

relation (a frequency-wave number relation) is an energy-momen.um relation2 and

the band structure of the dispersion relation is the well known "band structure of

solids" The stopband frequencies or forbidden frequencies are the forbidden energy

bands or the "band gaps" that lie at the heart of the quantum theories of electrical
conductivity, resistivity, and semi-conductivity (Kittel, 1986). An interesting appli-
cation which exploits the properties of the periodically inhomogeneous medium is the

distributed feedback laser, in which the lasing medium is imposed with a periodic

spatial modulation in the refractive index (Elachi, 1976).

The subject of this study is an example of the third class of periodic structures,

the periodically bounded medium. These structures are systems composed of a homo-

geneous medium with a periodically varying boundary. Work involving such media
has been all but entirely confined to the realm of guided microwave pr- pagation.

Some examples of applications of this work are the slotted waveguide antenna (Hes-
sel, 1969), the travelling wave filter (Collin, 1960), and the linear particle accelerator.

The linear particle accelerator (which is a periodic waveguide) is a particularly inter-
esting application in which the "space harmonic" property of Bloch waves is exploited

to allow efficient exchange of energy between the microwave field and the accelera-
ting particles (Slater, 1948; Slater, 1950). Another interesting application exploits

the stopband properties of Rayleigh waves propagating along a corrugated elastic

surface. Stopband frequency Rayleigh waves incident upon a corrugated section of a

surface are very nearly 100% reflected. Such efficient reflections allow very high Q
surface wave resonant tanks to be built for use as microwave frequency oscillators and
filters (Bell and Li, 1976). Some of the unusual problems encountered in attempting

to transmit information acoustically through a periodic waveguide (in this case the

drill string of a deep petrochemical well) are discussed by Drumheller (1989).

A body of work that treats rmedia which could arguably be placed in either the

first or the third class of periodic structures also exists. The media in question are
transverse or flexural wave media which are loaded in some periodic manner, such

as the skin of aircraft with a rib-lPkc support structure. Examples are the work of
2 E = hw and p = Ihk, where E is the energy, It is Planck's constant, k is the wave number, p is

the Triomentum, and w is the frequency.
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Ungar (1966), Sen Gupta (1970), Mead (1970), and Mead (1973), which all treat the
problem of a periodically supported beam or plate. A fascinating example of this
class of work is that of J. D. Maynard, who models quantum mechanical events with
waves in a classical acoustic wave system. For example, Maynard and He (1986)
used a thin wire loaded periodically with small masses to model a crystalline solid.
In such a system, transverse and longitudinal waves can be taken to be analogous
to De Broglie/Schr6dinger electron waves and phonons, respectively. Measurements

of theoretically predicted quantum mechanical events, such as Anderson localization
and phonon assisted hopping, were successfully made in the periodically loaded wire

system.

1.3 Previous Work

Previous work in the area of acoustic wave propagation in a periodic, fluid filled
waveguide is, to the author's knowledge, limited to purely theoretical investigations
in which the periodic deviations from uniformity are small. An appropriate dimen-
sionless variable representing the magnitude of the deviation from uniformity is in
each case taken as the small parameter in a perturbation analysis.

Samuels (1959) and Salant (1972) treat the case of propagation in a two dimen-
sional (parallel plate) waveguide with small sinusoidal perturbations in the bounda-
ries. Both of these investigations were intended as the first step toward treating the
case of a waveguide with statistically rough boundaries. The technique employed is a
straightforward perturbation expansion in which the boundary condition at the sinu-
soidal surface is expanded about the mean planar surface. The result of the analysis
in both cases is that a forward propagating wave is, with corrections to first order in
the perturbation parameter, coupled to two other modes: a forward propagating wave
mode and a backward propagating wave mode. Nayfeh (1974) showed that the pertur-
bation expansion employed by Samuels (1959) and Salant (1972) is not uniform near
stopband frequencies, where the mode coupling is strong, and that a multiple scales
perturbation technique yields a uniformly valid expansion. Nayfeh (1975) essentially
repeated the treatment of Nayfeh (1974), but allowed for the possibility of a net fluid
flow through the waveguide. Nusayr (1980) employed a multiple scales perturbation
technique in the analysis of a rectangular waveguide with sinusoidal boundaries. In
all of the above cases the finding is that the periodically perturbed boundary cou-
ples a forward propagating mode with both a second forward propagating mode and a
backward propagating mode. As is made evident in the section on the traveJling wave
spectral representation of Bloch wave functions (Sec. 3.4), the secondary modes found
in the perturbation analyses are the first higher order components of the travelling

wave spectrum.
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Bai and Keller (1987) treated the case of a rectangular waveguide loaded with

a periodic array of rigid spheres. They based their approach on the Webster horn

equation and compared the results of a strained parameter perturbation analysis and

a numerical analysis. The perturbation analysis yields values for the low frequency

limit of the phase velocity and the bounding frequencies of the first three stopbands.

The results of the two analyses compare very well, but the validity of the Webster

horn equation at frequencies above the second stopband, for the waveguide geometry

treated, is doubtful. Because of the symmetry of their axial location, the spheres

will very effectively scatter sound into the even higher order modes of the waveguide.

Additionally, because the first even higher order mode is above cutoff for frequen-

cies above the second stopband frequency, sound will be propagating in two modes

simultaneously. The Webster horn equation is a one dimensional wave equation and

is therefore valid for the case of a sing]? mode of propagation only.

While all of the works discussed above treat the general problem of interest,

acoustic wave propagation in a fluid-filled periodic waveguide, they are inapplicaLle

for the waveguide of this study. The large and infinitely rapid changes in waveguide

cross sectional area which occur at the side branches simply cannot be regarded as

"small". A perturbation expansion, as used in the above analyses, would therefore

be a poor choice of analysis technique. While the side branches do not generally

represent small perturbations in the cross sectional area of a waveguide, they do

represent spatially localized perturbations. An approach which is readily applicable
when the nonuniformity in the waveguide is spatially localized (and more generally

applicable) is that of Achenbach and Kitahara (1987). They treat the problem of
wave propagation in an elastic solid that has a three dimensional rectangular lattice

of spherical cavities. Because they concentrate on excitation along a symmetry axis

of the medium, their problem is identical to that of a waveguide which is filled with an

elastic solid which contains a periodic array of spherical cavities along the axis. The

paper also concentrates on the low frequency or plane wave mode case which, under

purely longitudinal excitation, has a purely longitudinal wave solution (i.e., there is

no shear mode excitation). The problem is therefore identical to a fluid acoustics

problem. The result of the analysis is a dispersion relation that depends upon the

scattering characteristics of the spherical cavities. The approach of Achenbach and

Kitahara is that employed here in the derivation of the dispersion relation.

1.4 The Waveguide Under Study

The variables representing the various dimensions of the waveguide are shown in

Fig. 1.2. The waveguiie is aligned along the z axis with the side branches parallel to

the y axis. The origin of the coordinate system is midway between side branches and

centered on the bottom wall. The walls of the wavcguide are located at x = ±a/2,

6



y = 0, and y = b. The resultant waveguide cross sectional area is therefore A,,, ab.
The side branches are placed at intervals of h along z, and are located in the bottom
wall. The side branch walls are at x = ±a/2, y = -d, z = nh + (h - 1)/2, and

z = nh + (h + 1)/2, where n is an integer. In other words, the side branches are
rectangular waveguides of cross sectional area A, = al and depth d.

( a 
° ° 

............. ... ]"°'*°" $ 
* i

L ......... ......

.... . . ........ ..........
b '-' M A.

FIGURE 1.2
The periodic waveguide is a rectangular duct loaded with rigidly

terminated rectangular side branches. Two cycles of the waveguide are
shown.

AS-91-332

We now introduce some terminology:

" Th "waveguide sections" are the sections of rectangular duct of length h - 1
located between side branches. An example of a waveguide section is the seg-

ment between z = ±(h - 1)/2.

" The "port regions" arc those regions above the side branch openings and in-
between adjacent waveguide sections. An example of a port region is the volume
(h - 1)/2 < z < (h + 1)/2, 0 < y < b, -a/2 < x < a/2.

" A "cell" is a section of the periodic waveguide of length h along z centered oil
a waveguide section with side branches at each end. An example of a cell is the
section defined by -h/2 < z < h/2.

In addition to those imposcd later in the text, several approximnatio,s aild assump-
tions are used from the onset of the analysis. They are as follows:

* The system is under time harmonic excitation. The arbitrary excitation case

can be treated by Fourier synthesis.

7



" Th- system is under low frequency excitation. The frequency is below the cut-

(n frequency of the first higher order mode of both the waveguide sections and

the side branches.

" The structure is, in the lossless case, effectively two dimensional. The waveguide

boundaries normal to x are symmetric with respect to x and the structure within

those boundaries is invariant with respect to x. We further assume that the

excitation is independent of x, which, by symmetry arguments implies that the

acoustic field is invariant with respect to x. The waveguide and the acoustic

field can therefore be treated as being invariant and having infinite extent with

respect to x; i.e., the waveguide and the field are two dimensional. In other

words, the wave solution would be unchanged if the width a of the waveguide

were allowed to become infinite.

* The waveguide is of infinite length. The problem of a semi-infinite or a finite

periodic waveguide is considered in the section on truncation of the structure

(Sec. 3.5).

1.5 The Scope of the Investigation

The remaining chapters are divided as follows. In Chap. 2 we begin with a system

of governing equations and boundary conditions for the waveguide of interest and

show that the solution wave functions are Bloch wave functions. Several functional

representations of Bloch wave functions are shown. Chapter 3 consists of derivations

of the dispersion relation, the impedance function, and the Bloch wave function for

the waveguide. The effects of the truncation of the periodic structure are considered.

In Chap. 4 the measurement of the Bloch wave dispersion is described. The various

measurements are compared with theoretical results. Chapter 5 consists of brief

concluding remarks and suggestions for future work.

8



2. THE FLOQUET THEOREM AND BLOCH WAVE FUNCTIONS

In this chapter it is shown that the mathematical -ystem of governing equations

and boundary conditions describing lossy, linear acoustic waves in a periodic wave-

guide is, under the appropriate frequency restrictions, of a class which has Bloch

wave solutions. In order to show that Bloch wave functions are the solutions of the

system, we apply the Floquet theorem to the a:athematical system. While the Flo-

quet theorem is penned so as to apply to a class of ordinary differential equations, an
irspcction of its proof shows that it is more generally applicable to a class of ssstems

of partial differential equation , and boundary conditions. In order to be eligible for

the application of the Floquet theorem, the system must (1) exhibit a translational

invarianc,,, and (2) have two linearly indi-pendent solutions. It will be showrn that the

Floquet theorem is indeed applicable to che system of interest and that the applica-
tion results in a restriction on the solution wave functions: they must be Bloch wave

functions.

The chapter is organized as foll-ms. We begin with a discussion of the system

of governing equations and boundary coiditions and show that the system exhibits
an in variance under translation. It is then shown that, under a frequency restriction,
the system can be considered to be one dimensional and has two linearly independent

solutions. The Floquet theorem is then applied to the system to show that the solution

of the system must obey the Bloch wave condition; i.e., the solution wave functions

are Bloch wave functions. Finally, several functional representations of Bloch wave

functions are presented.

2.1 The System Under Study arid its Translational Invariance

The aim of this section is to present the mathematical system to be solved and

show that it exhibits invariance under a certain clabs of translation operations. While

the derivations of the equations themselves arc not shown, the assumptions implicit

therein are presented. The reader interested in the details of the derivations are
referred to the book by Pierce (1981).

9



2.1.1 The Governing Equations and Boundary Conditions

The set of equations that governs the dynamics of a viscous, heat conducting fluid

is composed of statements of fundamental conservation laws ard thermodynamic rela-

tions. These equations relate the field variables representing -,lass density, pressure,

temperature, entropy, and fluid velocity:

S=Po + P,

P =Po +p,

"=To+T,

s=So + S,

= u, (2.1)

respectively, where the total value of a field variable (denoted by a hat) is expressed as

the sum of the ambient value .,subscripted with a zero) and the acoustic or fluctuating

value.' The equations are derived under the following assumptions:

STile fluid is Newtonian; i.e., the viscous shear stress is proportional to the rate

of shear.2

* The fluid transfers heat by conduction only and according to the Fourier law of

heat conduction; i.e., the local heat flux is proportional to the local temperature

gradient. In assuming that the heat transfer is by conduction only we neglect

convective and radiative heat transfer.

" The fluid is in thermodynamic equilibrium; i.e., the thermodynamic state of the

fluid is dependent upon two independent thermodynamic variables.

" The fluid is homogeneous; i.e., the ambient values of the field variables are

constant and uniform.

* The dynamics of the fluid are well described by linearized governing equations;
i.e., the magnitude of the acoustic disturbance is very zrnall. Tile small param-

eter that the equations are linearized with respect to is the acoustic Mach

number 6 = lulmax/Co < 1.

Under these assumptions, lincarized statements of the conservation of mass, momen-

tum, and entropy arc

'Note that we have assuired that 110 = 0; the fluid has tio dc or net velo.:ity.
2 We have also assumed t.hiLt the bulk 'i.eosity is zero (or, equivalently, tb t the dilational viscosity

is equal to -2/3 the shear viscosity), which is Stokes' assumption.
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ap
t +poV.u=O, (2.2)

P(9 =-Vp+ [VU + (1/3)V(V. u)], (2.3)

and

poTO - = V2T, (2.4)

where p is the coefficient of shear viscosity and K is the coefficient of thermal con-

ductivity. Linearized expansions of the thermodynamic relations P = (P, , ) and

'=1T(',a) yield

P (1 ( Pc )S, (2.5)

and

T= p ) + (1 0) s, (2.6)

where cb is the small-signal lossless sound speed, #o is the coefficient of thermal

expansion, and Cp is the specific heat i-t constant pressure, all evaluated at the
ambient condition. Equations 2.2-2.6, the dissipative governing equations, consist of

seven scalar equations (four scalar equations and one vector equation) in seven scalar

unknowns (four scalars and one vector).

In order to arrive at a set of boundary conditions, we assume that the boundary

(the waveguide wall) is rigid, impenetrable, and has infinite heat capacity (i.e., is

isothermal). We will also assume that the boundary is at rest with respect to the
quiescent medium. Because the boundary is rigid and impenetrable, the velocity

normal to the boundary must be zero:

u. =ls =0, (2.7)

where fi is the unit vector normal to the surface of evaluation S, the wall of the

waveguide. Because the fluid is viscous, it cannot slide with respect to itself or a

boundary, and the tangential velocity at the surface must also be zero:

U X fils = 0. (2.8)

Because the fluid has a nonzero heat conductivity, the fluid at the boundary must

have the same temperature as the boundary. Because the boundary, by assumption,

is always at the ambient temperature To, the fluid at the boundary must have zero

acoustic temperature:

TIs=0. (2.9)

Equations 2.7-2.9 are the boundary conditions on the dissipative system.
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The Nondissipative System

In order to find the nondissipative governing equations, we simply use the dissi-

pative equations in the limit as the heat conductivity and viscosity approach zero.
In such a limit the mass continuity equation (Eq. 2.2) is unchanged, the momentum

equation (Eq. 2.3) becomes a first degree equation, and the entropy equation (Eq. 2.4)

becomes trivial:

- + poV.u=, (2.10)
aut u (2.11)

Po " = -Vp, (2.11)

and

s=0. (2.12)

As is expected, the lossless system is isentropic.

The thermodynamic relations likewise simplify. Because s = 0 the density and
temperature simply become directly proportional to the pressure:

= (2.13)

T = (1/poC,)p. (2.14)

Equations 2.10, 2.11, and 2.13 consist of five scalar equations in five scalar field
variables. The system is therefore determined without the inclusion of the pressure-

temperature relation (Eq. 2.14). The system of governing equations is therefore

limited to Eqs. 2.10, 2.11, and 2.13 and the pressure-temperature relation simply

yields temperature information once the pressure field is determined.

The boundary conditions on the nondissipative system are likewise a simplifica-

tion of the boundary conditions on the dissipative system. When the viscosity and

thermal conductivity of the fluid become zero the fluid is able to slip relative to the

boundary and attain a non-zero acoustic temperature at the boundary. The only

surviving boundary condition is the normal velocity restriction, which, by the use of

the nondissipative momentum equation (Eq. 2.11) may be written in terms of the

normal derivative of the acoustic pressure:

Vp.fils = 0. (2.15)

31n the lossless limit Eq. 2.4 becomes Os/Ot = 0 - s =constant, but any constant component of
s is by definition incorporated into so, the ambient value of A, and s becomes zero.
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2.1.2 The Translational Invariance of the System

In order to establish the translational invariance of the system we must show

that a translation operation exists under which the system remains unchanged. It is

shown here that the dissipative system exhibits such an invariance. The nondissipative

system is simply a special case of the dissipative system and therefore exhibits the

same invariance.

We define Li to be the iih operator in the set of operators C which includes those

found in the dissipative system of equations (Eqs. 2.2-2.6):

C = 1, t - 7 (2.16)

where 1, m, and n can each assume the values 1, 2, or 3 and x, = x, x2 = y, and

X3 = z. We likewise define Ti to be the ith field variable in the set %F which consists

of those found in the dissipative system of equations (Eqs. 2.2-2.6):

%P = {p,p,s,T,u,,u 2 ,u 3}. (2.17)

Each of the governing equations (Eqs. 2.2-2.6) can be represented as a linear combi-

nation of the operators in C acting on the field variables in 4:

(Ai3Ci)Ij = 0, (2.18)

where the Ai.,'s are constant coefficients and the summing convention is in effect.

