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Abstract

In this paper, we study the use of different frequency warp-

factors for different acoustic classes in a computationally

efficient frame-work of Vocal Tract Length Normalization

(VTLN). This is motivated by the fact that all acoustic classes

do not exhibit similar spectral variations as a result of physi-

ological differences in vocal tract, and therefore, the use of a

single frequency-warp for the entire utterance may not be ap-

propriate. We have recently proposed a VTLN method that im-

plements VTLN-warping through a linear-transformation (LT)

of the conventional MFCC features and efficiently estimates the

warp-factor using the same sufficient statistics as that are used

in CMLLR adaptation. In this paper we have shown that, in this

framework of VTLN, and using the idea of regression class tree,

we can obtain separate VTLN-warping for different acoustic

classes. The use of regression class tree ensures that warp-factor

is estimated for each class even when there is very little data

available for that class. The acoustic classes, in general, can

be any collection of the Gaussian components in the acoustic

model. We have built acoustic classes by using data-driven ap-

proach and by using phonetic knowledge. Using WSJ database

we have shown the recognition performance of the proposed

acoustic class specific warp-factor both for the data driven and

the phonetic knowledge based regression class tree definitions

and compare it with the case of the single warp-factor.

Index Terms: VTLN, Acoustic-Class Specific Warping, Re-

gression Class Tree, Linear Transform

1. Introduction

Inter-speaker variability is a major cause of performance degra-

dation in speaker-independent (SI) speech recognition systems.

Vocal Tract Length Normalization (VTLN) [1] is a commonly

used method to reduce inter-speaker variability, where the spec-

tra of the speech frames are appropriately frequency-warped to

reduce the spectral variations among different speakers. It is a

common practice to use a single warp-factor for the entire utter-

ance that captures the global spectral variations among speak-

ers. However, it is well known that all phone classes do not

exhibit the same spectral variation due to physiological differ-

ences and hence it would be more appropriate to have different

warp-factors for different acoustic classes within an utterance.

There has not been much work done on the use of class-

specific warp-factors since conventional VTLN is cumbersome

to implement. Even for the case of the single warp-factor, the

estimation is performed by doing a grid search over a range of

values of the warp-factor and selecting the one that maximizes

the likelihood of the corresponding warped utterance w.r.t. the

model. This approach is computationally expensive, since it

requires generation of warped utterances for the entire search

range of the warp-factor, which involves scaling of the filter-

bank for each value of the warp-factor before generating the

warped features.

One of the early works on the use of phone-specific warp-

factors was reported in [2]. In this work, a preliminary phone

transcription of the utterance obtained from first-pass recogni-

tion was used to assign a phoneme label to each acoustic vector

and phoneme-dependent warping was estimated for each acous-

tic vector. However, no significant improvement was obtained

over the use of a single warp-factor for the WSJ task.

Recently, the MATE [3] algorithm has been proposed where

there is an expansion of the HMM state space to include the

warp-factor space. In this method, frame-specific warp-factors

are estimated. This allows the warp-factor to change every

frame, but constraints are used to prevent abrupt changes in

warp-factor for adjacent frames. Using this approach, they have

shown 10% relative improvement over conventional VTLN on

the Aurora2 task.

In MATE, Viterbi search is performed in a 3-dimensional

space, that includes time, state, and warp-factor, i.e.,

φj,n(t) = max
i∈I,αn∈A

˘

φi,m(t − 1)am,n
i,j

¯

bj(x
αn

t ) (1)

where φj,n(t) is the likelihood of the optimum path terminat-

ing in state j and warp-factor αn, I is the state-space and A
is the warp-factor space. Essentially, in this method a frame-to-

(state,warp-factor) mapping is obtained. Since the search is also

performed along the warp-factor space, appropriately VTLN-

warped acoustic vectors for all warp-factors are required to ob-

tain the appropriate warp-factor for each frame. Other method

which also finds multiple warp-factors from a speech utterance

is [4].

Recently, we have shown that VTLN-warping can be im-

plemented by a linear-transformation (LT) of the conventional

MFCC features [5, 6]. These LT are analytically pre-computed

without any modifications in the standard MFCC computa-

tions. Note that the linear transformation approaches proposed

in [7, 8] are based on continuous-frequency domain processing

and run into aliasing problems when implemented in practice.

Further, our approach of LT VTLN exactly implements the con-

ventional frequency-warping in the physical-frequency domain

unlike the method proposed in [9], which, itself, is a modifica-

tion of an earlier work of ours. Some of the other approaches

to VTLN using linear transformation of MFCC are presented in

[10, 11]. The use of these pre-computed matrices make VTLN-

warping computationally efficient, since the VTLN-warped fea-

tures can be obtained by a matrix-multiplication of MFCC fea-

tures without the need of spectral-warping for each warp-factor,

α, and generation of corresponding warped cepstral features.

