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Abstract. We propose a general methodology and a set of practical recipes for

the construction of ultra-broadband acoustic cloaks—structures that can render

themselves and a concealed object undetectable by means of acoustic scattering.

The acoustic cloaks presented here are designed and function analogously to

electromagnetic cloaks. However, acoustic cloaks in a fluid medium do not suffer

the bandwidth limitations imposed on their electromagnetic counterparts by the

finite speed of light in vacuum. In the absence of specific metamaterials having

arbitrary combinations of quasi-static speed of sound and mass density, we

explore the flexibility of continuum transformations that produce approximate

cloaking solutions. We show that an imperfect, eikonal acoustic cloak (that is,

one which is not impedance matched but is valid in the geometrical optics

regime) with negligible dispersion can be designed using a simple layered

geometry. Since a practical cloaking device will probably be composed of

combinations of solid materials rather than fluids, it is necessary to consider

the full elastic properties of such media, which support shear waves in addition

to the compression waves associated with the acoustic regime. We perform a

systematic theoretical and numerical investigation of the role of shear waves in

elastic cloaking devices. We find that for elastic metamaterials with Poisson’s

ratio ν > 0.49, shear waves do not alter the cloaking effect. Such metamaterials

can be built from nearly incompressible rubbers (with ν ≈ 0.499) and fluids. We

expect this finding to have applications in other acoustic devices based on the

form-invariance of the scalar acoustic wave equation.
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1. Introduction

Propagating waves are among the most significant tools for the remote sensing of material

objects. Although modern sensors vastly expand the frequency ranges that humans can perceive

and have become increasingly sophisticated, they nevertheless rely on the same underlying

principle: detecting waves that propagate a sizable distance in the medium separating an object

and its observer. Only two types of easily detectable waves can propagate in bulk media, such

as air or water, without significant damping: electromagnetic and acoustic waves. Regardless

of the progress in other areas of physics, detection of these two types of waves will probably

remain the most practical means for probing material objects, especially those unreachable with

‘near-field’ instruments such as our tactile senses or other, more sophisticated probes (electron

and atomic force microscopy, scanning tunneling microscopy and so forth).

The uniqueness theorem for the scattering problem, which can be derived for the wave

equation, suggests that every scattering object gives rise to a unique field pattern [1, 2]. In other

words, field patterns allow one, in principle, to distinguish different objects from one other, as

well as from vacuum. However, this theorem does not apply to the scattering problems involving

anisotropic media. For example, in the consideration of electrical impedance tomography

measurements on physiological systems, it was found that an anisotropic conductivity

could produce identical voltage and current measurements over the boundary, as would a

homogeneous, isotropic conductivity [3, 4]. In the electromagnetic case, further advances made

in the metamaterials field [5] over the past decade have confirmed that an observer equipped

only with far-field instrumentation may fail to sense an object that is normally considered

detectable [6]–[8]. We refer to devices based on anisotropic media that render a material object

undetectable as cloaking devices or cloaks [5, 6].

The fundamental principle behind the cloaking devices is quite simple (figure 1): they

compress the true size of the object a to an apparent size a′ ≪ λ, rendering a′ much smaller

than the wavelength λ of propagating waves in the ambient medium. In the long-wavelength

(Rayleigh scattering) limit, the total (all-angle) scattering cross-section (TSCS) of a spherical

or cylindrical object scales as a high power of its radius a; e.g. σsc ∝ k4a6 for electromagnetic

waves scattering from a perfectly conducting sphere [9], as well as for acoustic waves scattering

from a rigid sphere [10]. In the case of infinitely long circular cylinders, the TSCS per

unit length scales as σsc/ l ∝ k3a4 for acoustic waves scattering from a rigid cylinder [10],
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Figure 1. Schematic view of the cloaking transformation: an isomorphism

between a circular annulus of inner radius a and outer radius b in physical

coordinates (x, y) (left), and another annulus of inner radius a′ < a and the same

outer radius b in some auxiliary coordinates (x ′, y′) (right). Perfect cloaking

is achieved in the limit a′ → 0. Transformations studied in this paper are

rotationally invariant: in cylindrical coordinates r ′ = q(r), θ ′ = θ .

as well as for TM-polarized electromagnetic waves scattering from a perfectly conducting

cylinder [9].

The compression of the effective electromagnetic or acoustic width of an object can

be achieved using appropriately chosen distributions of material properties. This is possible

thanks to the form-invariance of Maxwell’s equations [6]; the technique has been termed

transformation optics in electromagnetism [11]–[13]. Form-invariance of the scalar Helmholtz

equation enables analogous approaches in acoustics, which collectively can be referred to as

transformation acoustics.

The ‘compressed’ object is hard to detect—at least at the wavelength of measurement λ.

Knowing this, a clever observer might try to switch its sensor to operate at a shorter wavelength,

thus improving the spatial resolution of the obtained image. To avoid detection by such a

countermeasure, a perfect cloaking device therefore needs to be sufficiently broadband; that

is, it needs to cover the entire range λmin 6 λ. a, where λmin is the shortest wavelength the

observer could use given the limitations of the far-field sensor and the dispersive properties of

the lossy medium separating the object and detector. An ultra-broadband cloak that provides

a′ ≪ λmin for all λ> λmin accomplishes complete invisibility of the object to that observer.

Since electromagnetic waves in any physical medium cannot transfer signals faster than

they do in vacuum, special relativity places stringent constraints on the performance of ultra-

broadband electromagnetic cloaks in empty space. In particular, it is generally believed that a

passive, lossless electromagnetic metamaterial cannot be constructed to enable cloaking at all

wavelengths 3 ≪ λvac < ∞, where 3 = max(Lcell, λ
max
res ) is the largest of the two scales: the

diameter Lcell of the metamaterial unit cell (defined as the maximum of its three dimensions)

and the largest resonant wavelength λmax
res . In this regime, we may exclude all finite-frequency,
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resonant phenomena from consideration, as well as the quasi-static resonances of the surface

plasmon type, which require mixtures of positive and negative dielectric permittivities [14].