Likewise, each of the boundary conditions can be represented in the form

(Pijci) PJ1 = 0, (2.19)

where the Pi 's are constant coefficients. In either case, the field variable JI, is being

operated on by the operator AijCi or QijC.

The operators in the set C all belong to a class of operators that exhibit the

property of translational .nvariance. That is, the operators all remain unchanged

under the arbitrary spatial translation

(XI, X2 , X3 ) --* (XI + AXI, X 2 + &X2 , : + aX3).

An example is

02 02 02

o,,CX,, o(X,, + &,,,)a(Z,, -, x,,) Ox,,ax,,

Because the operators that act on the ficld variables (AJC, and Q,,C) are just the

operators in C multiplied by constants, they arc likewise invariant under arbitrary
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translations. The set of governing equations is therefore translationally invariant. The

set of boundary condition operators is also invariant under arbitrary translations, but

the surface of evaluation S is not. It is, however, invariant under the more restricted

set of translations z -- z + nh, where n is an integer, as the surface repeats at intervals

of h along z. Because the set of governing equations is invariant under arbitrary

translations and the set of boundary conditions is invariant under translations of h

along z, the system is invariant under translations of h along z. The nondissipative

system is just a simplification of the dissipative system and therefore has the same

invariance.

It should be noted that the translational invariance depends on the homogeneity

of the medium. An inhomogeneous medium has nonuniform ambient conditions such

as po = po(x,y,z) or To = To(x,y,z). In such a medium the Aij's and fi's (and

therefore the operators A, 3 ,A and Q,,4i) are dependent upon the spatial coordinates

and the translational invariance of the system is generally spoiled. If the medium
is periodically inhomogeneous with a spatial period which is commensurate with the

period of the surface of evaluation, an invariance is restored.

2.2 Wave Equations and the Zeroth Order Guided Wave Solutions

In this section solutions of the dissipative and nondissipative systems of equations

and boundary conditions are shown. We begin with the nondissipative case and show

the exact modal field solution in the vicinity of a side branch. We next introduce a

frequency restriction that ensures that the evanescent higher order modes generated at

a side branch are confined to the near vicinity of the port region. Under this restriction

the system behaves as though the zeroth order or plane wave mode were the only mode

present: the waveguide sections and side branches are effectively transmission lines.

The approximation that the solution is well represented by the zeroth order field alone

is referred to as the zeroth order approximation. It is then argued that under the

same frequency restriction the solution of the dissipative system is well approximated

by the zeroth order solution alone, and a method of finding such a solution is outlined.

2.2.1 The Nondissipative Case

In the nondissipative case the continuity equation (Eq. 2.10), the momentum

equation (Eq. 2.11), and the pressure-density relation (Eq. 2.13) can readily be con-

bined to form a single equation in the acoustic pressure,

V I a'PVp- . 2.2()
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the classical wave equation. The solutions of Eq. 2.20 with Neumann, waveguide

type boundary conditions are very well known (Morse and Ingard, 1986; Skudrzyk,
1971). The solutions are usually expressed as a sum over a discrete set of modes,
some of which are evanescent and some of which are not. The analysis presented
here is limited to frequencies for which every mode except the zeroth order mode
is evanescent. In this context it is apparent what further frequency restrictions are
necessary to treat the system as a one-dimensional wave system.

The Modal Solution

i =z-h12

IV

FIGURE 2.1
The four regions in the vicinity of a side branch.

In order to show the frequency constraints under which the solution can be well

represented by the zeroth order field alone, we consider the solution of the nondissi-
pative system in the vicinity of a side branch. The acoustic pressure wave function
in the waveguide sections on either side of a side branch (regions I and II in Fig. 2.1)

and in the side branch itself (region III in Fig.2.1) can be expressed as a sum over
the discrete set of allowed modal solutions. It is assumed that the frequency is below
the cut-on frequency of the first higher order mode, in which case the solutions can

be expressed as the sum of the propagating zeroth order field and an infinite series
representing the evanescent higher order modes. It is also assumed that the fields
incident upon the side branch are purely zeroth order. Let C = z - h/2 be the shifted
axial coordinate that is centered on a side branch. The waves incident from < 0 and
C> 0 have amplitudes Ao and B,, respectively. The time dependence, which under
the time harmonic assumption is chosen to be e- J", is suppressed and the acoustic
pressure is treated as a function of the spatial coordinates only.

The wave solution in the prnsence of a scatterer is simply the sum of the in'ident
wavefields and the resultant scattered fields. The zeroth order wave of amplitude :o
incident on the side branch from C < 0 generates reflected and transmitted zeroth
order waves of amplitudes Sl lit) and S2 , lo, respectively, where the S.%s are the
zeroth order scattering matrix elements as defined by lamno, Whinnery, and Vn
l)uzer (1965).' In addition to the zeroth order scattered fields there are generally also

4Si I and S22 art reflcction CmucllicivnLs and $12 and 52, are tranmission coefficicnts. ln simple
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i evanescent
!"" modes 1

jk~ .rv'*S 21A40e Ak
0 e , , .. 0soe

S12B~e 4 .' ,. ',i Sfoi

FIGURE 2.2
Zeroth order waves incident upon a side branch and the resultant

scattered field. The scattered field consists of forward and back scattered

zeroth order waves, zeroth order waves in the side branch, and
evanescent modes. The evanescent modes are all confined to the near

vicinity of the port region, as shown.
AS-91-333

forward and back scattered higher order modal fields. In a similar manner, the zeroth

order wave of amplitude Bo incident from C > 0 generates reflected and transmitted
zeroth order waves of amplitudes S 22Bo and S2,Bo, respectively, and higher order

modal fields as well. The acoustic pressure field in region I (the waveguide section

< -1/2) can therefore be expressed as

00

p(y, ) = Aoe ik + SiiAoe- j k + Si2 Boe - jk 4- Z: A,, cos(k, ,y)ejk_ ,4 ,

n=1

where the various wave numbers are defined as

k,,y = nir/b,

k,, =- k,] I

and

k = w/co.

Because the analysis is restricted to frcquencies below the cut-on frequency of the

n = 1 mode, the axial wave number is imaginary for all but the zeroth order mode:

k,,( = ±jIk,,,I for n > 1.

terms, Sj, is the amplitude of the wave in region i due to a wave of unit amplitude incident upon
the scatterer from region j.
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The field in region I is therefore
00

p(y, ) = Aoe k
1 + (SnAo + S,2Bo)e- jk + > A,, cos(k,,,.,y)eIkn ,4V. (2.21)

By similar reasoning, the field in region II (the waveguide section > 1/2) is
00

p(y, ) = Boe - k + (S 2,Ao + S 22Bo)e jk" + E B,, cos(k,,yy)eIkC l .  (2.22)
n=1

The field in region III (the side branch) can likewise be written as the sum

p(y, ) = Sb(Ao + Bo)elkd2cos(k(y + d))

+ C 2 cos(k,( -l/2)) cosh(k,(y + d)) (2.23)

n/=)) cosh(knyd)

where

k= 4  -or/1,+ ]

n~b =Y 0(/)2 -~

and Sb is the coefficient of scattering into the side branch.

The Zeroth Order Approximation

The zeroth order approximation is that under which the system can be said to

behave as though the zeroth order mode were the only mode present. For frequencies

significantly below the cut-on frequencies of the higher order modes of the two guiding

structures (the waveguide and the side branch), the evanescent field is confined to

the port region. The evanescent modes will extend some distance into the waveguide

on either side of the side branch and into the side branch itself (see Fig. 2.2), but the

only extended field is the zeroth order field. The evanescent field is simply a localized
perturbation to the zeroth order field and has no consequence with respect to the

global behavior of the system.

One of the assumptions made in writing the solution in the form of Eqs. 2.21,

2.22, and 2.23 is that the fields incident upon the side branch are zeroth order. In

order for this to be true, the evanescent fields generated at each side branch must

decay to a negligibly small amplitude over the distance h. Since the first higher order

mode has the most gradual attenuation of all the evanescent modes, the requirement

is that the n = 1 mode be strongly attenuated over the distance h

e- [(7rlb)1- (-/l coY2 ' h < 1.

An equivalent statement is that the characteristic length associated with the decay of

the evanescent field, i.e., [(r/a)2 - (w/c)2] - /2, must be small compared to h. Such

a requirement leads to the frequency constraint

W < (co/h)[(arh/b)2 - 111/2. (2.24)
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Under this constraint, the system can be treated as a one dimensional system: a

transmission line loaded with a periodic array of scatterers.

Although Eq. 2.24 is all that is required to treat the system as one dimensional,

the derivation of the scattering matrix elements is much simplified if we make another
zeroth order approximation, this time applied to the propagation of waves in the side

branches. The field incident upon the port region from the side branch must be

effectively zeroth order. For the side branch, the characteristic length associated with
the decay of the lowest order evanescent field must be small as compared to 2d, the
"round trip" length of the side branch. The corresponding frequency constraint is

w < (o/2d)[(21rd/l)2 - 1]1/2. (2.25)

It should be noted here that another low frequency constraint will need to be

imposed when we consider the validity of the theory as it applies to a real periodic

waveguide. The analysis thus far has all been under the assumption that the wave-

guide is effectively two dimensional. While this assumption is valid for the model

waveguide (i.e., the ideal, mathematically defined waveguide), the real waveguide

that the measurement is to be performed in will certainly have minor imperfections

and not be perfectly invariant along x. These imperfections will lead to the excitation

of higher order modes in x which have a structure -, cos(mirx/a). To ensure that

these modes decay to a negligible amplitude over the distance h, we require

w < (co/h)[(7rh/a)' - 111/2. (2.26)

2.2.2 The Dissipative Case

In the dissipative case the system is much more complicated than the nondissipa-

tive system and does not reduce to a simple wave equation. A full three dimen-

sional dissipative solution will not be shown. Instead we assume that the same

argument used in the nondissipative case is valid to justify the use of the zeroth

order field only. That is, we assume that when w < (co/h)[(2rh/a)2 
- 111/2 and

w < (co/2d)[(2ird/l)2 - 111/2, the evanescent higher order modes are simply local-
ized perturbations to the zeroth order field and nced not be accounted for.' Wc are

therefore left with tile task of finding the zeroth order solution in each of the guiding

structures (the waveguide sections and the side branches), each of which are simply

rectangular waveguides.

51n the nondissipative, steady state case the evanescent modes, once established, exist entirely
independently of the zeroth order field. There is no energy expenditure involved in maintaining the
evanescent modes. In the dissipative case, however, the evanescent modes do dissipate energy, and
represent an energy sink to the zeroth order field, which maintains their level. We assume that such
a modification to the zeroth order field losses, particularly at low frequency where the evanescent
modes have very little spatial extent, are negligible.

18



An elegant way of finding the zeroth order solution of the dissipative system is
the modal field method (Pierce, 1981). The dissipative wavefield is decomposed into

three component fields or modes: an acoustic mode, a vorticity mode, and an entropy
mode. The field variables associated with a mode are subscripted with ac, vor, or
ent, for acoustic, vorticity, or entropy mode, respectively. Each mode is governed

by a partial differential equation that is derived from the the dissipative system of
equations (Eqs. 2.2-2.6). The solutions of the three modal fields then sum to make

up the total field. The method is only outlined here; the interested reader is referred

to the detailed treatment in the book by Pierce (1981).

The equations governing the acoustic, vorticity, and entropy modes are

V 1 + + (' 1 K/Cp a3Pac - O, (2.27)

4a2 cZL3 poco oo t

V 2Uvor - UOP 8uor = 0, (2.28)

and

V2Set OCp = 0, (2.29)n at
respectively. The acoustic mode is governed by a wave equation that incorporates

losses which, for small losses, are proportional to w2, which is typical of free field
propagation in a thermoviscous fluid. The vorticity and entropy modes are governed

by diffusion equations. The modes are independent except at the boundaries, where

they are coupled; the acoustic mode acts as a source for the vorticity and entropy

modes. Because the vorticity and entropy modes are governed by diffusion equations,

they are confined to the vicinity of the source (the boundary), where they represent

the modifications to the acoustic mode that make up the thermoviscous acoustic

boundary layer. It should be noted that all the field variables of a particular mode

can be found in terms of the field variable appearing in the equation for that mode.

As an example, from Pa, alone we can find s,,,, uac, Ta,, and Pa.. This is likewise true

for the vorticity and entropy modes. The total field can then be found by summing

the component modal fields:

P = Pac + Pvor + Pen,

U = Uac -+ U,,r + Ue,

and so on. One interpretation is that the acoustic mode drives the other two modes,

which in turn have the appropriate structure to ensure that the total field satisfies

the boundary conditions.

The modal formulation of the dissipative systerm of equations makes evident the

two pathways by which acoustic energy is lost. One way is through the so called
classical or w2 free field losses which occur independently of boundaries. This loss
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pathway is described by the acoustic mode alone; the equation for P.c is lossy and
sac # 0 (entropy is generated by the acoustic mode alone). The other loss pathway
is the "feeding" of the vorticity and entropy modes by the acoustic mode at the
boundary. For a broad frequency range of interest, the latter loss pathway dominates

the former, which can therefore be neglected.

The field is, except for the losses associated with the boundary layer, well

described by the acoustic mode alone. The other modal fields represent modifica-
tions to the acoustic modal field only in the very near vicinity of the boundary, but
are responsible for the dominant loss mechanism. It turns out that, for a wave prop-
agating in the plane wave mode of a waveguide of given hydraulic radius, the losses
associated with coupling to the boundary layer can be incorporated into the acoustic
mode. The resultant field, which is found by a variational technique, is of the same

form as that in the lossless case but the zeroth order wave number becomes

k= w/co +(1 1/2R ('~ +" (-y -1 1Kf /2,'2 (2.30)
(I + j)12RHoc ] '

where RH is the hydraulic radius of the guiding structure and the free field (w2) losses
have been considered to be negligible compared to the boundary layer (w1I/ 2) losses.
This dispersion relation, up through the first term on the right hand side, is identical
to that for the lossless case (k = w/co). The last term, which is complex and therefore
introduces both losses and dispersion, is associated with the thermoviscous acoustic
boundary layer. The range of validity of Eq. 2.30 is given by

4 
-11 1/3

R « 0« < W < 2 (2.31)

a result from Pierce (1981).

2.2.3 Linearly Independent, One Dimensional Solutions

At this point it can be shown that both the dissipative and nondissipative systems,
under the frequency restrictions thus far compiled (Eqs. 2.24, 2.25, and 2.31) have two
linearly independent solutions. Although we expect a one dimensional wave system
to have two linearly independent solutions, the introduction of scatterers makes the
system more complicated and worthy of discussion.

The most straightforward way to understand the types of solutions to expect is
to consider the physical system as being a one dimensional wave system (i.e., a trans-

mission line) that is loaded with a periodic array of scatterers. The solutions are
composed of forward and backward travelling waves in caci cell, as shown symbol-
ically in Fig. 2.3. The amplitudes of the forward arid backward travelling waves in
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neighboring cells, however, must be related as determined by the scattering matrix

associated with the intervening scatterer.

fne jiznh) f.,1 eJk(z'(n+l)h)

gnei-k(znh) gn,1 e -jk(z.(n+l)h)

n th cell n+1 th cell

FIGURE 2.3
The zeroth order waves in the waveguide sections on either side of a

scatterer.
AS-91-334

Consider the case wherein the complex amplitudes of the forward and backward
travelling waves in a cell of the structure is known. The amplitudes of the forward and

backward travelling waves at the center of the nth cell are f" and g, respectively. The

corresponding amplitudes in the center of the neighboring cell, the (n + 1)th cell, are

f,+l and gn+i. The wave amplitudes in the n th cell at the scatterer are then fne jkh/2

and gne - ,kh/ 2 , and those in the (n +. 1)1h cell at the scatterer are f+le- j kh/ 2 and

g,,+iej kh/ 2. The scattering relations, which relate the incoming and outgoing waves

amplitudes at a scatterer, are

gne-ijk h/2 [S11 S12] [ fneikh/2(

fn+ge+kh/2 S21 S22 Jgneikh/2] (2.32)

Solving for fn+l and gn+i, we find

[:+,] = I [.I~fkikh -s k g] (2.33)

where ISI is the determinant of the scattering matrix. The matrix in Eq. 2.33, which

relates the travelling wave amplitudes at the cell centers on either side of a scatterer,

is referred to as a tranmission matrix (Ramo, Whinnery, and Van Duzer, 1965).
Given the amplitudes of the two travelling waves in a single cell, then, we can find

the amplitudes of the two travelling waves in the cells neighboring that cell. In
principle, we can continue this process until the wave amplitudes (and therefore the

wave functions) in all cells of the structure are determined. The wave function of the

entire system can therefore be exprcsscd in terms of only the two constants f,, arid

gn. These two constants arc the two arbitrary constants associated with the general

solution to a system that has two linearly independent solutions.
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The Two Linearly Independent Solutions

The general solution function described above in terms of the two constants fn
and g, can be considered to be composed of a linear combination of two component

functions, m(')(z) and m(2)(z). The conditions under which m(1)(z) and m(2)(z) are
linearly independent is investigated by calculation of the Wronskian. It is shown that

a very general class of pairs of functions are linearly independent.