In another earlier work [12], we have also shown that in

the LT framework, it is also possible to estimate the warp factor

very efficiently using the pre-computed VTLN matrices and the
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same sufficient statistics as that are used in CMLLR. This makes

VTLN even simpler.

In this paper, we show that in the computational efficient

framework of [12], it is possible to estimate one warp-factor for

each acoustic class, where the acoustic class, in general, can

contain any collection of Gaussian components in the acous-

tic model. For example, if the acoustic class is defined as the

collection of Gaussians belonging to a phoneme, a separate

warp-factor can be obtained for each phoneme. The proposed

method is similar to MATE since both the methods try to re-

duce the local variations in the speech spectra by using different

warp-factors within an utterance. However, since the proposed

method is based on acoustic class, it is flexible and computa-

tionally efficient. The salient features of the proposed method

are:

1. A separate VTLN warp-factor is estimated for each acoustic

class within an utterance.

2. The definition of acoustic class can be done in several ways,

including using a distance criteria (data driven) or using pho-

netic knowledge.

3. A regression class tree can also be used to define regression

classes. The advantage of using regression class tree is that

when there is insufficient data available for accumulation of

statistics for a particular acoustic class, its parent class can

be used for warp-factor estimation of that class.

4. Linear-transformation approach of VTLN is used, and there-

fore, the generation of warped features by frequency-scaling

is not necessary. Further, this approach is based on the idea

of sufficient statistics similar to MLLR/CMLLR. This makes

the warp-factor selection for each class very easy.

5. Since only one parameter needs to be estimated per acoustic

class, very little adaptation data is required even when there

are many acoustic classes unlike transform-based adaptation

methods.

In Section 2 we briefly discuss our recently proposed LT ap-

proach for VTLN. In Section 3 we describe the sufficient statis-

tics based approach for warp factor estimation, which will form

the basis of the work presented in this paper. Then we explain

our proposed method of regression class tree based warp-factor

estimation in section 4. Finally, we present the experimental

results on the WSJ database and compare word recognition per-

formance of the proposed method for different number of re-

gression classes.

2. Linear Transform Approach for VTLN

In [5], we have proposed a method to obtain VTLN-warped fea-

tures, Xα, through a linear transformation of un-warped MFCC

features, X , i.e.,

X
α = W

α
X, (2)

The VTLN warp-matrices, W α, are obtained using the idea of

band-limited interpolation and is given by

W
α = DT

α
D

−1
(3)

where D is the DCT transform and T α is the band-limited in-

terpolation matrix given by

T
α
k,n =

1

2N

2N−1
X

l=0

e
−j 2π

2N

“

ν̃l

νs

”

k
e

j 2π

2N

“

νl

νs

”

n
. (4)

νl and ν̃l denote the Mel-frequencies corresponding to the

physical-frequencies (Hz) before and after frequency scaling,

νs is the sampling frequency expressed in Mels and N is the

number of Mel filters.

Since there is no closed form solution for the maximum

likelihood estimation of the warp-factor, it is a common practice

to perform a grid-search over the range of 0.8 to 1.2 to find the

optimal α that maximizes the likelihood of the warped utterance

w.r.t the model and the Jacobian term, i.e.,

α
∗ = arg max

α
log p(W α

X|λ, U) + log(|W α|) (5)

where, U, λ and |W α| are the transcription used for alignment,

the model parameters and the Jacobian, respectively. Note that

in this approach of warp-factor estimation, the likelihood has to

be computed for each value of α. This requires multiple align-

ments of the utterance using Viterbi. Therefore, this approach

of warp-factor estimation is computationally expensive.

3. Sufficient Statistics based Method for
Global Warp-Factor Selection

Recently [12], we have shown that in the linear transforma-

tion framework, the warp factor selection can be done very ef-

ficiently using two sufficient statistics that are collected over

the speech utterance and the pre-computed VTLN matrices de-

scribed in Section 2. Below we summarize the steps involved to

estimate the warp-factor of an utterance.

Initial Step: Compute and store the VTLN warp-matrices

using Eq. 3 and 4. (Note: These matrices are data independent.)

1. Obtain the posterior probability, γjm (t), of the un-warped

features w.r.t. the model.

2. Compute the following two statistics over all Gaussian com-

ponents in the acoustic model using the un-warped feature

vectors, i.e.,

K
(i) =

M
X

m=1

µ
(i)
jm

σ
(i)2

jm

T
X

t=1

γjm (t) xt
T

(6)

G
(i) =

M
X

m=1

1

σ
(i)2

jm

T
X

t=1

γjm (t) xtxt
T
. (7)

µ
(i)
jm, σ

(i)
jm

2
and M are the mean, the co-variance and total

number of Gaussian components in the model, respectively.