Cloaking devices based on resonant phenomena cannot be extremely broadband; in

particular, their operation band cannot extend into the static regime. Quasi-static resonances

based on negative permittivity can be made arbitrarily sub-wavelength (λmax
res /Lcell ≫ 1);

however, the prospects for building acoustic metamaterials with the analogous property of

negative effective density ρeff(ω) < 0 that remains negative in the limit ω ≪ 2πc0/Lcell are

unclear [15, 16].

In what follows, we consider only the long-wavelength regime λvac ≫ 3, as defined above.

It should be emphasized that cloaks operating in this regime can still hide objects that are larger

than or comparable to the wavelength 3 ≪ λ. a; the remaining part of the long-wavelength

regime, λ > a, is less interesting, since the object is barely detectable in the far field without any

cloaks. We can see that the metamaterial scale 3 must be chosen not to exceed λmin; in other

words, the observer should not be able to see scattering from individual metamaterial unit cells.

Although trivial, this inequality places a fundamental constraint on the maximum granularity of

metamaterial cloaks when a practical application requires a specific λmin.

In order to support propagating waves in the limit λ → ∞, a periodic metamaterial,

electromagnetic or acoustic, must have a dispersion branch ω(k) that starts at ω(k = 0) = 0.

Such branches of dispersion are known as acoustic branches in the theory of photonic and

phononic crystals; their dispersion ω(k) is a linear function in the limit ω → 0. Therefore,

in the regime λvac ≫ 3, the phase velocity vph = ω/k in a periodic metamaterial coincides

with the group velocity vg = ∂ω/∂k. For electromagnetic metamaterials with negligible loss,

the group velocity cannot be superluminal, as this would violate special relativistic causality.

Since cloaking devices require phase velocities that exceed the phase velocity in the ambient

medium (typically, air), electromagnetic cloaking is impossible in the regime λvac ≫ 3.

This limitation does not apply to acoustic cloaking, which can utilize ‘hard’ materials with the

group (and phase) velocity of sonic waves greatly exceeding its value in the ambient

medium.

The goal of this work is to suggest a methodology and a practical recipe for ultra-

broadband acoustic cloaking devices that can be made of industrially available materials.

Recently, the feasibility of acoustic cloaking has been the subject of many theoretical [15]–[22]

and experimental [7, 8] studies. Theoretically, acoustic cloaking with fluid-like metamaterials

should be possible [7, 20, 21], [23]–[25] due to the direct analogy between linearized fluid

dynamics (acoustics) and electrodynamics [18, 19, 26], for which the cloaking effect was

demonstrated experimentally [5]. The analogy becomes especially straightforward for two-

dimensional (cylindrical) acoustic cloaks, which are the subject of this study. Cloaking devices

that operate on the principle of isotropic compression of the apparent object size require an

anisotropic effective mass density matrix. Its degree of anisotropy (characterized by the ratio

of principal values ρeff
1 /ρeff

2 ) relates to performance characteristics of the cloak, as explained in

section 2.

Several implementations of anisotropic mass density have been proposed for the long-

wavelength regime that could potentially lead to ultra-broadband acoustic cloak designs. For

instance, several groups [20, 25] have suggested that a perfect cloak can be implemented as a

series of homogeneous concentric layers with prescribed density ρ(r) and bulk modulus K (r)

(see figure 2). However, the literature still lacks any practical recipes for making a material

with the required values of (ρ, K ) from naturally available components. In reality, achieving
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Figure 2. Geometry of a cylindrical cloak based on concentric layers of a bi-layer

metamaterial.

independent control of the static density and static bulk modulus of a material is a very difficult

task; generally, for natural materials the bulk modulus K is a monotonically increasing function

of the density ρ. This correlation is often expressed in the form of an Ashby chart [27].

Independent variation of ρ and K may be unnecessary if one resorts to building an eikonal

cloak, which controls only the dispersion relation ω(k) (which in the long-wavelength limit

depends solely on the speed of sound cp = √
K/ρ, as explained above), but not the acoustic

impedance Z = √
Kρ. Thus, only the two ratios ρr,θ/K must be controlled in an eikonal cloak.

We note that the principal values of the speed of sound cr,θ are not determined solely by cp of

the components of the mixture; generally, two of the three quantities ρ, K , cp must be known

for each component. Therefore, correlations between ρ and K in the component materials could

prohibit designing a composite with the desired pair cr,θ [23]. Below, we show how to overcome

the conflict between these correlations and the desired cloaking transformation. In short, our

solution is to choose the cloaking transformation that fits the material model, instead of seeking

a material model that can implement a particular cloaking transformation.

The flexibility of cloaking transformations has been previously exploited in the context

of electromagnetic cloaks. However, in previous works the authors typically selected the

transformation based on optimization of a particular goal, such as minimum impedance

mismatch at the surface [28], or the constancy of one or more constitutive parameters [29].

Calculation of a transformation from the boundaries of attainable material properties (known

as Ashby charts in mechanical engineering [27]) is a new paradigm introduced by this work.

Although independent control over constitutive parameters of electromagnetic metamaterials is

relatively easy [5], this new concept may prove useful for the design of electromagnetic cloaks,

as well as acoustic.

This paper is organized as follows. In section 2, a general procedure for designing an

omnidirectional acoustic cloak is introduced. Section 3 illustrates this procedure using a basic,

concentric bi-layer metamaterial. Section 4 discusses the advantages and limitations of tri-layer

composites. The transition from fluid-like to truly elastic media and the role of shear waves are

studied in section 5. A summary of the results is listed in section 6.
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2. Construction of the cloaking transformation from achievable ranges

of material properties

Here we present a general method for feasibility assessment and subsequent construction of a

cylindrical acoustic cloaking transformation, given a particular material model and ranges of

practically available material parameters. This procedure can be readily modified to design a

spherically symmetric cloak. In what follows, we neglect the curvature of the unit cells, and

refer to the two principal values of the effective density matrix as ρθ and ρr .