The pair of functions mO)(z) and m(2)(z) are defined in the nlth cell as

mM ~(Z) = Mn()ejk(z-nh) + Nn~l) e -k(z-nh)

m( 2)(z) - Mt 2)ek(znh) + N, 2)eik(znh).

Outside of the nt" cell, the functions are defined by successive applications of the
transmission matrix as in Eq. 2.33. The Wronskian of m(l)(z) and m(2) (z) is

W = 2jk [N,(,' )M2 - M)N {,2)]

The functions are linearly independent if the Wronskian is nonzero (Arfken, 1985),
which is true if

NY,') N.2 )

In other words, m(1)(z) and m(2)(z) are linearly independent as long as they are not
the same function.

2.3 The Floquet Theorem and the Bloch Wave Condition

In this section it is shown that because the mathematical system is translation-
ally invariant and has two linearly independent solutions, it is a candidate for the
application of th' Floquet theorem.6 The Floquet theorem is applied to the system
to show the existence of two very unusual linearly independent solutions: the forward
and backward travelling Bloch wave functions.

We begin with the consideration of m(1 )(z) and m(2)(z), an arbitrary pair of
linearly independent solution functions. Because m(')(z) and M(2)(z) are li;warly
independent, we are able to express P(z), an arbitrary solution, as the linear super-

position

F(z) = f3,rn1 )(z) -t-82,rn'21)(z), (2.34)

6 Proofs of the lFloqueL theorem, as it applies to second order ordinary differential equations with
periodic coelficients, can be Found in the books by Whittaker and Watson (1952) and Ince (1956).
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where 1 and /32 are constant coefficients. it is evident that I#), a column vector

composed of 61 and 12, is a state vector. The state vector is simply the projection

of the solution r(z) onto Im(z)), the linearly independent basis vector consisting of
mOl) (z) and m(2 ) (z). As is seen in Eq. 2.34, the arbitrary solution r(z) is simply the

inner product of the state vector and the linearly independent basis vector:

r(z) = [ 21 z) = ( m(z). (2.35)

Because the mathematical system is invariant under translations of h along z,

m(') (z ± h) and m(2) (z + h) are also solutions to the system. These solutions can also

be expressed in terms of the basis:

m(1)(z + h) = aim(')(z) + a12m(2)(z)

m(2)(z + h) = a2 lm(')(z) + a22m(1)(z), (2.36)

or equivalently,

Im(z + h)) = &Im(z)) (2.37)

where the aij's are constant coefficients.

We now look for the existence of a solution which has the property

r(z + h) = sr(z), (2.38)

where s is a constant. With the introduction of T, a translation operator, Eq. 2.38

becomes
T7F(z) = sF(z), (2.39)

which is the eigenvalue problem associated with the operator T. We next use Eq. 2.36

to expand P(z + h) in terms of m(')(z) and m(2)(z):

r(z + h) =/ 1m(1)(z + h) +/7 2 M(2)(Z + h)

=01 [a, Iml)(z) + a 2m(2)(z)] + 12[a 2 m(')(z) + a22M(')(Z)

= al,/ + a2,1 2)m(')(z) + (@123 + a220 2)m( 2)(z). (2.40)

In the state vector formulation, Eq. 2.40 is

T7r(z) = r(z + h) = (f3lm(z 4 h)) = (l1&lm(z)). (2.41)

Equations 2.37 and 2.41 both show that the operation of multiplication of a state
vector by the matrix & is a translation operation. In other words, the equivalent

of the translation operator T in the state vector formulation is the matrix &. The

substitution of Eqs. 2.35 and 2.41 into Eq. 2.39 results in a state vector formulation

of the eigenvalue problem:

T(flIr(z)) = (ldilm(z)) = S(fl1M(z))
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or

&I0) = sIP6). (2.42)

As is standard, we rewrite Eq. 2.42 in the form of a homogeneous equation,

(&- sl)If3) = 10), (2.43)

where I is the identity matrix and 10) is the null vector. A nontrivial solution to
Eq. 2.43 is guaranteed by the condition

I& - s1= 0,

which is satisfied by two values of s, the eigenvalues sP) and s(2). Each of these

eigenvalues is associated with an eigenvector, given by the equations

2- s( )I) = 10).

In the spatial function representation, the eigenvectors correspond to eigen-functions,
defined by

F(z) = (01)Im(z))

G(z) = (f(')lIm(z)).

The functions F(z) and G(z) are simply two linearly independent solution func-
tions which we have found in terms of m(l)(z) and m(2)(z). The interesting property

exhibited by the "new" basis composed of F(z) and G(z) becomes evident when the
functions are operated on by the translation operator. The equivalent of Eq. 2.37 for

this basis is [F(z +h) 1 -r 0 ] F(z)1
G(z +h) J 0 3(2) [G(z) J(2.44)

We see that with this basis, the translation operation has a canonical form.

An alternative form of the eigenvalues, appropriate in the context of wave prop-

agation, is

$(I) eJq+
h

~(2) -h
(2) e- (2.45)

where Lhe constants q± are the (generally complex) Bloch wave numbers or Bloch

spatial frequencies. The translation relations become

F(z -1 h) = c,'+hF(z)

G(z + h) = eJq-hG(z). (2.46)

Equations 2.46 are referred to here as the Bloch wave conditions, and the linearly
independent wave functions which meet these conditions arc called Bloch wave func-

tions.
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2.4 Bloch Wave Functions

Bloch wave functions can be represented in a variety of functional forms. The
various functional representations make evident the various unusual properties of
Bloch waves. The two common forms of the Bloch wave function, here called the

standard representation and the travelling wave spectral representation, are most
often seen in work by solid state physicists and microwave engineers, respectively. A
third functional form, here referred to as the convolution representation, is thoulit

by the author to be a valuable alternative expression of the Bloch wave function, and

is therefore included in this section.

2.4.1 The Standard Representation

A pair of wave functions which satisfy the Bloch wave conditions (Eq. 2.46) can
be written

F(z) = . (z)ejq+:

G(z) = (2.47)

where c+ (z) and Fq_. (z) are periodic with the periodicity of the structure:

(D+ (z + h) 41,+ (z)

IDq_-(z + h) = 4q(z). (2.48)

In this representation, here called the standard representation, the Bloch waves are

seen to be one dimensional travelling waves of spatial frequency q± that are modulated
in amplitude and phase in a periodic manner by the functions 4 q (z). The functions
4D,, (z), which are generally complex, are referred to here as the periodic modulation

functions.

The two Bloch wave functions F(z) and G(z) can be seen to be very simply related
to one another by considering a third solution function. Because the waveguide is
invariant under reversal of the axial coordinate z, a third function

H(z) = 4 ,,+ (_Z)e-j+,

which is simply F(z) under the symmetry transformation z : -z, must also be a

solution. Under a translation operation. H(z) becomes

H(z + h) = cf,.-+"UI(z),

which is the Bloch wave condition for G(z) with q- = -q+. The Bloch wave function

G(z) is therefore simply a backward travelling version of F(z). Stated mathematically,
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(D,- (z) = Dq+ (-z) and G(-z) = F(z). We can therefore simplify the Bloch wave

condition to

F(z + h) = F(z)e
+j qh

G(z + h) = G(z)e - j h, (2.49)

where q = q+ = -q-. The Bloch wave functions then become

F(z) = CD(+z)e j "

G(z) = q(-z)e - j qz. (2.50)

In most of the analysis that follows, only the forward travelling Bloch wave F(z) is

considered. The backward travelling Bloch wave is identical to the forward travelling

Bloch wave (they just propagate in opposite directions) so two analyses would be

redundant. It is worth noting that up to this point, the axial inversion symmetry

of the structure had not been exploited. A periodic structure with asymmetric cells

would still have the two Bloch wave function solutions of Eq. 2.47, but these forward

and backward travelling wave functions would not simply be reversed copies of one

another.

The standard representation makes evident several features of Bloch waves in

general which are noteworthy:

" Because the periodic modulation function q(z) has the periodicity of the struc-

ture, the complex exponential (ej qz) component of the Bloch wave function

alone determines the net changes in phase and amplitude from a position in
one cell to the corresponding position in a neighboring cell. The phase change

will be determined by Re{q} and the amplitude change by Im{q}. If the wave

function were sampled at intervals of h, the result would be identical to that of

sampling the travelling wave e

" Whereas the exponential component of F(z) represents net wave function changes

from cell to cell, Fq (z) represents the wave function behavior within a single

cell. The exponential component represents a wave with phase that varies lin-

early with distance and amplitude that varies exponentially with distance. The

4'q(z) cormponent represents periodic deviations in phase and amplitude from

the linear and exponential changes described by the exponential component.

" While 4Dq(z) is periodic, F(z) is generally aperiodic. It is only for the discrete

set of degenerate cases wherein the Bloch wavelength and the structure period

are commensurate that the wave function is periodic.
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2.4.2 The Travelling Wave Spectral Representation

In the standard form, the Bloch wave function, which is generally aperiodic, is

expressed as the product of the two periodic functions 4q(z) and ejqz . Because 4q(z)

is periodic, it can be expressed in terms of a Fourier sum of discrete spatial frequency

components:
+00

Itq(Z) E Ce 2xfnz/h, (2.51)
n=-oo

where

Cn 1 Jh/2 (Dq(z)e-2rjnz/hdz. (2.52)

The Bloch wave function can therefore be expressed

+-co

F(z)=- d3 G~ 2 -h
fl. -00o

+00

E C . ~+1nhz (2.53)=-

which is called the travelling wave spectral representation of the Bloch wave functfor.

It is readily seen that Eq. 2.53 is a sum over a discrete travelling wave spectrui ,

all components of which have the same temporal frequency (W), but different spatial

frequencies (q + 21rn/h). The phase velocity associated with the nth travelling wave

spectral component is seen to be
tLI

cn = (2.54)

q + 21rn/h(

In the literature of periodic media, the travelling wave spectral components at..

often referred to as space harmonics (Ramo, Whinnery, and Van Duzer, 1965). ;

is interesting to note that because the range of the sum index n in Eq. 2.53 includ

negative integers, half of the travelling wave spectral components have negative phas.

velocities. For this reason periodic structures are sometimes referred to as "backwar.

wave structures" (Ramo, Whinnery, and Van Duzer, 1965).

2.4.3 The Convolution Representation

The apparent simplicity of the Bloch wave function in the concise, elegant, stan-

dard form (Eq. 2.50) is apt to be misleading. In fact, Bloch wave functions can be

enormously complicated functions with a somewhat noise-like appearance owing to
their general aperiodicity. A third exprcssion of the I3loch wave function which bears

a more intuitive relationship to the form of tile Bloch wave can also be derived.
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We first define the function that will be referred to as the cell wave function:

0 z < -h/2
i(z)= F(z) -h/2 < z < h/2

0 h/2 < z. (2.55)

The cell wave function is simply the wave solution in a single cell of the periodic struc-

ture. We next use the Bloch wave condition (Eq. 2.49) to define the wave function
anywhere in the structure in terms of its value in the cell defined by -h/2 < z < h/2:

F(z) =
OWz = OWz * 6Wz -h/2 < z < h/2

V;(z -h)e jqh =iP(z) * b(z - h)e qh h - h/2 < z < h + h/2 (2.56)

?(z - nh)ej qh = -O(z) •(z - nh)einqh nh - h/2 < z < nh + h/2.

As is conventional, the asterisk (*) denotes the convolution operation as defined by

a(x) * b(x) = a(x - y)b(y)dy. (2.57)

Because each shifted cell wave function is zero outside of its associated interval, the

Bloch wave function can be expressed as the infinite sum of these functions. The
Bloch wave function can therefore be expressed in the alternative form

+00

F(z) = ip(z) * E b(z - nh)e .n qh (2.58)

which is simply the cell wave function convolved with a phase weighted Shah or

lattice function. The convolution of V(z) with each phase weighted delta function in

the lattice simply places a phase weighted copy of O(z) at each lattice site. The Bloch
wave function as expressed in Eq. 2.58, which will be referred to as the convolution

representation, shows explicitly that the Bloch wave function is simply a string of

repetitions of v(z) at intervals of h with a cell to cell shift in phase of e qh . That is,

aside from factors of the constant cq", the Bloch wave function is simply a string of

identical cell wave functions.
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3. PROPERTIES OF THE BLO(-.. WAVES

In this chapter we derive expressions for some of the parameters which characterize

Bloch waves. We begin with a derivation of the Bloch dispersion relation and an
examination of the physical origins of some of the characteristics of the dispersion.

The Bloch impedance function and explicit expressions of the Bloch wave fuin ion are
derived. The multivalued nature of the dispersion relation is related to the travelling
wave spectral form of the Bloch wave function. Finally, the consequences of truncation

of the periodic structure are considered and Bloch wave reflection coefficients are

derived.

3.1 Bloch Wave Dispersion

In order to derive a dispersion relation we exploit what is certainly one of the most

significant attributes of the structure of Bloch waves: the analysis of wave propagation
in an infinite periodic structure can be reduced to the analysis of wave propagation
in a single cell of the structure. As is made evident by the convolution representation

of the Bloch wave function, the infinite structure wave function can be expressed in
terms of the wave function associated with a single cell of the structure.

A variety of methods have been employed in Bloch wave dispersion analyses

(Collin, 1960; Slater, 1950; Kittell, 1986; Gasiorowicz, 1974). In each method, how-
ever, the dispersion relation is derived by imposing the same condition: the Bloch
condition and the scattering relations must be consistent. That is, both the Bloch

condition and the scattering relations place constraints on the relationship between
the fields at the centers of neighboring cells. In order for these two constraints to be
consistent with one another, a particular dispersion relation must exist. In the analy-

sis presented here, which parallels that of Achenbach and Kitahara (1987), the Bloch

condition is imposed in the form of boundary conditions. These boundary conditions,
which are derived from the Bloch conditions, are applied at the centers of neighbor-

ing cells, as shown in Fig. 3.1. A general travelling wave solution in the vicinity of
the intervening scatterer is expressed in terms of the S matrix elements as shown in
Fig. 2.2. The application of the boundary conditions to this general travelling wave
solution specifics the Bloch wave number in terms of the S matrix elements and k, the
ordinary wave number. The S matrix elements associated with a rigidly terminated
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side branch are found and substituted into the general dispersion relation. The result

is the dispersion relation for our system. Features of the dispersion relation are then

related to the various physical dimensions of the periodic structure.

z=nh z=(n+l)h

FIGURE 3.1
The dispersion analysis cell is centered on the side branch between the

nth and the (n + 1)th cells. The Bloch boundary conditions are applied at

the ends of the cell, at z = nh and z = (n + 1)h.

AS-91-335

3.1.1 The Bloch Boundary Conditions

The Bloch wave condition (Eq. 2.46) specifls the relationship that exists between

the wave function at a point in the structure aid that at a point one structure period

distant. Such a condition is in effect a boundary condition (similar to a periodic

boundary condition) which can be used in the analysis of the intervening section of

the structure. A similar boundary condition can be derived for the gradient of the

wave function. The standard representation of the Bloch wave function (Eq. 2.50) is

a convenient functional form to use in such a derivation.

The evaluation of the Bloch wave function at z = nh and z = (n + 1)h yields

pWz=L = cI~(nh)e j qnh, (3.1)

and

p(z)z=(,,+i)h = (Iq((n + 1)h)eJ1(?+i)h

= 4q(nh)e(n+)h, (3.2)

respectively. Combining Eqs. 3.1 and 3.2, we find

p(z)lz=(,,+I)h = p(z) z=,h,, j ql ,  (3.3)
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which is the first Bloch boundary condition. Evaluation of the pressure gradient at

z = nh and z = (n + 1)h and introduction of Eq. 2.48 yields

dp(z) I [ d4q(Z) ejqz + jq 9zq )ei,- ]

dz z=nh I dz Ize =nh

r [dq(z) I + jqc1(nh)l eiqnh (3.4)

-- z= nh

and

dp(z) 0 W jdzq(z) jqZ +

dz z=(n+l)h . dz I qq(z)eqz z=(n+l)h

r- [d4.(z)I +jqcD(nh)] (3.5)

respectively. Combining Eqs. 3.4 and 3.5 results in

dp I = p- I ejqh (3.6)

dz=(n+i)h d nh

which is the second Bloch boundary condition. It is interesting to note that the Bloch

boundary conditions are simply phase shifted periodic boundary conditions on both

the acoustic pressure and its gradient.

3.1.2 The Dispersion Relation for an Arbitrary Scatterer

The dispersion relation is found by imposing the condition that the field which,

by definition, exists in the vicinity of the scatterer must meet the Bloch boundary

conditions. The field in the nt h and the (n + 1)t" cells can generally be written as

) fneikz . + gne - j kzn -h/2 < zn < h/2
pWz) = fn+le j kz,+1 + g,,+le - jk-'n+ -h/2 < z,+ 1 < h/2,

where we define the shifted axial coordinate z,, = z - mh which is centered on the

mth cell. This field is illustrated in Fig. 3.1. Equation 2.32 can be used to express gn

and fn+l (the scattered waves) in terms of fA and g,,+, (the incident waves), and the

field can be written

p) =

{f,,elkzn + (Slie khf,& + S12 cJkhglg+ 1) (e
- j k zt -h/2 < z,, < h/2

(S21e~khn -+-S22 eikhg,,+1)Cjkz""j" 1.,+C - ' '  -h/2 < z,,+, < h/2.

