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Di�erent types of rocks generate acoustic emission (AE) signals with various frequencies and amplitudes. How to determine rock
types by their AE characteristics in �eld monitoring is also useful to understand their mechanical behaviors. Di�erent types of rock
specimens (granulite, granite, limestone, and siltstone) were subjected to uniaxial compression until failure, and their AE signals
were recorded during their fracturing process.
ewavelet transformwas used to decompose theAE signals, and the arti�cial neural
network (ANN) was established to recognize the rock types and noise (arti�cial knock noise and electrical noise).
e results show
that di�erent rocks had di�erent rupture features and AE characteristics. 
e wavelet transform provided a powerful method to
acquire the basic characteristics of the rock AE and the environmental noises, such as the energy spectrum and the peak frequency,
and the ANN was proved to be a good method to recognize AE signals from di�erent types of rocks and the environmental noises.

1. Introduction

Many kinds of rocks are fracturing due to human activity
or geological process. It is well known that elastic waves
are emitted from rock mass during their fracturing process.

erefore, various symptoms related to the breakdown of
rock mass can be detected by the acoustic emission (AE)
technique [1, 2].

Rock mass is an environmental geological body; it is
formed in a certain environment by mineral composition
and structural plane due to movement of geological struc-
tures and complex atmospheric environment. Di�erent types
of rocks contain di�erent kinds of minerals and di�erent
geological structures, such as joints and microcracks. 
e
fracture involves debonding and slipping between the grains,
minerals, and geological structures in rocks. EachAE signal is
an indication that some part of the released energy due to the
rock crack propagation is transformed into an elastic wave.

erefore, di�erent types of rockswill generate di�erent types
of elasticwaves. Laboratory experiments and�eldmonitoring
are oen conducted to investigate the characteristics of rock
AE signals. 
ese AE signals are oen mingled with electric

signals and arti�cial noises. 
erefore, how to distinguish
these signals becomes a signi�cant topic in AE investigations
[3–5].

Monitoring techniques and arti�cial intelligence algo-
rithm have been widely used in rock slopes and tunnels
[6, 7], concrete dams [8, 9], and high-rise structures [10,
11]. Arti�cial neural network (ANN) has some capability of
learning from examples through iteration, without requiring
prior knowledge of the relationships between the process
parameters. 
e major bene�ts in using ANN are the excel-
lent management of uncertainties, noisy data, and nonlinear
relationships. Neural network modeling has become increas-
ingly accepted and is an interesting method for application to
the AE technique [4, 5, 12–15].

Many authors have conducted AE investigations using
ANN. Kwak and Song constructed a neural network to
achieve an intelligent diagnosis for chattering vibration and
burning phenomena on grinding operation.
e item of static
power, dynamic power, peak of RMS, and peak of FFT has
been used as an input feature of the neural network to
diagnose the grinding faults [12]. Samanta and Al-Balushi
presented a procedure for fault diagnosis of rolling element
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(a) RMT-150C (b) SAEU2S

Figure 1: 
e servo controlled rock mechanical test machine RMT-150C and AE monitoring system SAEU2S.

bearings through ANN.
e time-domain vibration signal of
the rotating machinery with normal and defective bearings
has been used as the input feature of the ANN. 
e results
showed that the e�ectiveness of the ANN can diagnose the
physical condition of machine [16]. Samanta et al. compared
the performance of bearing fault detection by ANNs and
support vector machines (SMVs) [17]. Kim et al. trained
an ANN to recognize the stress intensity factor in the time
interval of microcrack to fracture by AE measurement [18].
Hill et al. used the AE �aw growth activity to train a
back-propagation neural network to predict the ultimate
strengths in the remaining six specimens [19]. However, few
investigations can be found by usingANN to distinguish rock
AE signals and determine their characteristics for di�erent
rock types.


e objective of the current research was to develop a
neural network for the prediction of rock types or other
noises from their AE measurements. 
e AE signals were
recorded in the rock failure process under uniaxial loading.

e wavelet analysis helped to obtain the basic parameters
of the AE signals of the rocks and the environmental noises.

ese parameters were used to establish input layers in the
ANN. 
e trained ANN was applied to predict rock types
and noise types. 
e predictions obtained from the ANN
are in good agreement with the laboratory experiments. 
e
ANN based on AE measurement can be used to distinguish
di�erent rockAE signals and predict di�erent rock specimens
in rock engineering.

2. Experiment Preparation and Methods

2.1. Laboratory Experiments. A total of four types of rocks
were selected to conduct uniaxial compression. To guarantee
the diversity of the rock types, these rock specimens were
collected from four mines in China. 
e granulite specimens
were obtained from a gold mine in Fujian province, the
limestone specimens were from a tin ore mine in Guangxi
province, the granite specimens were from an open pit
central in Jiangxi province, and the siltstone specimens were
obtained from a mine in the south of Jiangxi province.