It has been shown [21, 26] that an acoustic metamaterial with cylindrically symmetric

distributions ρr(r), ρθ(r) and K (r) can implement a transformation r ′ = q(r) of the physical

radius r onto the radial coordinate r ′ in an imaginary space where the material acts as a uniform

medium with ρ ′
r(r

′) = ρ ′
θ(r

′) = ρ0 = const and K ′(r ′) = K0 = const. Here, ρ0 and K0 are the

density and bulk modulus of ambient medium filling the exterior of the cloak. Specifically, an

annulus a 6 r 6 b corresponding to the cloak in the physical space is mapped onto the annulus

a′ < r ′ < b, if the material properties in a 6 r 6 b are given by the following formulae (see [21]

for a d-dimensional generalization):

ρθ(r)/ρ0 =
(q

r

)

(

∂q

∂r

)−1

,

ρr(r)/ρ0 = (ρθ(r)/ρ0)
−1 =

(q

r

)−1
(

∂q

∂r

)

, (1)

K (r)/K0 =
(q

r

)−1
(

∂q

∂r

)−1

.

For the principal values of the speed of sound in the cloak, one has

c0/cθ =
(

ρθ(r)/ρ0

K/K0

)1/2

= q

r
,

c0/cr =
(

ρr(r)/ρ0

K/K0

)1/2

= ∂q

∂r
.

(2)

When a cylindrically symmetric material distribution implements the speed of sound (2), it is

known as an eikonal cloak. If it also satisfies a more stringent set of requirements (1), the cloak

is referred to as impedance-matched. Note that if an eikonal cloak satisfies a constraint

ρr(r)ρθ(r) = ρ2
0 (3)

for all r , it is impedance-matched. In the geometric optics (GO) limit, an eikonal cloak produces

the same ray trajectories as the ideal (impedance-matched) cloak with the same coordinate

transformation [5, 30]; however, outside of that limit the eikonal cloak always has a non-

vanishing scattering cross-section. The degree to which the eikonal approximation increases

the scattering cross-section depends not only on the wavelength, but also on the choice of the

cloaking transformation [28]. For discussions of the eikonal cloak and its scattering pattern,

see [5, 28, 31, 32]. In sections 3 and 4, we assume that the size of the cloak is substantially larger

than the wavelength, such that the GO (or eikonal) approximation is valid. In the remainder of

this section, we show how either an ideal or an eikonal cloak can be constructed from attainable

material properties.
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Figure 3. Schematic depiction of the cloaking transformation design based on a

hypothetical metamaterial model and practically attainable ranges of parameters.

Left: the region in the metamaterial parameter space dictated by fabrication

constraints (cartoon). Right: Ashby chart [27] for anisotropic speed of sound,

utilized to design an acoustic cloaking transformation. For a sample chart

describing a realistic metamaterial, see figure 8.

The cloak design begins with identifying n1 variable parameters pi (i = 1, . . . , n1) of

the metamaterial unit cell, which can be varied continuously. For example, the unit cell can

consist of two or more uniform materials, and the variable parameters are volume fractions

and geometric aspect ratios describing the size and shape of the inclusions. Additionally, one

can have n2 design parameters that are constant throughout the transformation, but can be

chosen judiciously to optimize performance or the cost of fabrication. Those parameters do

not participate in the transformation-finding procedure described below. In the n1-dimensional

space of variable parameters, fabrication constraints restrict one to a certain manifold M , whose

dimension is m = dim M , 16 m 6 n1 (figure 3, left).

As the second step, one has to choose a metamaterial homogenization model that estimates

ρθ,r and bulk modulus K for any {pi} ∈ M . This homogenization model maps M onto another

manifold D in the three-dimensional space of (ρθ , ρr , K ). Its dimension is d = min(3, m)

for a non-degenerate mapping; the situation d < min(3, m) signals that some of the tunable

parameters pi are useless, and it will not be considered here.

The third step is somewhat different, depending on whether an eikonal or an impedance-

matched cloak is desired. If only an eikonal cloak is sought, one maps the manifold D onto

some manifold N in the two-dimensional space of variables (c0/cθ , c0/cr) using equations

(2); the dimension of N is n = min(2, d) = min(2, m). For an impedance-matched cloak,

one first finds the subset D′ ⊂ D by intersecting D with the surface ρrρθ = ρ2
0 ; apparently,

dimD′ ≡ d ′ = d − 1. Then, D′ is mapped onto N ′ in the plane of variables (c0/cθ , c0/cr) using

the same equations (2), and dimN ′ = n′ = min(2, d ′) = min(2, m − 1).

The fourth step of this procedure is to relate the abscissa c0/cθ and ordinate c0/cr on

the speed-of-sound chart (figure 3, right) with the two quantities qr ≡ q/r and q ′ ≡ dq/dr ,

New Journal of Physics 12 (2010) 073014 (http://www.njp.org/)
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respectively. If dim N > 1 (or dim N ′ > 1), it may be possible to choose a continuous single-

valued function q ′ = F(qr) within the manifold N (respectively, N ′) that

(I) starts from qr = qmin
r (where 06 qmin

r ≪ 1),

(II) ends at qr = 1 and

(III) lies entirely above the isotropy line q ′ = qr , i.e. in the region with

cr < cθ . (4)

Apart from conditions (I–III), the function F(qr) is completely arbitrary. It is not required to be

monotonic; inequality (4) alone guarantees that q(r) is a monotonically increasing, continuous

function of r . If one can choose a curve satisfying all three conditions (I–III), cloaking with

such a metamaterial is feasible.

The desired cloaking transformation q(r) = rqr(r), where a 6 r 6 b, is finally recovered

using a simple quadrature:

ln
r

a
=
∫ qr (r)

qmin
r

dqr

F(qr) − qr

. (5)

The linear cloaking transformation q(r) = b(r − a)/(b − a) widely used in the

literature [6] corresponds to the choice q ′ = F(qr) = const = b/(b − a) and qmin
r = 0. The most

important feature of our procedure is that it enables cloaking with metamaterials that cannot

implement a linear transformation. As we shall see in the following, the part of the manifold

N within the stripe of interest, 06 qr 6 1, is typically an elongated shape extended along the

line q ′ = qr ; a horizontal line with q ′ = const within N cannot extend from a very small qr to

qr = 1, but a tilted line with ∂q ′/∂qr > 0 can.

The final, and trivial, step of the design procedure is to find the values of variable material

parameters that correspond to each point on the curve q ′ = F(qr). Note that if the mapping

M → N (′) is not an isomorphism, i.e. dim N (′) < dim M , there may be additional freedom in

choosing the points in the {pi} space.