(3.7)
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The substitution of this solution into the Bloch boundary conditions leads to the

system

[S21 - eikj'Y - S1 1 eiqh S22 + e 3 jh - S12 2 jih f r
S21 - e-jkhejqh + Sll

e
qh S 2 2 - e-'h + S 2 e3qh gS+i= 0J (3.8)

Because Eq. 3.8 is a homogeneous system, it has a nontrivial solution if and only if

the coefficient matrix is singular:

det S21 - - S Ie j qh S22 + e - jkh - S12eqh .0
1 S 21 - e -jhe

j qh + SlIqh S 2 2 - e
-

jkh + S 1 2 1qh - (3.9)

This requirement results in a dispersion relation for a general scatterer:

$12ej gh + 2 1e - j qh + (S1 S22 - S 12S 21)e kh _ e - jkh = 0, (3.10)

or

S12e j h + $2,e - jqh + ISleJkh - e- kh = 0, (3.11)

where ISI denotes the determinant of the scattering matrix.1

Symmetric Scatterer

If the scatterer is symmetric under reversal of the axial coordinate, then Sn1 = S 22

and S12 = S 21 (the reflection and transmission is the same for waves incident from

either side), and Eq. 3.11 simplifies to

2S12 cos(qh) + (Sf1 - S12)e' - e - kh - O.

Discrete Scatterer

If the axial extent of the scatterer is very small compared to a wavelength, the

scatterer is effectively symmetric. In addition, the pressures on either side of the

scatterer are approximately equal, resulting in the further simplification S12 = 1 + S 11.
In such a case the dispersion relation becomes

cos(qh) - e -k h  2sin(kh) = 0.

Impedance Load Scatterer

The characteristic acoustic impedance of a uniform waveguide of cross sectional

area A, is defined as Z0. = poco/A,,, where the subscript a identifies the impedance

1If the miedium is reciprocal (as well as isotropic), then, by the reciprocity principle, S12 = S2

(Collin, 1960).
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as being acoustic. If the scattering is caused by the loading of the waveguide by the

shunt acoustic impedance ZLa, then S 12 = (1 + Zo,/2ZL,) -1 (Kinsler, FRey, Coppens,

and Sanders, 1982). The dispersion relation then becomes

cos(qh) - cos(kh) + 2Zo sin(kh) = 0. (3.12)

3.1.3 The Dispersion Relation and the Physical Origins of its Structure

The dispersion relation for the waveguide of this study can be found by substi-

tuting the expression for the acoustic impedance of a rigidly terminated side branch

ZLa = j poco/A,
tan(k.,b/) '

into Eq. 3.12. Note that in place of d, the physical depth of the side branch, we have
substituted the end corrected length d = d + ad. The additional length Axd corrects
for the inertial load on the side branch field due to the mass of the fluid in the port

region. The end correction derived by Morse (1976) for a circular opening of radius a
is A d = 8a/3ir. Using the side branch width I in place of the diameter of the circular

opening we get

a = d + 41/37r,

which is the end correction used in this study. The resultant dispersion relation is

cos(qh) = cos(kh) - - tan(kbd) sin(kh). (3.13)
2A,

In order to investigate the relationships between the physical dimensions of the

periodic structure and the resultant characteristics of the dispersion relation we begin
by casting the dispersion relation in nondimensional form. Several dimensionless para-
meters are then identified and related to dispersion characteristics by direct analytical

reasoning and graphical analysis. Dispersion curves for several combinations of values

of the parameters are shown in this section with the hope that the effect of variation
of these parameters is straightforward enough to allow the reader to generalize later

results, which will be presented for a single set of parameters only.

It should be noted here that the Bloch dispersion relation is a multivalued disper-
sion relation. In order to evaluate the Bloch wave number, an inverse cosine function

must be evaluated,

qh = cos- [cos(kh) - (A,/2A,,) tan(ksbd) sin(kh)], (3.14)

which is a multivalued function. The branch of the dispersion relation shown in plots

here is referred to as the primary branch. The primary branch is that which, in the
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uniform waveguide limit (d -, 0 or A. --+ 0) degenerates to the nondispersive relation

qh = kh. As was pointed out in Chap. 1, such a presentation scheme is referred to
as the extended zone scheme. The choice of the primary branch also allows us the

graphical interpretation of the dispersion curve: the slope of the line from the origin

to a point on the dispersion curve is the phase velocity associated with that point on

the curve, and the slope of the dispersion curve at that point is the group velocity

associated with that point. It should also be noted that the branch shown is the

primary branch associated with the forward propagating Bloch wave.

Nondissipative Dispersion

In order to make evident the parameters involved, we write the dispersion relation

in a form which explicitly shows the frequency dependence. In the nondissipative case,

k = ksb = W/co, which can be introduced into Eq. 3.13 to result in

cos[qh] = cos[wh/co] - 1/2[A,/A,] tan {[wh/co][d/h] } sin[wh/col, (3.15)

where the dimensionless quantities appear in square brackets. In addition to the

dimensionless Bloch wave number (qh) and frequency (wh/co), there appear the two
geometrical parameters a/h and A,/AW, which are normalized side branch depth and

area, respectively.

We begin the investigation of the significance of the nondimensional parameters

with the definition of the functions v and w:

w 1 tan (wh/co)a] sin(wh/co)

v = cos(wh/co) +

The dispersion relation can now be written

qh = cos- '[v].

Because wh/co is real, v is also real. The inverse cosine of a real number is real if the

argument is bounded by ±1 and complex if the argument is larger than 1 or less than

-n-r + j cosh - ' (v) (n even) 1 < v

qh = cos-'(v) -1 < v < 1 (3.16)

nir + jcosh-l'(v) (n odd) v < -1

Because stopbands occur when qh becomes complex, the condition lvi > I is the

condition for the occurrence of a stopband.

The conditions under which Ivi > 1, the stopband condition, can be found by

investigating the behavior of w. Because the cos(wh/co) component of v is bounded
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by ±1, qh becomes complex only when w is able to "push" cos(wh/co) past ±1. The

function w, however, is generally quite small (easily bounded by ±1) except in the

region of the tangent singularity. The two situations in which lvi is likely to become

larger than 1 and cause the occurrence of a stopband are therefore:

" When the nondimensional frequency is in the vicinity of kh = nir (n an integer).

Since cos(nir) = ±1, w can easily cause lvi to become greater than 1. Because

the magnitude of the function w is modulated by the parameter A,/A,, large

values of this parameter increase the overall size and strength of the stopband,

but not the location of the stopband. Such a dependence on A,/A, makes

intuitive sense as increasing the side branch area relative to the waveguide area

increases the reactive load on the waveguide without affecting the frequency

dependence of the load.

" When the nondimensional frequency is in the vicinity of the tangent singularity:

wh/co = (n + 1/2)ir/(d/h) with n an integer.

The first of the two stopband conditions, which results in stopbands near wh/co =

nlr, is characteristic of wave propagation in periodic media (Slater, 1950; Gasiorowicz,

1974; Kittel, 1986; Brillouin, 1946). These stopbands correspond to the fitting of an

integral number of half wavelengths into a single cell of the structure, which is simply

the one dimensional Bragg condition. The stopbands near wh/co = nir are due to

the periodicity of the structure, and will be referred to as the structure periodicity

stopbands or the Bragg stopbands.

The second of the stopband conditions, which results in stopbands in the vicinity

of wh/co = (n+ 1/2)ir/(d/h), is not typical of wave propagation in periodic media (see

Fig. 1.1). The set of frequencies specified by the condition wh/co = (n + 1/2)Ir/(l/h)

is simply the set of resonance frequencies of the side branch.' These stopbarids will

be referred to as the side branch resonance stopbands.

We see from this analysis that As/A,, and d/h are parameters which gauge the

overall strength of the stopbands and location of tile side branch resonance stopbands,

respectively. Figure 3.2 shows the real and imaginary parts of the nondimnensional

Bloch wave number (tile dispersion arid attenuation) for three values of A,/A,, at

a fixed value of d/h. Recalling that stopbands occur when ivj > 1, we see that

the effect of increasing A,/A,,, is as expected: the stopbands widen and increase in

strength with no shift in location. Note the unusual structure of the side branch

resonance stopband: In{q} is cusped and Re{q} is discontinuous at the side branch

'Because a single side branch in an otherwise uniform waveguide causes total reflection of an
incident wave if the frequency is a resonance frequency of the side branch, it is not surprising th.it

a stopband occurs near such a frcquer.cy. In fact, because there is zero transmission across a single

cell, we expect In{q} cc at the side branch resonance frequency.
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FIGURE 3.2
Nondissipative Bloch wave dispersion. Shown are Re{qh} and -Im{qh} for

three values of the parameter AS/AU. at a constant value of d/h. The value

of A,/A,. determines the overall degree of loading of the waveguide by the

side branches and therefore tile overall magnitude of the periodic
structure effect. The sizes an' strengtIs o"fhe stopbands are affected by

changes in AS/A,,, but the locations of the stopbands are not. The ir and

2,r Bragg stopbands and the side branch resonance stopband are marked

Bf3, B2-, and SBR, respectively.

AS-91-336

36



-Im{qh} qh

2n -

.................

o ~ ...;- : -...... .......... .. ....... .

Cr

0~----------
L)

LL. - - - - - - - - -- - ------- 
- -

.2 p.

E
....... d.h=20/ 4

A5 /A.=1/2 -- d/11=23/64

-"Jh=28164

-7E 0 n 2n

Nondimensional Bloch Wave Number: qh

FIGURE 3.3
Nondissipative Bloch wave dispersion. Shown are Re{qh} and -Im{qh} for

three values of the parameter d/h at a constant value of A,/AW. Varying

dih shifts the frequency of the side branch resonance stopband and alters

the size and rength of th Brag wst.nphancis. The Bragg stopbands are

wider (in frequency) and stronger when the side branch resonance

stopband is near.
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resonance frequency. Figure 3.3 shows the dispersion and attenuation for three values

of d/h with a fixed value of A,/A,,,. We see that changes in d/h affect both the Bragg

and the side branch resonance stopbands. The location of the side branch resonance

stopband shifts when d/h changes, and the Bragg stopb.nds are strongest when the

side branch resonance stopband is nearby.

Dissipative Dispersion

When dissipation is present, the dispersion relation is, as might be expected,

much more complicated. In the nondissipative case we were able to investigate the

structure of the dispersion relation using mathematical reasoning. In the dissipative

case we are left with little more than the rather crude technique of graphing the

dispersion relation for a variety of parameter values.

We begin, as in the nondissipative case, by expressing the dispersion relation in

the frequency-explicit form. The dissipative wave number, as defined in Eq. 2.30, is

substituted into Eq. 3.13 to result in

cos[qh] = cos {[wh/co] + (1 + j)[w/w,]I/2[h/RH,]}

-1/2[A,/A,,,] tan {[wh/co] [c/h] + (1 + j)[IW/,, I1,2[aI/RHn]}

• sin {[wh/co] + (1 + j)[w/wp,]u/2[h/RHwI}. (3.17)

The frequency wa, defined as

2, ( 2 L 1/ + 1)Y JP 1/ ' (3.18)

is a frequency associated with thermoviscous losses, and R11 ,, and R11, are the hydraulic

radii of the waveguide and the side branch, respectively. In addition to those found in

the nondissipative case, we have three more nondimensional quantities: the frequency

w/w,,, and the two lengths h/IR,, and dIRII,.

At this point sevcral qualitative observations about the effects of dissipation on the

dispersion relation can be made. First, the fact that the dissipation terms (terms that

did.not appcar in Uhc nondissipattive dkpeisiozi relation) all vary as (w/w, imlies

that w ,, is the characteristic frequency which defines the scale on which dissipative

effects are measured. The other two nondimiensional parameters are h/R1t,,., which

is associated with propagation losses in the wavegifide sections and dIRJJ,, which is

associated with similar losses in the side branches. The nondimensional parameters

I /t I h
1?11,,. b uw
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and
a d +  - (3.20)

RH, I w'

each associated with losses in a particular guiding structure, are dependent upon
the length of the guiding structure as compared to its transverse dimensions. As is

evident in Eq. 2.30, acoustic boundary layer effects result in both dissipation and
dispersion, as they must to satisfy the Kramers-Kronig relations. We expect that the

dispersion effects associated with h/RH, and d/RH. will cause slight shifts in the
locations of the stopbands, as we found that the stopband locations are associated
with resonance conditions, which will be shifted in frequency with the introduction

of dispersion. The dissipative effects associated with h/RH and a/RH are more
difficult to analyze. We know that h/RH represents w 1/ 2 attenuation of the waves

in the waveguide sections, and therefore expect some associated attenuation of the
Bloch waves to result, but the functional behavior of Im{qh(w)} is difficult to foresee.

Likewise, dlRg, represents w1/ 2 losses in the side branches and is therefore associated
with a resistive component in the periodic load. Again, we expect that these losses
will result in attenuation of the Bloch wa~es, but the frequency dependence of the

attenuation is not obvious.

The effects of the parameters h/R,,, and dIRH, are investigated graphically
using constant values of AS/AW and d/h and varying the values of h/RH,, and d/RH,.

Figure 3.4 shows the imaginary component of tile dimensionless Bloch wave number

for d/RH, = 0 and h/R 1,,,=0, 5, and 10. The effect of h/RH,,, is to introduce a
roughly w 12 loss component in the passband Bloch wave number, which agrees nicely
with intuition. Figure 3.5 shows the imaginary component of the Bloch wave number

for h/R,, = 0 and d/RH,=O, 5, and 10. The fact that the effect of d^IRH, is most

pronounced in the vicinity of the side branch resonance stopband makes sense as the
acoustic field in the side branch has its greatest amplitude in the vicinity of resonance,
and can therefore dissipate more acoustic energy. It is interesting to note that a
nonzero value of al/R,1 , has no effect (i.e., Re{qh} = kh and Im{qh} = 0) at wh/c) =
ir, 21r. Evidently at these frequencies (longitudinal resonance), the acoustic field in

the side branch vanishes and the Bloch waves propagate at the uniform waveguide

phase speed.

Figure 3.6 shows both the dissipative and nondissipative dispersion curves for a

single set of parameters: dlh = .421, AS/A, = 3/8, h/R 1 ,, = 6.562, and d/R&., =
5.531. This set of parameters is, for reasons to be discussed in Chap. 4, the set

to which the experimental portion of this work is dedicated. Note that the only

significant effect of losses on the real component of the Bloch wave number is to

smooth out the cusped corners.

It should be riot .d at this pcoint that t hici arc two distinctly different varieties of

atteruation %.hich occur in the periodic % avegiidce. O e is the attenuation that occurs
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FIGURE 3.4
Bloch wave attenuation. Shown is Irn{qh} for three values of the

parameter h/R,,, with d/R, = 0, which is the case of lossless (reactive)

side branches but lossy waveguide sections. Varying h/R,,, adjusts the

amount of roughly w" 2' loss, the standard waveguide loss. The losses are

enhanced near both species of stopbands.
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FIGURE 3.5
Bloch wave attenuation. Shown is Imlqh} for three values of the

parameter dIR111, with h/R,,, = 0, which is the case of lossless waveguide

propagation but lossy (resistive) side branches. The effects of side branch

losses are most pronounced in the region of the side branch resonance

stopband, and are nonexistent at wh/co = nir.
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in the stopbands even in the nondissipative case. The other is the dissipative atten-

uation that is present at all frequencies but, owing to the magnitude of the dissipation

in this study, most evident at passband frequencies. The dissipative attenuation, as

was mentioned earlier, is due to thermal and viscous losses and is associated with

the generation of entropy and the dissipation of acoustic energy. The nondissipative

attenuation occurs in the absence of the entropy generating mechanisms and therefore

cannot be associated with any energy dissipation. The nondissipative attenuation is

very similar to the attenuation of evanescent modes in standard waveguides, which is

also a type of nondissipative attenuation. As will be seen in Sec. 3.2, the impedance

of the periodic waveguide at stopband frequencies, much like that cf the evanescent

mcdes in a standard waveguide, is reactive. For these reasons the two components of

the attenuation will be referred to as the dissipative and the reactive components.

The main thrust of the theoretical component of this work, the derivation and

discussion of the dispersion relation, is at this point complete. For this reason, further

theoretical results will be presented graphically for only the single set of parameters

listed above as the effects of adjustment of these parameters on the later theoretical

results will be quite obvious.

3.2 The Iterative Bloch Acoustic Impedance

In this section we derive the Bloch acoustic impedance, which is simply the acous-

tic impedance at a point midway between side branches. The technique employed is

similar to that used to derive the dispersion relation: we impose the condition that

the Bloch wave function be consistent with the conditions at the scatterer. In the

derivation of the dispersion relation, the Bloch wave condition was introduced in the

form of the Bloch boundary coniditions. which relate the field variable (and its gradi-

ent) in neighboring cells. Here, the Bloch wave condition is introduced through the

iterative impedance condition, which relates the acoustic impedance in neighboring

cells.