All the mechanical tests were conducted on a servo con-
trolled rock mechanical machine RMT-150C (Figure 1(a)).

ismachine has a visualization operation platform based on

Windows, and it can record the load, stress, and strain during
the rock failure process.

An AE monitoring system SAEU2S with 8 parallel detec-
tion channelswas applied to collectAE events in the compres-
sion (Figure 1(b)). Each channel with an AE sensor, a pream-
pli�er, and an acquisition card can collect the parameters of
AE events, such as the amplitude, energy, and counts.

2.2. AE Signals. AE signals as well as electronic noises were
recorded and processed during the rock fracturing. 
e AE
signals in time domain and frequency domain were analyzed
in this section.

2.2.1. 	e AE Signals in Time Domain. Di�erent rocks gen-
erated di�erent AE signals in time domain under the same
stress condition. AE counts, cumulative AE counts, energy,
rise times amplitudes, event rates, and energy rates are oen
used to describe the AE features in time domain. Cumulative
AE counts can re�ect internal damage in the rock specimens.

According to curves of cumulative AE counts, axial
stress, and time (Figure 2), the curves can be divided into
four periods: pre-linear period, linear period, post-peak and
nonlinear period, and residual strength period.

All the AE signals of the specimens show a sudden jump
before their �nal failure, accompanied by a stress drop. 
e
granulite specimens show a sudden increase before failure
without precursors. 
e stress for the granite specimens
lasted many times of stress buildup and stress release before
�nal failure. 
e AE counts for the limestone specimens
increased gradually before the peak strength points. 
e
siltstone specimens demonstrated an obvious residual failure
process, and the cumulativeAE counts reached the peak point
aer the peak strength points.


e granulite, limestone, and granite specimens showed
a hard and brittle failure mode and their curves for the post-
peak period were not obtained. 
e so siltstone showed
slight plastic failure mode.

2.2.2. 	e AE Signals in Time Domain in Frequency Domain.
A continuous wavelet transform (CWT) is used to divide
a continuous-time function into wavelets. Unlike Fourier
transform, the continuous wavelet transform possesses the
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(a) Granulite sample
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(b) Granite sample
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(c) Limestone sample

0

40

20

60

St
re

ss
 (

M
p

a)

i ii iii iv

0 100 200 300 400 500 600
0

1

2

3

I

II

Time t (s)

C
u

m
u

la
ti

ve
 c

o
u

n
ts

/E
5

(d) Siltstone sample

Figure 2: Curves of cumulative counts, axial stress, and load time (I: stress-time curve; II: cumulative counts-time curve).

AE signal

CA1 CD1

CA3 CD3

CA2 CD2

Figure 3: Topology structure of wavelet decomposition with 6
layers.

ability to construct a time-frequency representation of a
signal that o�ers very good time and frequency localization.
CWT is very e�cient in determining the damping ratio of
oscillating signals. CWT is also very resistant to the noise in
the signal.

According to Mallat theory, the fast wavelet transform
algorithm, the signal function can be decomposed into the
low frequency component and the high frequency compo-
nent under the scale � of the wavelet packets transform:

� (�) = �0� (�) ,

�0� (�) = �1� (�) + �1� (�) ,

...

��−1 = ��� (�) + ��� (�) ,

(1)

where �(�) is the signal function, � � is the low frequency
component coe�cient, and �� is the high frequency compo-
nent coe�cient. So the signal function can be described as
follows under the scale �:

� (�) = ��� (�) +
�
∑
�=1
��� (�) . (2)

A topology structure of a wavelet transform with 3 layers
is shown in Figure 2. Figure 3 shows topology structure of
wavelet decomposition with 6 layers.
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Table 1: Energy ratio of the wavelet transformed AE signals in failure.

Decomposition layers CA6 CD6 CD5 CD4 CD3 CD2 CD1
Band/kHz

Frequency layers/kHz 0∼78 78∼156 156∼312.5 312.5∼625 625∼1250 1250∼2500 2500∼5000
Energy ratio/%

Granulite 0.61645 4.7345 15.846 74.723 4.0579 0.022976 0.0018851 [156, 625]
Granite 89.339 9.9742 0.47787 0.14506 0.016137 0.16799 0.031258 [0, 78]
Limestone 59.835 35.511 2.4313 1.926 0.26136 0.013166 0.022664 [0, 156]
Siltstone 52.215 44.053 3.5185 0.17952 0.011493 0.0076762 0.015349 [0, 156]

Nowadays wavelet analysis is widely used to analyze
nonstationary random signals [20]. 
e wavelet analysis is
a time-frequency localized analysis method, in which the
window size is �xed but its shape can be changed, and time-
and frequency-window can also be changed, which means
the low frequency part with higher frequency resolution and
lower time resolution and the high frequency part with a
higher time resolution and lower frequency resolution [20].

e wavelet analysis can decompose AE signals both in
frequency domain and in time domain. 
e wavelet analysis
provides a kind of adaptive time and frequency domain
localization analysis method.