A number of observations can be made based on this general analysis. Firstly, the

minimum number of degrees of freedom needed for a cylindrical eikonal cloak is m = 1, and

an impedance-matched cloak needs m > 2. The fact that eikonal cloaking can be achieved with

just one degree of freedom will be used in the next section.

Secondly, since qmin
r = 0 corresponds to infinite speed of sound cθ , in practice the

transformation qr(r) would have to start at some small value qmin
r = a′/a, which will determine

the degree by which the cloak compresses the apparent size of the cloaked object. We

therefore term this ratio a′/a the cloaking deficiency. It is easy to see that the smallest

possible cloaking deficiency is determined by the maximum azimuthal speed of sound, cmax
θ ,

in the metamaterial. In the long-wavelength regime, the principal values of the homogenized

(effective) density matrix are bounded by the Voigt–Reiss inequalities, well known from the

standard homogenization theory of elliptic operators [33]. Specifically, for an elliptic differential

operator ∂ A∂ , where A(Ex) is a symmetric, positive-definite matrix that is a periodic function of

Ex , the homogenized matrix Aeff is bounded as follows:

〈A−1〉−1 6 Aeff 6 〈A〉, (6)

where 〈A−1〉 implies averaging over one unit cell of A(Ex). Applied to one-dimensional, layered,

fluid-like media, these bounds become

ρmin
VR 6 ρθ,r 6 ρmax

VR , (7)
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where

ρmin
VR =

(

∑

i

fiρ
−1
i

)−1

,

ρmax
VR =

∑

i

fiρi ,

(8)

ρθ,r are the principal values of the homogenized density matrix and fi are the filling fractions

of the mixture components with constant isotropic density ρi . Combining this with a long-

wavelength homogenization formula for the bulk modulus of a fluid-like composite,

K −1
eff =

∑

i

fi K
−1
i , (9)

one can show that the speed of sound cannot exceed the maximum speed of sound cmax =
maxi ci = maxi

√
Ki/ρi in the metamaterial components:

c2 = Keff/ρ 6 Keff/ρ
min
V R =

∑

fiρ
−1
i

∑

fi K
−1
i

=
∑

fi K
−1
i c2

i
∑

fi K
−1
i

6

∑

fi K
−1
i c2

max
∑

fi K
−1
i

= c2
max. (10)

Among naturally available materials, including those with Poisson’s ratio ν < 0.5, diamond

has the highest speed of sound cp = 1.2 × 104 m s−1 due to its extremely high bulk modulus

(K = 4.42 × 1011 Pa) and relatively low density (ρ = 3.5 g cm−3). Assuming that the ambient

medium is air with c0 = 340 m s−1, this puts the lower bound on cloaking deficiency in the

long-wavelength regime: min(a′/a) = min(c0/cp) ≈ 0.028. Considering that naturally available

materials with ν ≈ 0.5 have a substantially lower speed of sound than diamond, the realistic

lower bound is even higher.

Thirdly, we note that the curve q ′ = F(qr) cannot be arbitrarily close to the line q ′ = qr ;

the latter corresponds to isotropic materials. When F(qr) approaches the isotropy line q ′ = qr ,

the aspect ratio of the cloak b/a = exp
∫ 1

a′/a
dqr/(q

′ − qr) increases rapidly. In particular, if

0 < q ′ − qr 61 with some constant 1 > 0, then

b/a > exp(1/1). (11)

This is another manifestation of the well-known fact that isotropic cloaking requires anisotropic

material properties [3, 4]. The inverse ratio a/b, which we term the cloaked payload, determines

the volume fraction of the useful volume of the cloak (payload), and in practice one wants

a/b 6 1 to be as large as possible. As we shall see in what follows, realistic material models

typically impose a correlation between the minimum cloaking deficiency a′/a and the maximum

cloaked payload a/b. An optimized trade-off between these figures of merit should be found for

one’s own optimization goal.

3. Implementation using the bi-layer metamaterial model

Using the general methodology of the previous section, we design an acoustic cloak based on a

particular acoustic metamaterial model.
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Layered metamaterials traditionally attract much theoretical and experimental interest, due

to the relative ease of fabrication and the existence of closed-form analytic homogenization

models. It has been shown that the anisotropic mass density matrix can be implemented in a

composite consisting of alternating layers of two isotropic, homogeneous media [20, 24, 25, 34].

An additional reason for layered materials to be important for cloaking devices is that they

implement both the upper and the lower quasi-static Voigt–Reiss bounds for effective density

(see equation (8)):

ρeff
‖ = ρmin

VR =
(

f1ρ
−1
1 + f2ρ

−1
2

)−1
,

ρeff
⊥ = ρmax

VR = f1ρ1 + f2ρ2,
(12)

where ρeff
‖,⊥ are the principal values of the effective density matrix corresponding to the directions

parallel and perpendicular to the layers, ρ1,2 are the densities and f1, f2 = 1 − f1 are the filling

fractions of the two homogeneous, isotropic materials. This means that a bi-layer metamaterial

exhibits the maximum level of density anisotropy obtainable by mixing two isotropic materials

with given densities at a given volume fraction. Other shapes of inclusions, such as finite-width

blocks [35] or ellipsoids, cannot provide a greater degree of anisotropy than the flat bi-layer,

at least not in the quasi-static limit needed for ultra-broadband cloaking. Therefore, in the

remainder of this paper we will focus on layered metamaterials.

From (12) it follows that ρeff
‖ 6 ρeff

⊥ , i.e. c‖ > c⊥. Combined with the cloaking requirement

cr < cθ (4), this dictates that the material layers must be concentric, as shown in figure 2. In

the remainder of this paper, it is assumed that cθ = c‖. Numerical finite-element simulations of

fluid-like acoustic cloaks with anisotropic, continuously varying density have been reported

previously [20]. We have verified, by solving the acoustic Helmholtz equation, that fluid-

like cloaks with a finite number of isotropic-density layers are a good approximation to the

continuous, graded-index version, as long as the number of layers is sufficiently large. This

confirms the validity of the approach proposed in [20, 24, 25].