3. To get the α for the utterance, perform a simple maximiza-

tion over the warp-matrices, i.e.,

α
∗ = arg max

α
J −

1

2

(

D
X

i=1

w
α
i G

(i)
w

αT

i − 2K
(i)

w
αT

i

)

(8)

where, J , wα
i and D are the Jacobian, the ith row of W α

and the dimension of feature vectors, respectively.

The statistics, K and G, are exactly the same sufficient

statistics as that are used in CMLLR. Therefore, the method

is very similar to CMLLR and can be used as conveniently as

any transform-based speaker adaptation methods. However, in

VTLN, only one of the pre-computed matrices, corresponding

to the warp-factors, is selected. On the other hand, in the case of

CMLLR, the elements of the adaptation matrix (usually block-

diagonal) are estimated. Therefore, VTLN requires very little

data to achieve speaker normalization.
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4. Regression Class Tree based VTLN

Since the statistics used in Eq. 6 and 7 are collected over all

Gaussian components in the acoustic model, the transform ob-

tained is a global transform, which is applied on all components

in the acoustic model. However, it is also possible to cluster

similar components into an acoustic class and accumulate the

statistics, G and K, separately for the class. In this scenario,

therefore, it is possible to obtain a separate warp-factor for each

class. For warp-factor estimation, the steps given in Section 3

for the case of global warp-factor remain the same, except that

the following two modified statistics are used:

K
(i)
r =

Mr
X

mr=1

µ
(i)
jmr

σ
(i)2

jmr

T
X

t=1

γjmr
(t) xt

T
(9)

G
(i)
r =

Mr
X

mr=1

1

σ
(i)2

jmr

T
X

t=1

γjmr
(t) xtxt

T
(10)

where, the outer summation is performed over all Gaussian

components belonging to rth acoustic class.

Since only one parameter is required to be estimated for

each class, even with limited data, we can have multiple classes.

In this paper, we have used the ideas of regression classes and

regression class trees [13] for warp-factor estimation. The ad-

vantage of using regression class tree is that even in the case of

insufficient data available for a class, warp-factor can still be es-

timated using its parent regression class. In our experiments, the

following two methods are used to define the regression trees.

4.1. Phonetic Knowledge Based Approach

In this approach, a set of broad phonetic classes is defined and

Gaussian components belonging to each broad phonetic class

are clustered together to form a regression class. Table 1 shows

the broad phonetic classes (excluding silence class) that are

used in this paper for the experiments. This phoneme list is

similar to that is used in [14].

Table 1: Broad phonetic classes used in the experiments [14].

Broad Phonetic Phonemes

Classes

Very Front Vowel ih,iy

Near Front Vowel ae, eh

Front Diphthongs ey, ay

Back Diphthongs aw, ow, oy

Near Back Vowel aa, uh, ah, er

Very Back Vowel ao, uw

Liquids l, r, w, y

Nasals m, n, ng

Strong Fricatives dh, jh, v, z, zh

Weak Fricatives ch, f, hh, s, sh, th

Unvoiced Stops k, p, t

Voiced Stops b, d, g

4.2. Data Driven Based Approach

In this approach, a binary regression tree was constructed by

successively splitting Gaussian components clustered at a node

in the tree. To start with, all components in the model are clus-

tered at the global node. Using the centroid splitting algorithm,

two child nodes are formed from a node and using the euclidean

distance as the measure of similarity, each Gaussian component

in the node is assigned to one of the child nodes. This procedure

is continued until the required number of classes are formed.

The tree is built using the SI/previous-iteration VTLN model.

5. Experimental Set up

We present the experimental results on the Wall Street Jour-

nal (WSJ) database. Cross word tri-phone models were used

with decision tree based state tying. The tri-phone models had

three states, with 8 diagonal-covariance components for each

state. A three state model with 16 diagonal-covariance com-

ponents was used for the silence, and a short-pause model (al-

lowing skip) was constructed with all states tied to the silence

model. Each component was modeled by a Gaussian density

function. The acoustic models were trained using the WSJ0-

84 training set that resulted in 2736 states after doing state ty-

ing. Test was performed on November 1992 WSJ test set us-

ing WSJ 5K closed non-verbalized vocabulary and the WSJ 5K

closed non-verbalized bi-gram language model. The features

in the task are 39-dimensional MFCC, comprising normalized

log-energy, c1, . . . , c12 (excluding c0) and their first and second

order derivatives. 20 ms frames with 10 ms overlap was used

and cepstral mean subtraction was applied over every speech ut-

terance. All experiments were conducted using Hidden Markov

Models Toolkit (HTK).