We begin by deriving the general Bloch impedance function for a waveguide loaded

periodically with an arbitrary scatterer characterized by the scattering matrix S,,.

From that result, more specific results are found for the case of a symmetric scatterer,

an arbitrary impedance load, and loading by a rigidly terminated side branch.
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3.2.1 The Iterative Acoustic Impedance

The acoustic impedance associated with Bloch waves is what is referred to as an

iterative impedance (Brillouin, 1946). Because the structure is invariant under trans-

lations of h, there is no discernible difference between the structure at one particular

point and at a corresponding point an integer number of structure per )ds distant.

In other words, because the structure has no preferred reference point, a quantity
such as the acoustic impedance must repeat with the periodicity of the structure.

The Bloch impedance is therefore referred to as an iterative impedance; one period
of the structure transforms the impedance back into itself. Stated mathematically,

the iterative impedance condition is

Za(z) = Za(z + h). (3.21)

The iterative impedance condition can be derived rigorously by generalizing the

results of Sec. 2 3. The Bloch wave condition can be written in terms of any of the

acoustic variables, including the acoustic pressure and the particle velocity

p(z + h) = p(z)eih

u(z + h) = u(z)e .

The impedance at a poiPt, z is, by definition

Z(z) =

and that at z + h is

p(z + h) p(z)ejqh
Z(z + h) - u\ + - =~~e~ Z(z).Z (z + h) = ejq

It is evident that the iterative impedance condition is an inherent property of Bloch

waves.

3.2.2 Impedance Analysis

The analysis begins with the definition of the travelling wave amplitudes at the

centers of the nt' and (n + 1)"h cells. Recall from Fig. 3.1 that f,, and g,, arc the

amplitudes of the forward and backward travelling acoustic pressure waves at z = nh,
while fn+l and g,,+, are those at z = (n I- 1)h. The acoustic impedance at z = nh is,

by definition,

Z.(rnh) = Zo. + ! 'I (3.22)
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and that at z = (n + 1)h is

Za (nh + h) = z_ fn+l + 9n+1 (3.23)
f.+- 9+1"

The acoustic pressure fields at z = nh and z = (n + 1)h are related by the

transmission matrix defined in Eq. 2.33:

x= A~ [.-_S11 e-jkh] [n

Introducing these expressions for f,+l and gn+1 into Eq. 3.23 results in

Za(nh + h) = Z fn[-ISlejkh - S11] + g.[S 2 + e - j kh]  (3.24)

of[ISlejlh + S11] + g.[S22 - e -kh (.4

We next use Eq. 3.22 to substitute Zo(nh) into Eq. 3.24 in place of f. and gn:

Za(nh + h) =

(Za(nh) + Zo.)[-ISlejl" - SI] + (Zao(nh)- Zo)[S22 + e- j kh] 3.5
ZO(Z.(h) + Zoa)[-ISlekh + S11] + (Za(nh) - Zo.)[S22 - e-jk (3.25)

The iterative impedance condition states that the impedances at nh and (n + 1)h
must be equal. Because the Bloch impedance is defined to be the impedance at the

cell center, we have

ZB,, = Z,,(nh) = Za(nh + h).

The introduction of the iterative condition makes Eq. 3.25 quadratic in ZBa/Zo,:

(ZBa/Zo.) 2 [ISleikh - S1I - S22 + e - kh]

+(ZB/Za)[2S22 - 2S11] + [-ISlekh - S11 - S22 - e -kh] = 0.

Solving for ZBa via the quadratic formula yields

ZO S11 - S22 ± e -kh[(ISlejkl - 1)2- 4S 2S21e2Jkh]l/ 2

=ISlejk - S11 - S2 2 + e- j kh

Symmetric Scatterer

If the scatterer is symmetric under reversal of the axial coordinate, then S, = S22

and S12 = S21, and Eq. 3.26 simplifies to

Z jISle' k + 2S 1 + e- klt 1/2

,'a = 2oa [Iikh - 2S 11 -I- e- j kh (3.27)
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Discrete Scatterer

If the scatterer is discrete then S 12 = 1 + S11 as was described in Sec. 3.13.
Equation 3.27 then simplifies to

Z oa [Sii(e j kh -1) + jsin(kh) 1/2

ZBa [SI(e k- h + 1) + jsin(kh) (3.28)

Impedance Load Scatterer

If the scattering is caused by the loading of the waveguide by the shunt acoustic

impedance ZL., then S11 = -(1 + 2 ZLa/ZO.) -1 (Kinsler, Frey, Coppens, and Sanders,

1982). The substitution of the expression for Si1 into Eq. 3.28 results in the impedance

function
Z~a= Z. I(Zo./ZLa)[COs(kh) - 11 + sin(kh) 1/2 (.9

ZBa = Z Oa Z [ + 1] + sin(kh) (3.29)

Side Branch Load

The substitution of the acoustic impedance of a rigidly terminated side branch,

ZLa = pj pocol,
tan(ksbd)'

into Eq. 3.29 results in the Bloch impedance

ZBa = (A ) tan(ksbd)[cos(kh) - 11 + sin(kh)] 1/2

LAA)tan(kbd)[cos(kh) + 1] + sin(kh)

This is the Bloch acoustic impedance for the periodic waveguide of this study. It is

of interest to note that in the lossless case the argument of the square root is positive

or negative but real. This corresponds to an impedance that is either resistive or

reactive, but never both. Figure 3.7 shows the Bloch acoustic impedance (normalized

by the uniform waveguide impedance Zo,, = poco/A,,,) in both the dissipative and the

nondissipative cases. In the nondissipative case, as might be expected, the impedance

is real at passband frequencies and imaginary at stopband frequencies. When dissipa-

tion is present, the impedance is generally complex and the rapid transitions present

in the nondissipative case are smoothed o-it.

The acoustic impedance at points away from the center of the waveguide section

can be found in terms of the Bloch acoustic impedance. The definition of the acoustic
impedance at the center of the zeroth cell (i.e., at z = 0)

- go
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can be generalized to include the range -h/2 < z < h/2 by introducing phase
corrections to the travelling wave components. The generalized impedance is

foe'k + goe Z
Za (z) = Z 0foe (3.31)

Solving for go/fo in terms of ZBa and Zoa and substituting into Eq. 3.31 yields

(ZBa + Zo.)ejkz + (ZBa - Zo)e - j kz
Za(Z) = Z°. (ZB + Zoa)ejkz - (ZBo - Zo)e-JkzI'

or
ZBa cos(kz) + jZo0 sin(kz)
ZOa cos(kz) + jZB. sin(kz)

3.3 The Bloch Wave Parameter g/f and Bloch Wave Functions

In this section a Bloch wave parameter is identified that, in conjunction with
the dispersion relation, completely specifies the Bloch wave function. As was stated
in Sec. 2.4, the Bloch wave number q determines the global or cell-to-cell changes

in the Bloch wave amplitude and phase. The Bloch wave parameter g/f, we will
show, accounts for the wave function behavior within a single cell. It turns out that
g/f bears a very simple relationship to the Bloch impedance and will therefore be
expressed in terms of that quantity.

In Sec. 2.4.3 the Bloch wave function was expressed in the convolution form

+00

p(z) = ,(z) * E 6(z - nh)e 'nh,

where ?b(z) is the wave function in a single cell of the structure. Since a cell is any

section of the structure with length equal to the periodicity of the structure, it is here
defined to be centered on the waveguide section of the structure with side branches
at each end. The wave function in this cell is simply a linear combination of the two
linearly independent solutions of the wave equation: a forward propagating wave of

amplitude f and a backward propagating wave of amplitude g:

?P(z) = fejk
. -+.ge -

j
k
-- - h/2 < z < h/2.

As was pointed out in Sec. 2.4, the convolution of this cell wave function with the
phase weighted lattice function simply places appropriately phased copies of 4'(z) in

each cell of the structure, as is illustrated in Fig. 3.8. An alternative expression of
4(z) is found by normalizing the f and g wave amplitudes by f I- g, the total pressure

at the cell center:

fe p ..')N : :I(// ' -kV) (Z) = , r- k +.k: I (91f) - h/2 < z < h/2. (.,)
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FIGURE 3.8
The forward travelling Bloch wave function is composed of a string of

phase weighted copies of the cell wave function. The cell wave function is

composed of a compound conventional wavefield: a wave of amplitude f

(called an f wave) propagating in the direction of the Bloch wave and a

wave of amplitude g (called a g wave) which propagates in the opposite

direction.
AS-91-362

In this form it is evident hat a coefficient multiplying the Bloch wave function for

pressure (i.e., the Bloch wave pressure amplitude) is simply the pressure at the ref-

erence cell center, and that g/f is the only remaining unknown in the expression

for the Bloch wave function. The acoustic impedance at the point midway between

side branches, the Bloch acoustic impedance, is given by Eq. 3.30. In terms of the

travelling wave components of the cell wave function (Eq. 3.32), the impedance is

ZBA = = f + g  (3.33)u IZo - glZo'

which can be solved for g/f:

ZB. - ZoIA. (3.34)

g/f = ZBa + Zo/A"

The explicit form of g/f is found by introducing Eq. 3.30 into Eq. 3.34:

.g/f= { [ (A./A,) tan(k~c)[cos(kh) - 1] + sin1(kh)] / 2

- [(A /,,,) tau(kad)[cos(kh) .-. 11 + sin(kh)]1/2}

{[(A ,/A,.) tan(kb)[cos(kh) - 1] + sin(kh)]

[2 111

IF [(A,/A,,.) tan(k.,)[cos(kh) - 1]-I sin(kh)] /} (3.35)
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The amplitude and phase of the backward propagating component wave

(the g wave) relative to the forward propagating component wave (the f

wave). In the stopbands the backward propagating wave has an

amplitude equal to the forward propagating component wave, indicating

a longitudinal resonance condition.
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Figure 3.9 shows the amplitude and phase of g/f. The stopbands are clearly

recognizable as the bands of frequencies in which the forward and backward travelling

component waves of each cell have equal amplitudes, a longitudinal standing wave
condition. It should be noted that this stopband condition (IgI = Ill) is consistent
with the results of the impedance analysis: the impedance is reactive at stopband

frequencies. The passbands are seen to be bands of frequencies in which the phase
relationship between the component waves is fixed and equal to either 0 or ir; the

components are either perfectly in phase or perfectly out of phase. This type of
phase relationship is consistent with the fact that the impedance is real at passband

frequencies.

Stopband Bloch Wave Functions

As was noted above, the forward and backward travelling component waves of
the stopband wave functions are equal in magnitude. The wave function is therefore

simply a train of standing waves, the amplitudes of which vary exponentially with
distance. For stopband frequencies, the periodic structure is essentially a sequence of
coupled resonant tanks. Figure 3.10 shows stopband wave functions of the ir stopband,

the low frequency side of the side branch resonance stopband (in which Re{qh} = 27r),

the high frequency side of the side branch resonance stopband (in which Re{qh} = r),
and the 21r stopband. For each of the four frequencies, two plots of the wave function
are shown. The upper of each pair of plots shows the wave function at wt = 0. The
lower of each pair shows the wave function at wt = 0, ir/3, 21r/3, ir, 41r/3, and 57r/3.

Notice that the advance in phase from cell to cell is consistent with the associated
values of Re{qh}. Notice also the standing wave behavior characteristic of stopband

Bloch wave functions.

Passband Bloch Wave Functions

Figure 3.11 shows some examples of passband Bloch wave functions. As might be
expected, the wave functions are most unusual near the boundaries of the stopbands,
where the dispersion is strongest. Note that particularly in the third and fourth

waveform the pressure gradient is strongly discontinuous at the side branches, an

occurrence which seems to disobey tile law of conservation of mass. The side branch
resonance, however, is zeroth order and is therefore a "breathing" mode which is

alternately injecting and withdrawing mass from tile port region, allowing tle pressure
wave function to become cusped. Note also that in spite of there being only a single

temporal frequency present, there is obviously a rich spectrum of spatial frequencies.
This phenomenon, which is characteristic of Bloch waves, is tile basis of the travelling

wave spectrum.
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FIGURE 3.10
The Bloch wave function at four stopband frequencies. The second of
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time, showing tihe longitudinal resonance condition typical of stopband

Bloch wave functions.
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3.4 The Travelling Wave Spectrum and the Multivalued Dispersion
Relation

In this section we concentrate on the travelling wave spectral representation of
the Bloch wave function. We begin by finding an expression for the periodic mod-
ulation function Fq(z). We then evaluate the spectral amplitude integral (Eq. 2.52)
for the spectral component amplitudes C,. Finally, the physical significance of the
multivalued nature of the dispersion relation is discussed.

3.4.1 The Travelling Wave Spectral Amplitudes

Equation 2.52, the spectral amplitude integral, can be evaluated if a closed form
expression for 4)q(z) can be found. Such an expression can be found by equating the

standard expression and the convolution expression of the Bloch wave function. In

the interval -h/2 < z < h/2 the standard expression is

p(z) = 4)q(Z)e39,

and the convolution expression is

p(z) = lb(z) = fekz + ge-ikz. (3.36)

Equating these two forms of p(z) yields an expression for the periodic modulation

function:
4)q(Z) = fej(k

- q ) z 
+ ge

- j ( k + q ) z  h h (3.37)

The substitution of this expression for ,q(z) into the spectral amplitude integral

(Eq. 2.52) results in the following expression for the spectral amplitudes

C 11 2 [fej(kh-qh_2.)(z/h) -- g. -J(kh+qh+27rn)(' /h)] d(z/h).1, -/2 [

The integration is straightforward and we find

C,, = fjo(nir -1 (q - k)/,/2) I qjo(Ttr i- (q + k)h/2), (3.38)

where j0 (x) is the spherical Bessel fuiction of order zero. The amplitudes of the

travelling wave spectral components are shown in Fig. 3.12 for the six lowest spatial
frequency components above and below the primary (71 = 0) component.

An excellent example of the rich spectrum of spatial frequencies that can occur

in a Bloch wave function is evident in the last function of Fig. 3.11. The primary
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spatial frequency (i.e., Bloch wave number) corresponds to a wavelength of about
one structure period. It is obvious that in addition to higher spatial frequencies due

to the sharply cusped waveform, there is a strong low spatial frequency component

corresponding to a wavelength of about ten structure periods. Figure 3.12 shows that
this low spatial frequency component, the n = -1 component, is expected to have

an amplitude which is larger than the principal component amplitude near the side

branch resonance stopband.

3.4.2 The Multivalued Dispersion Curve

The physical significance of the fact that the dispersion relation is multivalued

becomes apparent when we note that the components of the travelling wave spec-

trum occur at the same interval along the spatial frequency axis as the repetitions

of the dispersion relation. In Sec. 3.1 it was noted that the dispersion function is

multivalued and repeats at intervals of 21r/h along q. An interval of 27r/h is the same

interval as that between the spatial frequency components of the travelling wave spec-

trum. Figure 3.13 shows the complete dispersion function including all branches of

the inverse cosine function. The primary branches associated with both forward and

backward travelling Bloch waves are shown as unbroken lines, and all other branches

are shown as dotted lines. This representation, the "periodic zone representation"

which was referred to in Chap. 1, relates each temporal frequency to an infinite set

of spatial frequencies. The infinite set of spatial frequencies are simply the spatial

frequencies of the travelling wave spectra associated with both forward and backward
propagating Bloch waves. A forward propagating Bloch wave of Bloch wave num-

ber qo is composed of travelling waves of spatial frequency qo + 27rn/h, where n is a

positive or negative integer. The same Bloch wave propagating in the opposite direc-
tion is composed of travelling waves of spatial frequency -qo + 21rn/h. We see that

the full dispersion curve is composed of two families of curves, one associated with

forward propagating Bloch waves and the other with backward propagating Bloch
waves. These families of curves are shown in Fig. 3.14 as unbroken and dotted lines,

respectively. The family of curves associated with forward propagating Bloch waves

is simply an infinite set of repeats of the primary branch curve associated with for-
ward propagating Bloch waves, each occurring at intervals of 2ir/h along the spatial

frequency axis. Likewise, the family of curves associated with backward propagating

Bloch waves is a set of copies of the primary branch curve associated with backward
propagating Bloch waves, distributed at intervals of 2;r/h along the spatial frequency

axis. Each of these "copies" of the l)rimary branch represents a spectral component;

the n"' travelling wave component is represented by the copy shifted by 2rn/h along

the spatial frequency axis. Figure 3.14 shows the travelling wave spectral components

of one forward travelling and two backward travelling Bloch waves. Each horizontal

row of circles connected by a dashed line represents the travelling wave spectral com-

ponents of a Bloch wave. In the stopbands, the two families of curves are confluent;
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FIGURE 3.13
The complete dispersion curve including branches other than the

primary branch. The primary branches associated with both forward and

backward propagating Bloch waves are shown as unbroken lines, and the

other branches are shown as dotted lines. This presentation of the Bloch

wave dispersion is referred to as the "periodic zone scheme.
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FIGURE 3.14
The complete dispersion curve showing the travelling wave spectra of

several Bloch waves: a forward travelling (FT) Bloch wave of frequency

wh/co = 1.0437r, and backward travelling (BT) Bloch waves of frequency

wh/co = 0.5741r and 1.530fr. The branches of the dispersion relation

associated with forward propagating Bloch waves are shown as unbroken

lines and those associated with backward propagating Bloch waves are

shown as dotted lines. Each horizontal row of circles connected by a

dashed line represents the travelling wave spectral components of a

Bloch wave.
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the forward and backward propagating waves are strongly coupled, as is implied by

Fig. 3.9.