As previously observed, it should be possible, in principle, to implement an eikonal

cloaking transformation using a metamaterial with only one degree of freedom. Here, we

concentrate on a layered metamaterial consisting of two, fluid-like, isotropic and homogeneous

media, whose density ρ1,2 and bulk modulus K1,2 do not vary in the cloak. The continuous

degree of freedom (p1 from figure 3) in this case is the filling fraction of one of the materials

( f1 or f2 = 1 − f1), and the manifold M is the one-dimensional interval [0; 1]. The choice of

the two materials is dictated mostly by the need for (a) very large azimuthal speed of sound

at the inner radius of the cloak, relative to the speed of sound in ambient medium, and (b)

sufficiently strong anisotropy of effective density. Therefore, one must have c1 ≡ √
K1/ρ1 ≫ c0

and ρ1/ρ2 ≫ 1, where we labeled the denser, harder layers with index 1.

In order to illustrate the upper and, perhaps, unattainable bound on the ultra-broadband

cloaking deficiency, consider a hypothetical, nearly incompressible (i.e. having Poisson’s ratio

ν ≈ 0.5) material with the speed of sound comparable to that in diamond. A typical speed-

of-sound diagram of a bi-layer medium with large density contrast (ρ1/ρ2 ≫ 1) is shown in

figure 4. The diagram is a curve parameterized by the filling fraction f2 of the low-density fluid.

This curve represents the manifold N from figure 3 (right); this manifold is one-dimensional

because dim M = 1. Our choice of the cloaking transformation is restricted to that curve.

Therefore, we only have the freedom to choose the start point qmin
r of the q ′ = F(qr) curve,

i.e. the choice of f min
2 ; recall that qmax

r ≡ 1 due to the requirement cθ = c0 at the surface of the

cloak, which is necessary for the continuity of the transformation function q(r) at r = b.

New Journal of Physics 12 (2010) 073014 (http://www.njp.org/)

http://www.njp.org/


11

0 0.2 0.4 0.6 0.8 1
10

−2

10
−1

10
0

10
1

q/r=c
0
/c

θ

  
  

  
  

  
q

’=
c

0
/c

r

 

 

isotropic

diamond−like

1 1.5 2 2.5 3
0.5

0.6

0.7

0.8

0.9

1

r/a

q
/r

 

 

diamond−like

rubber−like

Figure 4. Left: speed of the p-wave diagram of bi-layer metamaterial composed

of two fluid-like media. The curve is obtained by varying the filling fraction

f1 ∈ [0, 1] of medium 1. High-density layers have ρ1 g cm−3, comparable to the

density of liquids, rubber-like materials and diamond. Low-density layers are

filled with a gaseous medium, the same as the ambient medium. Density ratios

are ρ1/ρ0 = 103 and ρ2/ρ0 = 1; bulk modulus ratios are K1/K0 = 106 (diamond-

hard material in air) and K2/K0 = 1. The curve starts at min q/r = c0/c1 ≈ 0.03.

For K1/K0 = 104 (rubber-hard material in air), the curve looks almost the same,

except that it starts at min q/r ≈ 0.3. Right: the cloaking transformation obtained

from the curve on the left using a numerical quadrature of equation (5). Plotted

is the normalized transformation function, r ′/r ≡ q(r)/r , versus normalized

physical radius, r/a, where a is the inner radius of the cloak. The diamond-

marked curve refers to the same parameters as for the curve on the left; the

circle-marked curve is the same except that K1/K0 = 104. The transformation

begins at the filling fraction of the gaseous fluid f min
2 = 5 × 10−4 in order to

avoid the singularity at cθ = cr . The ordinate of the intersection of each curve

with the vertical axis is the cloaking deficiency, a′/a = q(a)/a, and the abscissa

of the intersection with the horizontal line q/r = 1 is the cloak aspect ratio, b/a.

At f2 = 0, the effective medium is isotropic and its azimuthal speed of sound is maximal:

cθ = cr = c1. At f2 = 1, the effective medium is again isotropic. Therefore, the curve in figure 4

returns to the point (qr = 1, q ′ = 1) on the isotropy line, after going through a sharp maximum.

For simplicity, figure 4 assumes that the low-density layers are filled with the ambient medium

(ρ2/ρ1 = 1). In general, ρ2 = ρ0 and K2 = K0 (or c2 = c0) is not required for an eikonal cloak;

however, the requirement cθ(r = b) = c0 translates to a constraint

c2 6 c0. (13)

Indeed, if both c1,2 exceeded c0, it would be impossible to implement cθ = c0 in this

metamaterial.

The value f max
2 must be chosen such that c0/cθ = 1. If c2 < c0, one always finds f max

2 < 1;

however, the case c2 = c0 plotted in figure 4 needs special consideration. In this situation,

q ′ = qr at f2 = 1; at the same time, f max
2 = 1 corresponds to isotropic material and the
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Figure 5. Filling fraction of the gaseous fluid required to implement the

transformation in figure 4; circle- and diamond-like curves refer to the two cases

described in the caption of figure 4.

transformation (5) diverges. Fortunately, the curve q ′ versus qr is almost vertical at that point: its

slope is
∂q ′

∂qr
| f2=1 ≈ −(ρ1/ρ2)

2, which is a very large number. The integral
∫

dqr

q ′−qr
=
∫

∂qr

∂q ′
dq ′

q ′−qr
can

be made convergent by choosing qmax
r = 1 − (ρ2/ρ1)

2 ≈ 1–10−6. The resulting transformation

function is shown in figure 4, and the required filling fraction of the solid as a function of the

physical radius is shown in figure 5.