6. Results and Discussions

Now we present the experimental results for our proposed

method of regression class tree based warp-factor estimation. In

Table 2 the Word Recognition Accuracy (WRA) for the distance

based regression class trees are shown. Global Class in the table

indicates the case where one global warp-factor was estimated

for the utterance. In this case silence was also warped by the

global warp-factor along with the speech components. How-

ever, we found that it is better not to warp silence in the other

cases. The numbers in the first column of the table show the

number of regression classes that were used for warp-factor es-

timation for each utterance, excluding the silence class. For ex-

ample, in the case of 8 classes in the table, silence was excluded

and a regression class tree was grown with 8 speech classes us-

ing the data driven approach, and warp-factor estimation was

performed. The minimum frame count for warp-factor estima-

tion was kept to 30 frames. The column “Adaptation” indicates

that the un-normalized model was used for warp-factor estima-

tion and in the subsequent recognition of test data. “Adaptive

Training” indicate that VTLN was also done during training and

the speaker-normalized model was used during test.

Table 2: Word Recognition Accuracy for different number of

regression classes in data driven approach.

Number of Adaptation Adaptive Training

Regression Classes

(excluding silence)

Global Class 93.75 94.00

2 93.83 94.02

4 93.83 94.10

6 93.81 94.04

8 93.85 94.10

10 93.88 94.25

12 93.90 94.23

• No Normalization (Baseline) performance: 93.60

From Table 2, the following observations can be made.

• In the case of multiple regression classes, the WRA per-

formance is higher than that of the global class.

• There is a trend for WRA to increase with increasing

number of acoustic classes. The highest WRA was obtained

for the case of 10 classes.
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Table 4: Warp-factor distribution for the broad phonetic classes used in the experiments and the corresponding global warp-factor

shown for a few example utterances taken from the training set of WSJ0-84.
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example 1 1.04 1.02 1.02 1.04 1.04 1.04 1.04 1.06 1.02 1.06 1.08 1.10 1.06

example 2 1.06 1.04 1.06 1.12 1.06 1.08 1.06 1.04 1.08 1.10 1.06 1.10 1.10

example 3 0.94 0.96 0.96 0.96 0.96 0.94 0.94 0.96 0.94 0.90 0.92 0.92 0.90

example 4 0.94 0.96 0.96 0.94 0.94 0.94 0.94 0.92 1.06 0.92 0.92 0.92 0.94

example 5 0.98 0.98 1.00 0.98 0.98 0.98 0.98 1.00 1.02 1.02 0.98 0.96 0.98

Table 3: Word Recognition Accuracy for phonetic knowledge

based approach of acoustic class.

Number of Adaptation Adaptive Training

Regression Classes

(excluding silence)

12 93.87 94.17

Table 3 shows the experimental results conducted using the

phonetic knowledge based approach for regression class defini-

tion. The broad phonetic classes shown in in Table 1 were used

for the experiments. Here also, silence was considered as a sep-

arate class and was not warped. The minimum frame counts for

warp-factor estimation was kept to 30 frames. We observe that

in this approach also, the performance using 12 acoustic class

is better than the global class case (shown in Table 2). Com-

paring Table 2 and Table 3, we observe that the WRA of the

phonetic knowledge based approach is comparable to the data

driven approach for the case of 12 classes.

6.1. Analysis of Warp factors for different classes

In Table 4 the warp-factors for each of the broad phonetic class

are shown for some of the utterances taken from the training set

of the WSJ database. The following observations can be made:

• There are variations in the warp-factor among different

phoneme classes in the speech utterance validating our conjec-

ture that all phone classes do not undergo similar spectral vari-

ations.

• Similar phoneme classes (for example, Very Front Vowel

and Near Front Vowel or Very Back Vowel and Near Back

Vowel) have similar warp-factors, even though they were es-

timated using different regression classes.

• Unvoiced Stops, Strong Fricatives etc. have significantly

different warp-factors than the global warp-factor.

7. Conclusions

In this paper we have proposed a method for using regression

class trees in VTLN to allow acoustic class specific warp-factor

estimation. The proposed method is very flexible since the

acoustic class can be chosen in different ways and supports the

use of regression class trees. From experiments performed on

the WSJ database, it was observed that using multiple acoustic

classes for warp-factor estimation provided better recognition

performance than using one global acoustic class. This obser-

vation holds true both in data driven and phonetic approaches of

regression class tree definitions. Our experiments also indicate

that the warp-factors are different for different acoustic classes.

In all our experiments, VTLN is efficiently implemented using

linear-transformation of MFCC and using the same sufficient

statistics as CMLLR for warp factor estimation. It is, there-

fore, computationally more efficient than MATE or the method

of applying phone-specific warping using alignment output.
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