Notice that the complete dispersion relation contains no information about the

amplitude or phase of the components of the travelling wave spectrum. Equation 3.38
is the source of that information. The interesting thing about the periodic zone

representation of the travelling wave spectrum is that the graphical interpretation

of the dispersion curve holds for all of the spatial frequency components. That is,
the slope of the line from the origin to a point on the dispersion curve associated

with a component of the travelling wave spectrum is the phase velocity associated

with that component, and the slope of the dispersion curve at that point is the group
velocity associated with that component. This graphical interpretation makes obvious

two points of interest. First, each travelling wave component of a Bloch wave has the

same group velocity, and this group velocity is directed in the direction of propagation
of the Bloch wave. Second, each travelling wave component of a Bloch wave has a

different phase velocity, and this phase velocity can be directed opposite the group

velocity! This peculiarity is the reason periodic structures are sometimes referred to

as "backward wave structures" (Ramo, Whinnery, and Van Duzer, 1965).

3.5 Effects of Truncation of the Structure:

Bloch Wave Reflection and Transmission

Up to this point, all of the theoretical findings have been based upon the assump-
tion that the periodic waveguide is of infinite length. The whole of Chap. 2 is devoted

to showing the conditions under which we can expect to find Bloch wave solutions.
The first of these conditions is that the system exhibits a translational invariance,

which can occur only in the case of an infinite structure. This naturally raises the

question as to the validity of the analysis as it applies to a physically realizable system.

We consider several situations involving non-infinite periodic waveguides. We

begin with a semi-infinite periodic waveguide that is connected to a semi-infinite
uniform waveguide. The uniform waveguide may be considered the termination for
the periodic waveguide. The purpose of the analysis is to illustrate the way Bloch

waves are able to satisfy interface conditions. We then consider the more general

case of Bloch waves in a semi-infinite periodic waveguide incident upon an arbitrary

terminating impedance. Next we treat the reverse case, that in which conventional

waves in a uniform waveguide are incident upon a semi-infinite periodic waveguide.

Various reflection and transmission coefficients arc derived. Givcn the above findings,

we conclude with a discussion of a guided wave system which includes a finite section

of periodic waveguide.
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3.5.1 A Periodic Waveguide Terminated by a Uniform Waveguide

We begin by considering a compound Bloch wavefield, a field composed of both

forward and backward travelling Bloch waves. The convolution representation of

the Bloch wave function shows the Bloch waves to be composed of a compound

conventional wavefield which repeats (with shifted phase) at intervals of h. That is,

the forward travelling Bloch wave consists of both forward and backward travelling

component waves which are both advanced in phase by the factor e3" h in propagating
from one cell to the neighboring cell in the positive z direction. The amplitudes of

the forward and backward travelling component waves are f+ and g+ , with the ratio

g+/f+ determined by Eq. 3.35. The backward travelling Bloch wave likewise consists

fle -jqh pf fle jqh

J1l i iI r

g +e -jqh + g +e jqh

(a)

f -e jqh f -e jqh

p I II II II -

g -e yqh g- g -e-yqh

(b)

FIGURE 3.15
The component waves of (a) forward and (b) backward propagating

Bloch waves. The values of the component wave pressure at the center of

each cell are shown. The center cell is the reference cell.
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of a compound wavefield, but the phase advances in tile negative z direction. The

amplitudes of the component waves associated with the backward travelling Bloch

wave are f- and g-, where f- is the component propagating in the direction of the

Bloch wave. Again, the ratio g-/f- is determined by Eq. 3.35. The forward and

backward travelling Bloch waves are illustrated in Fig. 3.15.

We now consider the situation shown in Fig. 3.16(a), wherein both forward and

backward travelling Bloch waves occur simultaneously in the same guiding structure.
A reference cell is chosen to define the component wavefields such that in the center

of the reference cell p = f+ -+- g+ + f- + g- (i.e., the z origin is at the center of the

reference cell). If the amplitude and phase of the backward travelling Bloch wave arc
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FIGURE 3.16
(a) Forward and backward propagating Bloch waves occurring

simultaneously in the same structure with the amplitude/phase
relationship f- = -g+. (b) The same situation as in (a), but with the

periodic structure to the right of the center of the reference cell replaced
by an infinite uniform waveguide.
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chosen so that f- = -g+, then the g wave component of the forward travelling Bloch

wave and the f wave component of the backward travelling Bloch wave cancel in the

reference cell. The wavefield in the reference cell is therefore purely progressive, as

shown in Fig. 3.16(b). We can therefore replace the periodic structure to the right

of the center of the reference cell with a semi-infinite, uniform waveguide with no

disruption of the wavefield to the left of (and inside of) the reference cell. Conversely,

it can be stated that the effect of replacing the periodic structure at some point with

a semi-infinite, uniform waveguide is the generation of a backward travelling Bloch

wave with amplitude and phase defined by f- = -g+.

3.5.2 The General Impedance Termination

While the arguments of the last section demonstrate qualitatively the way com-

pound Bloch waves can satisfy the conditions at an interface, a quantitative analysis

leads to much more general results. We consider the case of a periodic waveguidc ter-

minated by the acoustic impedance Zta at the center of the reference cell (at z = 0).

As in the last section, f+ and f- are, respectively, the amplitudes of the f waves

of the forward and backward propagating Bloch waves in the periodic waveguide

which occupies the half space z < 0. We will call the pressure on the z > 0 side of

the interface f. If no waves are incident on the interface from z > 0 (the field in

the terminating medium is progressive), f, is simply the transmitted pressure wave

amplitude.

As usual, the continuity conditions must be met at the interface. Continuity of

pressure requires
(f+ + g) + (- + g+) = f t . (3.39)

Since the relationship between the f and g waves is given by Eq. 3.35 for any Bloch
wave

g _ = _ + - (3.40)

f f+ f-'

we can write Eq. 3.39 as
(f+ + f-)(I + g/f) = f t . (3.41)

Likewise, continuity of particle velocity at the interface requires

Uf+ + g-) Uf- + g+) f (3.42)ZO. zo., =i.

or
(f+ - f-)(l - ./f) = f tZ .( .

The combination of Eqs. 3.41 and 3.43 results in a Bloch reflection coefficient,

f- = f -+! ,( - .q/f) - Z0(0I -. q/f)

f+ -+ g+ Z,,(1 - g/f) -I Zo,,(1 + 1/f)
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_ Zi - ZB, (3.44)

Zt. + ZBa'

where we have chosen f + g, the pressure amplitude at the cell center, to represent

the amplitude of the Bloch wave. Equation 3.44 is simply the standard definition of

the reflection coefficient for a conventional wave in a medium of acoustic impedance

ZBa incident on an interface between that medium and one of acoustic impedance
Ztci.

If the field in the terminating medium (z > 0) is progressive, then we can define

a transmission coefficient by T = ft/(f + + g+). Equations 3.41 and 3.43 can be

combined to result in

T - A 2Z,, (3.45)
f+ +9+ ZtZ+ZB.

This expression is identical to the corresponding expression for conventional waves.

Three Interesting Cases

The range of possible values of Zta includes three values of particular interest.

In the case Zta = Zo,, which is the case of the periodic structure terminated by a

semi-infinite uniform waveguide, the transmission coefficient (Eq. 3.45) reduces to

T = 1 - g/f,

and the Bloch reflection coefficient (Eq. 3.44) becomes

RB = -g/f, (3.46)

or
fo f+ 9  _g+ (3.47)

f
which confirms the earlier result. In such a case the plot of IRBI is identical to the

plot of Ig/f 1, shown in Fig. 3.9. In the case Z, -- oo, the Bloch reflection coefficient

(Eq. 3.44) reduces to
RB =1

or

f- = f+, (3.48)

which is what is expected for pressure wave reflection from a rigid termination. The

form of RB in Eq. 3.44 makes evident another case of interest, that in which Z,,, = ZB.,

for which

R13 = 0

and

T=1.

The reflected Bloch wave amplitude is zero; the incident Bloch wave energy is 100%

transmitted.
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3.5.3 A Uniform Waveguide Terminated into a Periodic Waveguide

We now consider the problem of a uniform waveguide of acoustic impedance

Z,. terminated by a periodic waveguide. The amplitudes of the incident and reflected

conventional waves are f+ and f-, respectively, and the amplitude of the transmitted

Bloch wave is ft + gt. Continuity of acoustic pressure at the interface requires

f+ + f- = f t (1 + g/f), (3.49)

and continuity of velocity requires

- - = -t(1 - g/f). (3.50)

Z, Zia (o f

Equations 3.49 and 3.50 can be combined to yield

R f
- - ZB, - Zia

f+ ZBa+Zia*

Again, the reflection coefficient is identical to that describing the reflection of conven-

tional waves. Note that when Z,, = ZB., (the impedance matched case) the reflected

wave amplitude is zero.

Equations 3.49 and 3.50 can also be combined to yield the transmission coefficient

(actually a conversion coefficient) for the transmitted Bloch wave

T = _ Z= 2 (3.51)
f+ Z, + ZBa

Again, the result is identical to the conventional wave result. Note that when Za -

Z0a we get TB = 1 + g/f and R = g/f. In other words, f, = f+ and f- = (g/f)f+;

the field in the conventional waveguide has the same f wave/ g wave makeup as a

Bloch wave.

3.5.4 The Finite Periodic XVaveguide

We are now in a position to deduce what sort of wavefields occur in a finite periodic

waveguide. It has been shown that a conventional wave in a uniform waveguide

incident upon a periodic waveguide generates a reflected conventional wave and a

transmitted Bloch wave. It has also been shown that a Bloch wave incident upon a

uniform %%aveguide generates a reflected Bluch wave and a transmitted conventional

wave. From these findings we can arrixe at the combination of Bloch and con. ial

wavefields that occur in a guided wave systerm that includes a finite section of periodic

waveguide.

64



-V V V%) _% V % - JV ~ V VL -O V - . V %. . -.4-^VWr- *JVV%- 4jVW11- 41_ - 4^V-

Entrance Periodic Terminating
waveguiJe Waveguide Waveguide

p(z)=Ae; +Be P z)=C(Dq(z)ehz +D(D,(.z)e p(z)=EeJb

FIGURE 3.17
The Bloch and conventional wavefields in a guided wave system which

includes a section of periodic waveguide.
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An example of a guided wave system that incorporates a section of periodic wave-
guide is shown in Fig. 3.17. The system is composed of a finite section of uniform
waveguide (the entrance waveguide), a finite section of periodic waveguide, and a

semi-infinite section of uniform waveguide (the terminating waveguide). A piston
source in the entrance waveguide generates a forward travelling conventional wave
which is incident upon the section of periodic waveguide. This incident wave is both

reflected, resulting in a backward travelling conventional wave in the entrance wave-

guide, and transmitted, resulting in a forward travelling Bloch wave in tLe periodic
waveguide. When the Bloch wave arrives at the terminating waveguide, it is like-

wise partially reflected, resulting in a backward travelling Bloch wave, and partially

transmitted, resulting in a forward travelling conventional wave in the terminating

waveguide.

Conclusion

The value of the analysis in this section is that it demonstrates that Bloch waves

are not restricted to infinite periodic media. In fact, Bloch waves are the waves which
occur in periodic media. A Bloch wa if incidr- t upon a termination does nct generate
a clutter of waves which then scatter in some ,. mplicated, disorganized manner from
the side branches. Instead, a very spccific, orderly backscattered field is generated:

a backward propagating Bloch wave. Apparently the Bloch wave is not as "fragile"
as one might be inclined to believe. Truncation of the periodic medium does not
disrupt some sort of precarious balance, but simply causes a reflected Bloch wave to

be generated.
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To conclude, it appears that a periodic medium is very much like a conventional

wave medium with a characteristic acoustic impedance equal to the Bloch acoustic

impedance. The finite periodic medium problem discussed above is very similar to

the classic three-medium problem. The three-medium problem is that in which a

section of a medium of one characteristic impedance is sandwiched between media of

another characteristic impedance. The solution shown above is essentially that of the

three-medium problem. The difference is that, in our case, the waves in the middle

medium are Bloch waves.
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4. BLOCH WAVE DISPERSION MEASUREMENT

In this chapter an experimental verification of the dispersion relation derived in

Sec. 3.1 is described. The measurement is made by spatially sampling the acous-

tic pressure in a compound Bloch wavefield. The reasoning behind this choice of

measurement scheme and some of the inherent limitations are discussed. The set of

design criteria that was developed to aid in the design of the waveguide is presented

and the construction of the waveguide is described. The experimental setup is shown

and the method of acquisition and processing of the data is described. Finally, the

experimental results are compared to the theoretical predictions of Chap. 3.

4.1 The Experimental Paradigm

Here we describe the fundamental framework of the dispersion measurement. We

begin by presenting the reasoning behind choosing to work with a compound as
opposed to a progressive Bloch wavefield. The effect of spatially sampling a com-

pound Bloch wavefield and the use of a linear regression to filter out some compound
wavefield effects are discussed. Finally, we present the method of extracting the values

of the Bloch wave number from field measurement data and some of the limitations

associated with the measurement scheme.

4.1.1 Progressive versus Compound Bloch Waves

In Sec. 3.5 it was found that, depending upon the impedance of the termination,

a truncated periodic waveguide can have either progressive or compound Bloch wave

solutions. If the waveguide is terminated with the Bloch impedance, the resultant

field is that of a progressive Bloch wave. Any other termination causes the incident

Bloch wave to be reflected to some degree, resulting in a compound Bloch wavefield.

In terms of a dispersion measurement, there are advantages and disadvantages to an

experiment based on either a progressive or a compound Bloch wavefield.

In the case of a periodic waveguide terminated with tile Bloch impedance, the

resulting progressive Bloch wavefield makes the measurement of the dispersion trivial.
If the pressure field is measured at two points an integral number of structure periods
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apart (at z = z1 and z = z2 = z, + nh), then Eq. 2.46 relates the fields at the two

points:

p(z2) = p(z + nh) = [ei9h ]Ip(zI). (4.1)

The dispersion is then found simply by solving for q in terms of the two field mea-

surements: q = I In [P(Z2) (4.2)
1Lp(z2)l"

jnh [p(zi)J 42

The major problem with an experiment based upon this scheme is the realization of

the termination condition. Figure 3.7 shows that the Bloch impedance is a strongly
frequency dependent function that would be enormously difficult to synthesize for

anything more than a very limited range of frequencies. Another problem is that

the precision of the measurement is strongly dependent on the degree to which the
reflection from the termination is indeed zero. Even a very small reflection can cause

sizeable perturbations in the otherwise progressive Bloch wavefield and ruin the pre-

cision of the measurement.

The termination of the periodic waveguide with a frequency independent termi-

nation essentially reverses the problems discussed above. A constant terminating

impedance is very easily realizable, but the resultant compound Bloch wavefield com-
plicates the measurement of the dispersion. The dispersion can still be derived from

the measurement of the field at just two points, but such a scheme would involve

an assumed knowledge of the relative amplitude and phase of the reflected Bloch
wave. That is, the precision of the measurement depends upon exactly how well the

termination is characterized and how well the theory describes Bloch wave reflection.

A less "fragile" method is to sample the compound Bloch wavefield at a number of

points. As will be shown in the following section, spatial sampling allows the disper-
sion information to be extracted from a compound Bloch wavefield without assuming

anything about the reflected Bloch wave amplitude. This method also yields addi-

tional information about the field, such as the amplitude of the Bloch wave reflected

from the termination.

A simple, frequency independent termination can be constructed by loading a

section of uniform waveguide with a gently tapered fiberglass wedge. If the wedge is
carefully tapered, it will be very nearly anechoic. The resultant input impedance of
tile section of waveguide is therefore that of a semi-infinite uniform waveguide, which

is frequency independent.

4.1.2 Spatial Sampling of a Compound Bloch Wavefield

As was noted in Sec. 2.3, the result of spatially sampling a Bloch wave at intervals
of the periodicity of the structure is indistinguishable from the result of sampling the
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conventional travelling wave Ceiqz at the same intervals. The nth sample in a spatial

series generated by sampling a forward travelling Bloch wave at the points z = nh
(where n is an integer) is

Pn 00q(z)e'Z5(z - nh)dz

= qf(nh)e
i "nh

= q (0) ei "  (4.3)

The same sampling performed on the conventional wave yields

Pn +0o Cejqz6(z - nh)dz

=cei"qh . (4.4)

Comparison of Eqs. 4.3 and 4.4 shows that the travelling wave p(z) = 'q(O)ei qz

is, when sampled, indistinguishable from the sampled Bloch wave. The compound

conventional wavefield equivalent of the compound Bloch wavefield for a terminated

periodic waveguide is

p(z) = 'qO) [eiqz + RBe-Jz], (4.5)

where RB is the Bloch wave reflection coefficient associated with the termination.