The limiting case with c2 = c0 (medium 2 is the same as ambient medium) allows a

perfect match in both the speed of sound and acoustic impedance at the surface of the cloak,

simply because ρr = ρθ = ρ0 and K = K0 at f2 ≈ 1. Unfortunately, this design is not the

easiest to implement. The gradient of the transformation function, dq/dr , reaches a large value

≈ 1

2

√
ρ1/ρ2, of order 16 for ρ1/ρ2 = 103. This large gradient would have to be resolved by

sufficiently thin unit cells of the metamaterial, which may be technologically expensive. To

avoid exceedingly large values of q ′, the speed of sound c2 should be adjusted. The maximum

of q ′ = F(qr) is located at qr = q0
r ≈ (c0/c2)

2(1 − ρ2/ρ1). By choosing c2 slightly less than c0,

such that (c2/c0)
2 < 1 − ρ2/ρ1, the location of this maximum is pushed away into the region

qr > 1, which is not involved in the cloaking transformation. This is illustrated by figure 6,

where c2/c0 is decreased by choosing ρ2/ρ0 = 1.1.

4. Tri-layer metamaterial

As shown above, a large anisotropy of effective density is required for high-quality cloaking

devices. One obvious generalization of the concentric bi-layer metamaterial would be to use

components that are anisotropic to begin with. However, highly anisotropic materials typically

do not have a very small shear modulus, which would complicate the design. The effect of

anisotropic components can be achieved by using another bi-layer metamaterial for one or both

of the layers. Naturally, we come to the idea of multi-layer materials. Here, we evaluate the

performance of a triple layer composite versus a bi-layer studied above.
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Figure 6. Left: speed of the p-wave diagram of bi-layer metamaterial composed

of two fluid-like media. Circle-marked curve: a rubber-like or water-like material

is assumed for the high-density layers, and gaseous fluid for the low-density

layers; ρ1/ρ0 = 103, ρ2/ρ0 = 1.1, K1/K0 = 104, K2/K0 = 1. Diamond-marked

curve: same as the circle-marked curve except that K1/K0 = 106 (diamond-

hard solid). Right: transformation of the radial coordinate versus normalized

physical radius inside the cloak; circle- and diamond-like curves refer to the

same parameters. The transformation is assumed to begin at the filling fraction

of the gaseous fluid f min
2 = 5 × 10−4.
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Figure 7. Filling fraction of the gaseous fluid required to implement the

transformation in figure 6; circle- and diamond-like curves refer to the two cases

described in figure 6.

One positive effect of an extra layer per unit cell is that it has two degrees of freedom:

the filling fractions f1 and f2 ( f3 = 1 − f1 − f2). Consequently, the allowed domain for

cloaking transformations has a finite area (see figure 8). This gives flexibility in choosing the
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Figure 8. Left: manifold M in the two-dimensional material parameter space

of a tri-layer metamaterial, corresponding to the schematic in figure 3 (left).

The dimensions are the filling fractions f1, f2 of the two components; the

constraint f3 = 1 − f1 − f2 ∈ [0; 1] defines the triangular shape of M . Right:

speed-of-sound chart corresponding to figure 3 (right) for a particular tri-layer

metamaterial with normalized densities ρ1/ρ0 = 103, ρ2/ρ0 = 104, ρ3/ρ0 = 1

and normalized bulk moduli K1/K0 = K2/K0 = 104, K3/K0 = 1. The speed of

sound in components 2 and 3 is chosen as equal (c2 = c3 = c0); thus, the 2–3

mixture line is vertical with cθ ≡ c0 and cr 6 c0.

transformation for an eikonal cloak. For example, in figure 8, one can choose a transformation

that starts from point A, follows the upper line corresponding to f3 = 0, and then follows

an arbitrary path from point B to point C while staying between the two borderlines, which

correspond to f2 = 0 and f3 = 0, respectively.

However, we find that tri-layer design has little to offer beyond this flexibility: the allowed

domain is bounded by three curves representing bi-layer metamaterials. Near point A, which is

the crucial point of the design, the maximum speed of sound is still bounded by the speed of

sound in the components of the mixture. Likewise, the maximum anisotropy is determined by

anisotropy in binary mixtures, and it is bounded by max{cθ(1 − 2)/cr(1 − 2), cθ(1 − 3)/cr(1 −
3)}, if material 1 has the largest speed of sound of all three. In other words, what is generally

impossible with bi-layers is also impossible with tri-layers. By induction, this applies to multi-

layer designs with more layers per cell.

5. The effect of shear modulus

In this section, we study the effect of finite shear modulus on the performance of acoustic cloaks.

Although acoustic cloaking with fluid-like materials is a theoretically valid concept, any

realistic cloaking device would require some solid components, merely to maintain its structural

integrity. Metamaterials with hard, solid inclusions that are acoustically fluids have been

designed for two-dimensional (cylindrical) geometry [35, 36], with applications in acoustical

focusing [36] and beam bending [35]. However, generalizing such metamaterials to three
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dimensions while preserving the structural strength of the entire device may be challenging.

This motivates our study of acoustic metamaterials made entirely of elastic solids, and thus

having a non-vanishing effective shear modulus.

To establish the connection with the well-known theory of fluid-like acoustic

metamaterials, we argue that an elastic medium with the stress tensor

σi j =
(

λδi jδkl + µ(δikδ jl + δilδ jk)
)

ukl,

ukl = 1

2
(∂kul + ∂luk)

(14)

(in Cartesian coordinates) and the density tensor ρi j is indistinguishable, in the limit µ → 0,

from a fluid medium with the bulk modulus K = λ and the same density. It is the second Lamé

coefficient µ, also known as shear modulus G, that distinguishes an elastic solid from a fluid.

Based on this physical argument, we expect that a fluid-like cloak designed in the previous

sections still reduces the scattering of compression waves (p-sound) propagating in the ambient

fluid, if the ratio of Lamé coefficients µ/λ is sufficiently small.

It is well known that, unlike Maxwell’s equations, Navier equations (14) of vector

elastodynamics are not form-invariant [17]; although they can be postulated in a covariant

form, an arbitrary coordinate transformation induces changes in the equations that cannot be

absorbed into appropriately redefined elastic properties. This means that arbitrary coordinate

transformations cannot be implemented precisely as distributions of elastic properties, although

in particular cases various approximations may be possible [22]. A ‘viscoelastic’ generalization

of Navier equations, based on a new constitutive law that couples stress, strain, momentum

and strain rate (velocity), has been proposed, and is shown to be form-invariant for an

arbitrary coordinate transformation [17]. However, despite some theoretical effort [15],

practical recipes for making elastic metamaterials with such exotic properties are yet to be

developed.

One manifestation of the lack of form-invariance of the standard Navier equations is

that they allow propagation of two different types of waves: (a) longitudinal pressure waves

or p-sound, and (b) transverse shear waves or s-sound. Their phase velocities are typically

quite different. Specifically, in thermodynamically stable and isotropic elastic media the speed

of p-sound, cp = √
(λ + 2µ)/ρ, strictly exceeds the speed of s-sound, cs = √

µ/ρ. The ratio

cp/cs = √
2(1 − ν)/(1 − 2ν) cannot be less than

√
4/3, since Poisson’s ratio ν is always greater

than −1. Therefore, matching the dispersion relation of the two branches, as one does in

impedance-matched electromagnetic cloaks [6], is impossible in isotropic elastic media, at

least in the quasi-static limit studied in this work. However, it may be possible to minimize

the coupling between p- and s-sound, or perhaps even eliminate it completely. If that goal is

achieved, solid acoustic devices placed in a fluid environment would need to control only the

propagation of p-sound, which is the only kind of wave existing in ambient medium. Below,

we assess the possibility of s-wave decoupling in elastic media with isotropic elastic moduli yet

possibly anisotropic density.

Consider a linear elastic medium whose elastic properties are isotropic and therefore given

by the stress tensor (14), in which the Lamé coefficients λ, µ may depend on coordinates. The

divergence of this tensor may be written in the following form:

∂ jσi j = ∂i(λ∂ j u j) + ∂ j(µ∂i ui) + ∂ j(µ∂ j ui)

= ∂i((λ + µ)∂ j u j) + ∂ j(µ∂ j ui) +
{

(∂ jµ)(∂i u j) − (∂iµ)(∂ j u j)
}

.
(15)
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The last term in braces obviously vanishes if the shear modulus µ = const, which we assume in

what follows. Furthermore, the second term can be simplified using the identity (∇×µ∇×Eu)i =
∂i(µ∂ j u j) − ∂ jµ∂ j ui :

∂ jσi j = ∂i((λ + 2µ)(∇ · Eu)) − (∇×µ∇×Eu)i . (16)

The linear elastic wave equation for monochromatic waves,

∂ jσi j + ω2ρi j u j = 0, (17)

can be written as

ρ−1
i j ∂kσ jk + ω2ui = 0, (18)

assuming that the density matrix ρi j is locally positively defined and thus invertible at each

point. By taking first the divergence and then the curl of equation (18), we obtain a pair of

coupled equations:

∇ρ−1∇ p +
ω2

λ + 2µ
p = −∇ρ−1∇×Es,

−∇ × ρ−1∇×Es +
ω2

µ
Es = ∇×ρ−1∇ p,

(19)

where we have introduced the bulk pressure, p = −(λ + 2µ)(∇ · Eu), and the shear pressure,

Es = µ∇×Eu. In the case of two-dimensional wave propagation (plane strain), shear pressure has

only the out-of-plane component Es = sEez, and the equations simplify to a more symmetric form:

∇ρ−1∇ p +
ω2

λ + 2µ
p = −∇ρ−1(∇s × Eez),

∇ρ̃−1∇s +
ω2

µ
s = Eez · ∇×ρ−1∇ p,

(20)

where ρ̃−1
i j = −eime jnρ

−1
mn , and ei j is the two-dimensional Levi–Civita symbol. For isotropic

density, ρ̃−1 = ρ−1.

To reveal the structure of the coupling term, assume that the density matrix is diagonal.

This can always be achieved at any given point by appropriate rotation of Cartesian coordinates.

Then, the rhs of equations (20) become

−∇ρ−1(∇s × Eez) = −
[

∂1(ρ
−1
11 ∂2 s) − ∂2(ρ

−1
22 ∂1 s)

]

,

Eez · ∇×ρ−1∇ p = ∂1(ρ
−1
22 ∂2 p) − ∂2(ρ

−1
11 ∂1 p).

(21)

For these coupling terms to vanish with arbitrary s and p fields, the sufficient and necessary

condition is that density must be isotropic and homogeneous. In the latter case, s-sound

is completely decoupled from p-sound regardless of the magnitude of shear modulus. This

calculation highlights an important feature of a medium with isotropic moduli and anisotropic

density: s- and p-sound are coupled only through (a) anisotropy and (b) inhomogeneity of ρ and

(c) inhomogeneity of µ.

With applications to acoustic cloaking, this finding is unfortunate: anisotropy of the speed

of sound is required for cloaking. One could explore the possibility of using anisotropic elastic
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modulus with isotropic density; this route is not covered by the formalism above and is outside

the scope of this work. Alternatively, one could use relatively small anisotropy so that the

s/p-sound coupling is sufficiently small. However, as we have seen in section 2, for weakly

anisotropic cloaks there is a steep trade-off between cloaking accuracy and cloaked payload.

The cloaking transformation corresponding to constant anisotropic density and variable bulk

modulus is known [29]. The relationship between payload, deficiency and anisotropy ratio in a

constant-density cloak is a power law: a′/a = (a/b)(cθ/cr )−1, where cθ/cr = √
ρr/ρθ = const > 1

and a/b < 1. A smaller density anisotropy ratio would minimize s/p coupling but would also

simultaneously raise the cloaking deficiency a′/a.

Alternatively, we may expect that for sufficiently small values of µ, the magnitude of

shear waves inside the cloak would be so small that they would not have a significant effect

on the scattering cross-section of p-sound. This should be true regardless of the degree of

anisotropy and inhomogeneity of the density matrix. This hypothesis has been verified in

our numerical simulations as described below. Elastomers with the ratio µ/λ ≡ β ≡ 1 − 2ν

as small as 10−5 are not uncommon [37]; for many rubbers, including natural latex, this

ratio is of order 10−4–10−3 [37]. It can be shown using the quasi-static Hashin–Shtrikman

bounds that µeff of a well-ordered, elastically isotropic binary composite (with µ1 > µ2 > 0

and λ1 > λ2 > 0) does not exceed the largest local shear modulus of the components [38]:

µeff 6 µ1. This estimate suggests that an elastic metamaterial for acoustic cloaking can be as

simple as a bi-layer metamaterial from section 3 consisting of a nearly ‘incompressible’ rubber

with µ = µ1 ∼ 10−3λ1 and some fluid (liquid or gas) with µ = µ2 = 0.