4.1.3 The Linear Regression as a Backward 'Travelling Wave Filter

One effect seen in compound conventional wavefields, and therefore in sampled

compound Bloch wavefields as well, is spatial beating. The presence of the backward

propagating wave causes the amplitude and phase of the field to deviate from that of

a progressive wave. Whereas the phase of a progressive field increases linearly with

distance in the direction of propagation, the backward travelling wave causes the

phase of the field to oscillate periodically about a linear increase, as shown in Fig. 4.1.

Likewise, the exponential decay associated with the amplitude of a progressive field

takes on periodic oscillations about the exponential decay in the presence of a counter-

propagating wave. The point of importance here is that although the amplitude and

phase are different from those of a progressive field, the difference is periodic. The

net amplitude decay is still exponential End the net phase advance is still linear.

Therefore, over a large enough number of cycles of the periodic perturbation the

amplitude and phase average out to essentially exponential decay and linear increase,

respectively.

A very effective method of extracting the linear component of a series (such as the

sampled phase series) is by using a linear regression.' A linear regression performed

"the linear rcgression is simply a first degree polynomiial fit to a series. The fit is made in a

least-square sense.
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FIGURE 4.1
The phase of the travelling wave ejq- alone and in the presence of a

counter-propagating wave. The phase of the purely progressive field

increases linearly with distance, and develops oscillations about the linear

increase with the introduction of the reflected wave. The spatial

frequency of the oscillations in both the amplitude and the phase series

is 2q.
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on the sampled phase series results in the net slope.of th,. series; the oscillations due

to the backward travelling wave are effectively filtered out. The net slope is the phase

advance per unit distance of the forward travelling wave, which is the real part of the

Bloch wave number. Likewise, a linear regression performed on the natural logarithm

of the amplitude series effectively cancels the backward travelling wave's effect, and

the resultant slope is the imaginary part of the Bloch wave number.

4.1.4 The Sampled Acoustic Pressure Series

Consider the case wherein we make N -- 1 measurements of the acoustic pressure
field at spatial intervals of integral multiples of h. The measured pressures will be

called po, pI,....pv, and the associated sample locations will be called Zo, zj,...ZN,.. In

polar form, these complex pressures are

pi = IpIc'0' i = 0, 1, ...N. (4.6)

We normalize the measurcments by po. which will be referred to as the rcfercncc

pressure, to get the relative pressure
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po
SPO

- IP'Jei(ei-0)
1pol

=lfIli i = o, 1, 2,...N. (4.7)

Likewise the relative distnce is defined as

4 = zi - z'o i = 0,1, 2,...N. (4.8)

It is evident that JPI is the decay in amplitude and 0i the advance in phase of the
wavefield over the distance i. With the measured pressure so defined, the measured

value of the real and imaginary parts of the Bloch wave number are

Re{q} -- linear regression of 0, against Fk

Im{q} -- linear regression of In 1pi against ,. (4.9)

It should be noted that this technique of extracting the real and imaginary com-

ponents of the Bloch wave number from the spatially sampled field will work for any
termination. Since the amplitude of the oscillations in the amplitude and phase of

the field is dependent upon the amplitude of the counter-propagating Bloch wave, the

results will simply be more precise for smaller reflected wave amplitudes. Another dis-

tinct advantage to this technique is that if we use one microphone for all the reference

pressure measurements and another for all the downstream pressure measurements,

then no calibration of the microphones is necessary. Any mismatch in the amplitude

or phase response of the microphones will simply show up as a non-zero y-intercept

in a plot of amplitude or phase against distance, and have no effect on the linear

regression.

4.1.5 Limitations of the Measurement

The fact that we are counting on averaging out the effects of the backward travel-

ling Bloch wave to make the measurement leads to the limitations associated with

the measurement technique. The condition for the effective averaging out of the

oscillations in the amplitude and phase is that we have a sufficiently large number

of oscillations over which to average. Since the oscillations occur on the scale of

a wavelength of the Bloch waves that compose the field, the limitation appcars to
be a low frequency limitation. It seems that we can, nsure the effectiveness of the

averaging technique simply by placing a restriction on the measurement frequencies:

they must be high enough that several cycles of the Bloch waves occur over the

spatial measurement interval. Such a restriction, however, would not be sufficient

due to the fact that we are spatially samplinq the field and the measurement is
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therefore subject to the effects of spatial aliasing. Even in the case where we are
operating at a frequency that is sufficiently high to ensure a large number of cycles

of the oscillations, the number of oscillations in the sampled field may be arbitrarily

small. Figure 4.2(b) shows an example of how the apparent frequency of a sampled

field can be the low frequency alias of a iiigher frequency. In the sampled case, then,

it is not simply low spatial frequencies that we must be cautious of. b:&%' apparently

low spatial frequencies, those that have a low frequency aliar In the case of a spatial

sampling interval of &z., the Nyquist spatial frequency is kN = ir/&z,. The set of

spatial frequencies that have k as an alias spatial frequency is 2nkN ± k, where n is a

positive integer. The spatial frequency of the oscillations in the amplitude and phase

series is 2q, so we expect measurement inaccuracy when

q - nkN. (4.10)

Implicit in the measurement technique outlined above is yet another frequency

restriction which shoald be acknowledged. The measurements are made a distance

h/2 from the side branches, and are assumed to be a measurement of the zeroth order

field alone. The evanescent modes generated at the side branches all have pressure
maxima at y = b, where the measurements are made. The degree to which the

measurements are representative of the zeroth order field is the degree to which the

evanescent modes have decayed over the distance h/2. The requirement regarding the

decay of the evanescent modes made in the development of the theory was that they

decay significantly over a distance of h, so the validity of the measurement imposes a

more severe frequency constraint than the validity of the theory, namely

W< (2co/h) [(irh/2b)2 - 1]1/2. (4.11)

4.2 Design and Construction of the Periodic Waveguide

The design of the periodic waveguide was determined by two fundamental consid-

erations: the dispersion must be measureable and the waveguide construction must

be practical. In this section we present the set of design criteria that guided the

choice of the waveguide dimensions. Details of the waveguide construction and the

microphone positioning are shown.

4.2.1 Waveguide Design Criteria

In Sec. 3.1, several nondimensional pararncters and their influence on the disper-

sion relation are identified. Using this information we derive a Zct of design criteria
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FIGURE 4.2
Sampling of an oscillatory waveform. In (a) the spatial frequency of the

field is less than the Nyquist spatial frequency (kN), so the sampled series

is not aliased, but is greater than kN/2, which is the condition for the

beating effect seen. In (b) the spatial frequency is greater than kN and

the "folding down" in frequency characteristic of aliasing is seen.
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to aid in the specification of the dimensions of the waveguide. The criteria are as

follows:

" The two species of stopbands should not overlap. The nth Bragg stopband

occurs in the vicinity of kh = nir, and the mth side branch resonance stopband

occurs in the vicinity of kd = (m+1/2)ir. The two coincide if d/h = (m+1/2)/n,
a condition which we wish to avoid as we would like to independently verify the
existence of and investigate the behavior of both stopband species.

" Both species of stopbands should occur at frequencies for which the analysis is
valid. Again, this is to ensure a valid verification of both Bra',g and side branch

resonance stopbands.

" The dispersion should be strong enough to be easily measurable. There should

be frequcncies for which the characteristic length associated with dispersion

2ir

=Refq(2w)} - 2Re{q(w)} (4.12)

is less than the overall length of the structure. This requirement assures us of

easily measurable dispersion.

" The stopband attenuation should be relatively strong. There should be fre-

quencies at which the characteristic length associated with attenuation

La = 1/Im{q}

is less than the overall structure length. The reasoning here is the same as for

the strong dispersion criterion above.

" Thermoviscous losses should be minimized. This requirement keeps the band

structure of the dispersion relation from being swamped by tile attenuation and

dispersion that results from acoustic boundary layer effects.

In Sec. 3.1 it was shown that the dimensionless parameters d/h and S/So deter-
mine the location of the side branch resonance stopbands arid the overall strength of

the stopbands, respectively. It was likewise found that hIRHw and dI/RH are related

to thermoviscous losses. The effects associated with these dimensionless parameters,

the criteria listed above, and construction practicality considerations led to the fol-

lowing choices for the structure dimensions:

structure period: h=.l in
side branch depth: d=.0381 in (1-1/2")
side branch width: 1 =.0095 i (3/8")

waveguide height: b =.0254 in (1")

waveguide width: a=.0381 m (1-1/2").
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The length of the periodic waveguide is 50 cycles (5 meters), or 6 meters includ-

ing the 1 meter anechoic termination. These dimensions result in the values of the

nondimensional parameters reported in Sec. 3.1:

d/h = .421
A,/A, = 3/8

h/RHw = 6.562

d1RH, = 5.531.

According to Eq. 2.31, the frequency range over which Eq. 2.30 (the expression for

the dissipative wave number) is valid is 40 mHz < f < 400 kHz. The various

frequency restrictions that were imposed to ensure the validity of the zeroth order

approximation are as follows:

Eq. 2.24: f < 6,770 Hz

Eq. 2.25: f < 18, 100 Hz

Eq. 2.26: f < 4,490 Hz

Eq. 4.11: f < 6,700 Hz.

4.2.2 Waveguide Construction Details

The waveguide is a rectangular duct with one wall removed and replaced by a

piece of nearly square stock with slots cut periodically across the width. The duct

is a section of 38.10 mm x 69.85 mm (1-1/2"x 2-3/4", inner dimensions) rectangular

extruded aluminum tubing with one of the narrow walls milled off, essentially making

a piece of rectangular channel stock. The originally 6.4 meter (21') length of duct

was cut in half in order to make the machining of the duct practical. Five pieces

of 44.45 mm x 50.80 mm (1-3/4"x2") aluminum stock 1.2 meters (47.24") in length

were milled to a width of 38.10 mm (1-1/2") to fit into the width of the duct. Slots

38.10 mm (1-1/2") deep and 9.52 mm (3/8") wide were milled across the narrow

width of the stock at 0.1 in intervals. The result is 12 such slots in each section of

stock. Each of four aluminum binding plates 76.20 mm x 190.50 mm x 6.35 mm

(3"xT-1/2"xl/4") was screwed to the side of the slotted sections opposite the slots

with four 1/4-20 flathead screws to bind the sections end to end. The placement of

the slots is such that the breaks between the sections of stock occur at one edge of a

slot. The screw holes in the plates were countersunk off center so that the seating of

the screws forces the ends of the slotted sections togethcr, heing seal the intervening

breaks.

Each of the two rectangular channel sections fits over the string of slotted sections
in such a manner that an open 25.40 mm x 38.10 mm (l"xl-1/2") rectangular tube

remains over the slotted sections. To ensure a good seal between the duct arid the

slotted sections, a piece of 31.75 mrri (1-1/4") square extruded aluminum tubing is
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FIGURE 4.3
A cutaway perspective view of the waveguide.
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placed on either side of the duct below the open aret that forms the waveguide and

through-bolted to act as a clamp and force the duct walls irto the sides of the slotted

sections. Figure 4.3 illustrates the assembly. In order to further seal the joint between

the duct and the slotted stock, vacuum grease was applied to the sides of the slotted

stock prior to assembly. The through bolts are placed at two or three structure period
intervals, as was convenient, and located midway between slots. Where the two duct

sections are butted together, a rectangular U-shaped piece of aluminum stock was

force fit over the joint to ensure the alignment of the duct sections and to tend to seal

the joint. A similar U-shaped piece was fit over the source end of the waveguide and

screwed into the slotted stock to act as a mounting flange for a compression driver.

The measurement ports are 9.53 mm (3/8") diameter holes drilled along the

center of the side of the duct opposite the slotted sections (tile top). The holes are

located midway between side branches at every other period of the structure (cvery

0.2 meters), for a total of 23 ports: one reference port and 22 downstream ports. The

holes are force fit with cylindrical aluminum plugs when not in use. The plugs are

designed to form a flush surface on the inside of the waveguide when in place. During

measurement the protective shrouds are removed from the microphones, which are slid

into a teflon sleve that fits into a mounting jig. Tile mounting jig is a rectangular U-

shaped nylon block that straddles the waveguide and provides a stable mount for tle

microphone. Tile teflon sleeve buts into a shelf in the mounting block to ensure that

the active face of the microphone is flush with the interior surface of the waveguide.

This detail is illustrated in Fig. 4.4.
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The anechoic waveguide termination is a roughly 1 m long fiberglass wedge which

varies from a very fine trailing of a few fibers (at the upstream end) to densely

packed (at the downstream end). As was discussed in Sec. 3.5, the termination of the
periodic structure into a finite section of homogeneous waveguide which is loaded with

an anechoic wedge (such as the fiberglass wedge) should simulate the termination of
the structure into a semi-infinite section of waveguide. The periodic waveguide was

terminated in such a manner, though the leading edge of the fiberglass termination
was allowed to extend over the final two side branches. This was done because it was

thought that such a transition between the Bloch impedance of the periodic structure

and the purely resistive impedance of the anechoic termination section may reduce

the magnitude of the reflected Bloch wave.

On the source end of the waveguide, the structure ends one period from the

downstream side of the first side branch. The waveguide entrance is a 38.10 mm x
25.40 mm (1" x 1-1/2") rectangular opening, and the throat of the compression driver

is a 50.80 mm (2") diameter circular opening. Because the driver is mounted directly

onto the waveguide, a discontinuity in cross section results. The junction is sealed
with a piece of neoprene gasket material with a circular hole that matches the driver

throat.

4.3 The Experimental Setup and the Acquisition of Data

A computer controlled data acquisition system was used in the measurement

portion of the experiment. Microphones were placed in the reference port and one of

the downstream ports, and the computer was prompted to begin a data acquisition

algorithm. The function of tile algorithm is to measure PJ and b,,, the amplitude
and phase of the wavefield at the n t'h measurement port relative to the amplitude

and phase at the reference port, for a specified set of frequencies (the frequency set

is discussed in Sec. 4.4). The downstream microphone was then moved to the next

measurement point, and the process repeated for all 22 downstream ports. Following

their acquisition, the data were postprocessed to correct for phase wrap-around effects

and the limited dynamic range of the measurement system. Finally, linear regressions
were performed on the spatial series associated with each frequency to result in values

of Re{q} and Ir{q} for each frequency.

4.3.1 The Experimental Setup

A block diagram of tile experiment is shown in Fig. 4.5. At the heart of the setup

is the Macintosh Mac II minicomputer, which runs Na. ional Instruments' LabVIEW,

a data acquisition/analysis/display software package. The computer is linked via a
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National Instruments NB-DMA-8-G interface board to the GPIB (General Purpose
Instrumentation Bus), which serves as a communication and control link between the

computer and the instrumentation.

compression

anechoic downstream reference drivertermination mic' mic [_

A lcmic biassupplies -- '

'h. ..c. 'i

FIGURE 4.5

A block diagram of the experiment.
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The system operates as follows. The signal source is a Hewlett-Packard 3325A fre-

quency synthesizer which, under computer control, sends a signal to a Crown D-150-A
audio range power amplifier, which in turn drives a JBL 2485J compression driver.

The resultant acoustic signal is picked up by two Briiel and Kjoer 4136 1/4" condenser

microphones (with their associated preamplifiers and bias power supplies, the B&K

2619 and 2804, respectively) and routed to the inputs of a Tektronix RTD 710A digi-
tizer. The digitizer is armed for waveform capture by the computer, and, upon receipt

of a trigger, begins sampling as specified by the computer. Because the two-channel

sampling is simultaneous and synchronous, the trigger (here conveniently supplied by

the frequency synthesizer) is arbitrary. Upon completion of the waveform capture,
the sampled waveform data are transferred to the computer for processing, display,

and storage.

4.3.2 The Data Acquisition Algorithm

As mentioned above, the function of the data acquisition algorithm is to mea-

sure and store values of It,,I and 0,, for a specified set of frequencies. The user is
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responsible for the specification of the frequency set and signal level, the positioning

of the microphones, and the initiation of the acquisition algorithm. The computer

then makes the measurements and stores the data for postprocessing.

The data acquisition algorithm, shown in flowchart form in Fig. 4.6, is outlined

as follows:

* Initialize instruments. In the case of the frequency synthesizer the output volt-
age and output waveform are set. In the case of the digitizer, the initialization
involves the specification of data transfer channels and several triggering and

sampling parameters.

* Set synthesizer frequency and digitizer sampling rate. The sampling rate is set
so that roughly 3 signal cycles are covered in the 1 kilosample capture (about

300 samples/signal cycle).

" Optimize digitizer input range. Because the digitizer has a limited dynamic
range (roughly 55 dB for any single range setting), the information content and
therefore the measurement accuracy can be maximized by making optimal use

of the available dynamic range. For a given signal level, the smallest digitizer
range setting at which the signal is not clipped results in the best use of the
dynamic range. This optimal range setting was found by arming the digitizer
and, upon completion of the waveform capture, requesting the maximum and
minimum sample values. There are three possible outcomes:

- Either the maximum or the minimum (or both) is at the limit of the range.
In this case the amplitude setting is assumed under-range (signal clipped)

and is set to the next larger available range. The process is repeated until

the peak values of the acquired waveform fall within range.

- The peak values are in range, but would be out of range at the next smaller

available range setting. In this case the amplifier setting is optimal and

the optimization routine ends.

- The peak values are in range but would not be out of range at a smaller
range setting. In this, the over-range case, the digitizer is set to the cal-

culated optimal range.

" Capture arid transfer waveforms. The digitizer is armed and, upon completion
of the acquisition, the digitized waveform data are transferred to the computer.

" Resample the waveforms. The data vectors are resampled so that exactly one

cycle of the waveform occupies a 256-iAn timneserics vector. This resample algo-
rithm is a linearly interpolating reso,,ipler, as diagrammed in Fig. 4.7 for the
8-bin case. The reason for resampling .. two-fold:
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A flowchart of the data acquisition algorithm.
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FIGURE 4.7
The linearly interpolating resample algorithm generates a timeseries

which consists of exactly one cycle of the signal and has a number of bins

equal to a power of two. Shown in (a) is an example for the case of eight

time series bins. In (b) is shown the linear interpolation. The

interpolated value is yint = yi + (yz+I - y1)(tin5 - ti)/(ti+j - ti).
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- An FFT (fast Fourier transform algorithm) is used as a homodyning

amplitude/phase detector. In such a scheme the sampling must be such

that the frequency of interest has an integral number of cycles in the
time domain window. This will ensure that the frequency of interest will

coincide exactly with a single frequency domain bin. The number in the

frequency bin is therefore the complex amplitude (i.e., magnitude and

phase) of the signal at that frequency.

- In order to use a radix-2 FFT in place of the much more computationally

intensive DFT (discrete Fourier transform algorithm), the num er of bins

in the timeseries must be a power of 2.

It should be rioted that the amplitude and phase detection could be done much

more efficiently by performing only the single fundamental homodyning inte-
gral. That is, because the timncseries is resarnpled so that exactly one cycle of the

signal occupies the time domain window and the signal consists of a single fre-

quency, the only integral of the Fourier t1ransform which has a nonzero result is

the fundamental integral.The remaining harmonic integrals are a computational

waste. The reason for using the full FFT is that the data acquisition algorithm

was developed both for use in this measurement and in later measurements in

which the signal is expected to contain harmonic distortion components. In

the latter case the algorithm will detect the amplitude and phase of all the
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components of the signal.

" FFT the resampled timeseries and divide the complex amplitude of the down-

stream signal by that of the reference signal. Convert complex representation

from cartesian to polar.

" Set the frequency synthesizer to the next frequency and repeat from the second

step for each frequency in the set.

" Store data in spreadsheet format.

Once the data acquisition was complete, the data were reorganized into spatial

series (one amplitude spatial series and one phase spatial series per frequency) to

which some corrections were made. The first was the correction of the "wrap-around"

effect in the phase series. Because the measured phase is restricted to the branch

-ir < kn < r, it is a sawtooth-like function of distance. The wrap-around problem

was corrected by selectively adding 27r to the phase until a smooth, monotonically

increasing function resulted. The other correction was to throw out data that fell

below the floor of the dynamic range of the measurement system. At some stopband

frequencies the waves are so strongly attenuated (over 260 dB/meter was measured)

that the waves are rendered immeasurable beyond a certain distance from the driver.

Beyond this point the measured amplitude is roughly constant (defining the floor of

the dynamic range) and the phase is essentially random. These measurements of the

noise floor were discarded.2

4.4 Experimental Results

Data were collected as described in the previous section for a set of 455 frequencies

between 100 Hz and 4 kHz. The frequency interval was 10 Iz except in the vicinity

of the side branch resonance stopband, where, because both the real and imaginary

parts of the Bloch wave number vary rapidly with frequency, the interval was de-

creased to 4 Hz. The synthesizer level was set such that the acoustic signal was as

strong as possible (for a good signal to noise ratio) without exceeding about 100 dM

(re 20 jiPa), wlhich is safely within the realn of linear acoustics.

2 Reduction in the length of the space series for stopband frequencies seems to imply that the resul-

tant values of the Bloch wave number are lIes precise for these frequencies since the measurements
at large distances from the driver contribute most strongly to the precision of the measurement.

This implication is not necessarily true, however, as the strongly stopped waves are effectively re-
flectionless. The strong attenuation renders the reflected wave so weak there is essentially none of
the oscillation in the space series associated with a compound wavefield and the resultant measure-
ment is more precise. When the waves are very strongly stopped, however, we may have only two
or three measurements of tie amplitude and phase before the waves are immeasurable. In this case
the experimental precision does suffer.
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The low frequency end of the measurement frequency range was determined by the

range of validity of the measurement technique. As was pointed out in Sec. 4.1, a linear
regression can be used to filter out the effects of a counter-propagating Bloch wave
provided the oscillaions are numerous enough to make a good average possible. Since

the oscillations occur at intervals of one half of a Bloch wavelength, the requirement is
that the waveguide be several wavelengths long. Because we are measuring over about

4.5 meters, which is the wavelength associated with a frequency of about 70 Hz, we

don't expect to get particularly good. results below about 200 Hz.3 The low frequency
limit of 100 Hz was chosen with the expectation that the precision of the measurement

technique would begin to break down at a somewhat higher frequency.

The high frequency end of the measurement frequency range was chosen to

ensure the validity of the five frequency constraints associated with the zeroth order

approximation (Eqs. 2.24, 2.25, 2.26, 2.31, and 4.11). Of the five constraints, that
associated with higher order modes in x (Eq. 2.26) is the most limiting. That con-
straint, f < 4494 Hz, led to a choice of 4 kHz as the upper frequency limit for the

measurements.

Although we are primarily interested in the measured values of the Bloch wave

number q, it is nonetheless of interest to view some of the raw data. Figure 4.8 shows

the amplitude spatial series for several frequencies in and below the ir stopband.

Notice that the 830 Hz series shows the characteristic exponential decay associated
with lossy propagation, and no readily identifiable oscillations. The lack of oscil-

lations indicates a nearly purely progressive Bloch wavefield. The 1200 Hz series

shows both an increase in the exponential decay relative to the 830 Hz series and
the appearance of oscillations. The increase in decay with frequency is expected

of thermoviscous boundary layer losses, and the appearance of oscillations is con-
sistent with the expected increase in reflected Bloch wave amplitude as a stopband

frequency is approached. The 1350 Hz series shows the continuation of the trend of
stronger decay and increasing oscillation amplitude with frequency. The remaining

series (1380, 1400, 1420, and 1470 Hz) continue the decay trend as we move into the

stopband, but the oscillations disappear. This phenomenon, discussed in Sec. 4.3, is

due to the essentially nonexistent reflected Bloch wave due to the strong exponential

decay. The other trend that is evident in the spatial series is the decrease in the

spatial frequency of the oscillations with increasing frequency. This trend, evident in
the 1200 Hz, 1350 IIz, and 1380 Hz series, seems to be exactly opposite the behavior
expected of a compound wavefield. It is, however, exactly what is expected of a sam-
pled compound wavefield as outlined in Sec. 4.1 (compare the 1200 Ilz and 1350 IHz

series to the examples of Fig. 4.2).
3 Note that this is somewhat below the frequency at which we expect the termination to not be

particularly anechoic It is worth restating that the measurement technique will work regardless of
the amplitude of the backward propagating Bloch wave component. The precision is simply better
when the reflected wave amplitude is small. The behavior of the anechoic termination is therefore

not critical to our measurement; it simply enhances the precision.

84



1.2

1.0-

:W. 830 Hz

E
<0.6 1200 Hz-

a)4 
-

0.2- 14200Hz

1470 Hz1380 Hz

0  1.0 2.0 3.0 4.0

Distance (in)

FIGURE 4.8
The amplitude spatial series for several frequencies in and below the

,r stopband.

AS-91-357

85



4.0

3.5-

3.0-

2.5-

.0

S1.5
LL

1.0 - ... theory
-experiment

0.5

0.0-
0 10 20 30 40 50 60 70 80

Bloch wave number: Re~q} (1/rn)

FIGURE 4.9
Theoretical and experimental values of Rejq}.

AS-9 1-358

86



4.0-

3.5

3.0-

~2.5

...... .....
C 2.0....

to)1.5

1.0 ... theory
-experiment

0.5-

0.0
0 5 10 15 20 25 -30 35

Bloch wave number: Im(q) (1/rn)

FIGURE 4.10
Theoretical and experimental values of Imjq}.

AS-91-359

87



The theoretical and experimental values of the Bloch wave number show excellent

agreement. Figures 4.9 and 4.10 show the real and imaginary components of q, respec-

tively, for both theory and experiment. The ir and 2ir Bragg stopbands (centered at

about 1.5 kHz and 3.5 kHz, respectively) and the side branch resonance stopband (at

about 2.0 kHz) are clearly evident. In the vicinity of the 27r stopband the experimen-

tal curves begin to become shifted with respect to the theoretical curve, a trend that

is evident for both Re{q} and Im{q}. This may be due to the breakdown of one of the

zeroth order assumptions. Figure 4.11 shows Im{q} on an expanded scale in q. The

measured value of Im{q} is consistently about 0.02 m -1 larger than the theoretical

prediction. This could be in part due to the fact that in the development of the theory
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FIGURE 4.11

Theoretical and experimental values of Im{q} on an expanded scale.
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we accounted for losses in the zeroth order mode but none of the higher order modes.

That is, we assumed that the evanescent higher order modes, once established, exist

somewhat independently of the zeroth order mode, simply representing local lossless

storage of acoustic energy In fact, there are losses associated with the evanescent

modes, losses which are "fed" by the zeroth order mode and which therefore represent

additional dissipative attenuation of the zeroth order mode. It is also to be expected
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that the various seals are imperfect and will leak or otherwise absorb acoustic energy.

Note also that there are small patches of jitter in the plot near 800 Hz and 2700 Hz.

These art frequencies at which the oscillations in the amplitude and phase series have

zero frequency aliases and measurement inaccuracies are expected (see discussion of

Eq. 4.10).

It was noted in Sec. 4.1 that the amplitude of the oscillations in the amplitude

series is a measure of the reflected Bloch wave amplitude. Figure 4.12 shows the

amplitude of the oscillations (which was found by taking half of the difference between

the maximum and minimum values of the oscillations) and the theoretical value of

the reflected Bloch wave amplitude. We see that albeit rough, there is a degree of

agreement. The roughness is expected as we have simply looked for maxima and

minima in the oscillations without accounting for 'lossy propagation (the oscillaticn

amplitudes are larger near the termination end than near the source end) We may

also be missing the absolute maxima and minima because of the intermittent nature of

sampling. The ternique breaks down at frequencies at which the attenuation is large

(i.e., at and near Atopband frequencies) as any noise-like jitter in the data is large

compared to the -ery small amplitude of the wave incident upon the termination,

making the reflected Bloch wave appear to be greater in amplitude than the incident

wave amplitude. It can also be seen that the reflected Bloch wave amplitude is larger

than expected below about 300 Az, which is consistent with the predicted breakdown

of the anechoic nature of the fiberglass wedge termination.

4.4.1 Conclusion

To conclude, it is first worth noting that the experimental findings are supportive

of the validity of the theory (Figs 4.9, 4.10, and 4.11 provide the most conclusive

testimony). Secondly, it is worth drawing attention to the strength of the dispersion

and attenuation that we were able to achieve in a periodic waveguide. Phase speeds of

219 m/s and 465 m/s were measured at 1992 Hz and 2370 Hz, respectively. In other

words, the phase speed changed by 246 m/s (a 112% increase) over a frequency interval

of only 378 Hz (0.076 decades or 0.250 octaves). The attenuation was measured to be

over 38 dB/m in the first Bragg stopband (the ir stopband) and over 260 dB/m in the

side branch resonance stopband. Another remarkable feature of the attenuation is the

sharpness of the band structure. The measured attenuation was less than 9 dB/m

at 1930 Hz, over 260 dB/m at 2028 Hz, and less than 4 dB/m at 2450 Hz. In other

words, the attenuation increased by over 9200% (in dB/m) over an interval of only

98 Hz (0.022 decades or 0.072 octaves) and then decreased to 1.5% of the maximum

value in the next 422 Hz (0.082 decades or 0.273 octaves)! The maximum attenuation

slope was measured at over 20,230 dB/m/decade. For a propagation distance of 1.0 m

(10 structure periods), the slope is over 20,230 dB3/decade, which is larger than the

slope associated with a 1000 pole rolloff!
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5. CONCLUSION

A theoretical and experimental investigation of the properties of linear acoustic
propagation in a periodic waveguide has been carried out. The waveguide under study
is a rectangular duct loaded periodically with rigidly terminated side branches. In

thi3 chapter the results of the investigation are summarized, conclusions are drawn,

ard some suggestions for futire work are presented.

Summary

This work is divided into three sections, each of which comprises a chapter. The

first section (Chap. 2) is an investigation of the conditions under which one can expect

to have Bloch wave solutions of a periodic waveguide problem. It is shown that there

are two conditions under which the Floquet theorem may be applied to a mathemati-
cal system to show that the solution functions are Bloch wave functions. The system
must (1) exhibit a translational invariance, and (2) have two linearly indeper dent

solutions. Condition (1) is shown to be satisfied even in the dissipative case for an

arbitrary periodic waveguide. That is, the Bloch wave formalisri retains its validity

with the introduction of dissipative losses. Condition (2) is shown to be satisfied

for our waveguide when the excitation frequency is low enough to ensure that the

solution is well represented by the zeroth order mode of propagation alone. In other
words, information must be transferred from cell to cel! by the zeroth order mode

of propagation only. In addition to the investigation of the aboe conditions, a new
functional representation of the Bloch wave function, here called the convolution rep-

resentation, is introduced. This representation bears a very straightforward relat:ion

to the functional form of the Bloch wa~e itself.

The second section (Chap. 3) is compnsed of derivation. of the various quantities

that characterize Bloch wave propagation. A dispersion relation for a waveguide
loaded with a periodic array of arbitrary scatterers is derived. Various forms of the

dispersion relation are shown for varijus types of scatterer. The dispersion reiation.
for the waveguide of this study is ,.erive(a and the features of the dispersion ci ve

are related to tbh waveguide dimensions. The impedance function is derived for

an arbitrary scat rer as well as for the scatterer used in this study. It is found
that when expressed in the convolution representation, the Bloch wave function for
a waveguide loaded with scatterers is completely specified by the two parameters q

and g/f. An expression for .q/f is derived. An analytic expression for the travelling

wave spectral amplitudes is found ir, terms of q and g/f. Thc cifect of truncating the
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periodic waveguide is examined and a Bloch wave reflection coefficient is derived for
a periodic waveguide terminated into an arbitrary terminating impedance.

The third section (Chap. 4) is the description of a measurement of the Bloch
wale dispersion. A scheme for extracting precise dispersion information from a com-

pound Bloch wavefield is developed and its implementation described. The resulting

dispersion measurements show very good agreement with the theoretical results.

Conclusions

The goal of this study, to develop and experimentally verify a theory for acoustic

Bloch wave propagation, appears to have been completed successfully. The theoretical
results make some intuitive sense and agree well with the experimental results.

As was remarked upon in Sec. 4.4, the introduction of a periodic array of resonant

scatterers into a guided wave system can cause both very strong dispersion and very
sharply banded attenuation. The very rapid transitions in attenuation make the
periodic waveguide a promising candidate for use as a band reject travelling wave filter
(it was noted in Sec. 4.4 that the attenuation slope near the side branch resonance

stopband is that of a 1,000 pole filter). Such a travelling wave filter would be tuneable
simply by altering the resonance frequency of the scattering elements, as shown in
Fig. 3.3. Such filtering techniques may be applicable in the design of exhaust noise

mufflers or sound suppressing ventilation ducts. Low flow resistance, lightweight

scatterers may be an attractive alternative to the duct lining in common use.

Suggestions for Future Work

As was pointed out in th. introductory chapter, this work is preliminary to the

study o" finite amplitude acoustic propagation in a periodic waveguide. Suggestions
for future work in the linear acoustic case are:

* Experimentally verify the f and g wave makeup of a Bloch wave. Such a

measurement would also be an indiiect measuremeit of the periodic structure
impedance.

" Measure the (generally aharmonic) series of resonance frequencies of a rigidly
terminated periodic waveguide. Such a measurement may be of interest in the
nonlinear case as the nonlinearly generated harmonic distortion components
would not coincide with resonances as they do in the uniform waveguide case.

" investigate the propagation of transients in a periodic waveguide.

" Determine whether or not the introduction of periodic scatterers into ventilation

ducting would be an effective means of suppressing noise transmission through
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the duct.

" Apply the theory developed. here to the case of a waveguide with distributed
as opposed to spatially localized scatterers. The scattering matrix elements as
defined in this work would then be non-causal functions of frequency (owing to
the fact that the associated impulse responses would be non-zero for t < 0),
but this will not be of concern as far as the dispersion relation is concerned. It
would be interesting to treat the problem of a waveguide with sinusoidal walls
by finding the S-matrix elements associated with a single sinusoidal bulge in a
waveguide, introducing them into the general dispersion relation, and comparing
the results to those of Nusayr (1980).

" Tnvesigate the problem of wave propagation in a temporally periodic medium.

" Investigate propagation of a guided electromagnetic field through a guided

acoustic field. To some degree, the acoi.'stic field would represent an effectively
static spatially periodic inhomogeneity.
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