To test whether high-quality cloaking can be achieved with the β ratio in attainable

range, we used a finite element solver, COMSOL Multiphysics with Acoustics and Structural

Mechanics modules, which provides a predefined coupling between the two equations, known

as acoustic–structure interaction. The simulation solves the vector equation for elastic strain

(17) inside the cloak, the scalar acoustic Helmholtz equation for bulk pressure in the ambient

medium, and imposes appropriate continuity conditions on the boundary between the fluid and

the solid domains.

From figure 9 (left) it is evident that an elastic cloak behaves almost like its pure-fluid

counterpart, when β is sufficiently small: β 6 0.02 (i.e. ν > 0.49). However, when β = 0.1,

the cloaking effect is almost completely destroyed, as seen from figure 9 (right). To quantify

the cloaking effect, we performed a parametric sweep by varying the parameter β. The figure

of merit that quantifies the performance of an omnidirectional cloak is the TSCS [39]. The

simulated TSCS plotted in figure 10 (left) as a function of β reveals an interesting structure in

the scattering spectrum of this cloak. TSCS is negligible and practically flat for all values of β

up to approximately 10−3. In this regime, the cloaking effect is insensitive to the wavelength and

frequency. Above that threshold, TSCS begins to grow slowly; however, it remains rather small

up to roughly β = 0.01. Figure 10 (right) shows the distribution of shear stress at β = 0.02. The

magnitude of s-waves does not exceed 0.15, which is an order of magnitude smaller than the

magnitude of p-waves (1.2, according to figure 9, left). This validates our expectation that at

sufficiently small µ/λ ratio, only a small fraction of incident energy is converted into s-waves

inside the elastic cloak.

Above β = 0.02, TSCS grows rapidly, and at β > 0.1, the cloaking effect is essentially

absent. Additionally, the scattering spectrum shows multiple peaks and dips. We attribute those

peaks and dips to macroscopic resonances of the shear waves in the cylindrical metamaterial

body. The nature of these resonances deserves a separate study; here, we merely point out that
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Figure 9. Plot of p-wave pressure from a finite-element simulation of an elastic

cloak with anisotropic density ρr = ρ0r/(r − a), ρθ = ρ0(r − a)/r , first Lamé

coefficient λ = λ0((b − a)/b)2r/(r − a) and shear modulus µ = βλ, where β =
0.02 (left) and β = 0.1 (right). The cloak has a = 0.2 m, b = 0.4 m, and the

wavelength in the fluid is λfl = 0.686 m, corresponding to the speed of sound

343 m s−1 at the frequency 500 Hz. Also shown on the plots are the streamlines

of acoustical energy flux in the fluid domain.

Figure 10. Left: TSCS (in arbitrary units) for the cloak described in figure 9, as

a function of β = µ/λ. Other properties of the cloak are defined in the caption to

figure 9. Right: plot of s-wave pressure, defined in the solid as s = µEez · E∇ × Eu,

at β = 0.02.

they must be similar to the geometric Mie resonances of cylindrical and spherical particles,

whose spectra become even richer when the particle has either graded or layered material

properties [40]. At small shear wavelength (i.e. at small β), these resonances are more similar

to the whispering gallery resonances of rings; one such resonance, corresponding to the narrow

peak in TSCS at β = 7.76 × 10−4, is shown in figure 11.

The deep minima in TSCS located between s-wave resonances, in particular the one at

β = 0.02 (figure 10), can be useful for acoustic cloaking, as one can see from figure 9 (left). The

sensitivity of these resonances to the wavelength-to-diameter ratio will determine the bandwidth

of acoustic cloaks that utilize such resonances, and it should be the subject of additional

studies.
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Figure 11. Plot of s-wave pressure at the resonant value of β = 7.76 × 10−4

for the cloak described in figure 9. The field structure typical of a high-order

whispering gallery mode is revealed.

6. Conclusions

To summarize, we have studied the feasibility of a cylindrical ultra-broadband acoustic cloak

based on the ideas of transformation acoustics. To maximize the generality of our analysis,

we have introduced a broader class of acoustic cloaks. The generalization is achieved by (a)

introducing general radial transformation, (b) lifting the requirement of acoustic impedance-

matching in the entire volume of the device, (c) allowing incomplete compression of the

cloaked volume and (d) allowing shear waves that are weakly coupled with longitudinal sound.

Among these four generalizations, only (a) does not reduce the performance of the cloaking

device, whereas (b)–(d) are introduced only as a trade-off between cloaking performance and

construction difficulty. Two important figures of merit for generalized acoustic cloaks are

defined: (i) cloaking deficiency and (ii) cloaked payload. It is shown that, for metamaterials

operating in the quasi-static limit, the minimum cloaking deficiency is bounded by the fastest

speed of sound in the individual components of an acoustic metamaterial. The maximum

cloaked payload is limited by the minimum value of acoustic anisotropy ratio. These bounds

motivate the search for materials with largest modulus-to-density ratio and materials with largest

acoustic anisotropy. An imperfect, eikonal acoustic cloak with an extremely broad frequency

band of operation is designed using the simple layered geometry of a unit cell. Estimates for the

deficiency and payload of such acoustic cloaks are presented. It is found that it is beneficial

to have the speed of sound in one of the components slightly lower (by only 0.05%) than

the ambient speed of sound. We also show that including more than two layers in the unit

cell increases design flexibility, although it does not push performance beyond the fundamental

limitations of bi-layer metamaterials.

In addition, we have provided qualitative theoretical and quantitative numerical analysis of

the role of shear waves in elastic cloaking devices. It is shown that for materials with Poisson’s

ratio ν > 0.49, shear waves have little or no adverse effect on the performance of acoustic

cloaks. We have found that isotropy and homogeneity of both density ρ and shear modulus

µ is a necessary and sufficient condition for perfect decoupling of p- and s-waves in elastic
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media with isotropic, inhomogeneous Lamé modulus λ. This finding opens the door to novel

acoustic metamaterial devices besides the ultra-broadband acoustic cloak.
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