Figure 4 shows relationship between frequency and
amplitude of the AE signals in rock �nal failure stages. 
e
dynamical damage processes and characteristics of di�erent
rocks (granite, granulite, siltstone, and limestone) under
the stress condition were obtained. It is found that the
transformedAE signals for di�erent rock typeswere di�erent.


e frequency distribution re�ected rock fracture and
associated AE characteristics. As shown in Figure 4 and
Table 1, the frequency domain of the granulite specimens was
mainly distributed in CD5 and CD4, taking up more than
90% of all the frequency bands. Most of the frequency of the
granulite signals was located in high frequency bands [156,
625 kHz]. 
e frequency domain of the granite specimens
was distributed in low bands fromCD1 toCD6, andCA6 took
up above 89% of all the signals, which ranged in [0, 78 kHz].
Most of the granite AE signals belonged to low frequency
bands, while the AE signals of the limestone specimens
mainly concentrated in the frequency of CA6 (59.835%) and
CD6 (35.511%).

2.3. 	e Arti
cial Neural Network. 
e arti�cial neural net-
work can be seen as a set of parallel processing elements, and
the suitable mathematical methods can be used to change the
weights and thresholds to perform speci�c functions.
e BP
neural network can �gure out each layer’s error derivatives
by using the back-propagation algorithm according to the
generated weight matrices and threshold matrices. And then,
BP adjusts corresponding matrices on the basis of error
derivatives and square error sum to approach the mapping
relation between the system input variables and output
variables step by step. 
e typical structure of a BP neural
network is shown in Figure 5. It has one input layer, one or
more hidden layers, and one output layer, with each layer
consisting of one or more neurons.


e number of neurons (
) in the input layer is the same
as the number ofmechanical parameters to be solved, and the
number of neurons (�) in the output layer is the number of
the measured displacements. Usually, only one hidden layer
is needed.
e number of neurons (�) in the hidden layer can
be speci�ed either manually or by an optimization method.

e training specimens are oen used to adjust the weight
values by making the summed squared error between the
displacements from numerical simulation and those from BP
network a minimum. For the training specimens, the input
parameters can be prepared by the parameter experiment
design method, while the corresponding output parameters
can be prepared by numerical simulation.


e calculating procedure of a three-layer BP neural
network is shown in Figure 6. �1 and 1 are weight matrix
and threshold matrix between the input layer and the hidden
layer, respectively;�2 and 2 are weight matrix and threshold
matrix between the hidden layer and the output layer,
respectively; function � is the transfer function between
two adjacent layers. 
ree transfer functions, including Tan-
Sigmoid transfer function (tansig), Log-Sigmoid transfer
function (logsig), and linear transfer function (purelin), are
the most commonly used transfer functions for multilayer
networks.

3. Results and Discussion

3.1. Mechanical Experiment Results. Figure 7 shows typical
fracture patterns for these four types of rock specimens.
ese
rock specimens demonstrated di�erent fracture patterns
under uniaxial compression. A shear crack was formed in
the granulite specimen, and the rupture is a typical single
shear failure mode. Some thin �akes spalled from the granite
specimen vertically, and the failure mode is a typical splitter
failure. Several parallel cracks occurred in the limestone
specimen, which run through the whole specimen from the
bottom to the top, accompanied by some small cracks. It
had the same tensile failure mode as granite specimen. 
e
siltstone presented a typical slightly plastic rock. 
e cracks
in the siltstone specimen developed relatively slow, and an
� fracture pattern was observed on the surface, indicating a
typical shear failure mode.


e four types of rock specimens have di�erent failure
modes. On the one hand, di�erent types of rocks have
di�erent distribution of mineral particle size and hardness of
mineral grains and di�erent microgeological structure. On
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Figure 4: Continued.
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Figure 4: Continued.
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Figure 4: Continued.
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Figure 4: Six layers of the wavelet decomposition for the rock specimens.
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Figure 5: Typical structure of a BP neural network [18].
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the other hand, di�erent rock contains di�erent properties
and scales of weakness structural plane.

3.2. AE Characteristics. Figure 8 shows the curves of the
accumulated AE counts as the load increased for the four
typical specimens. Figure 9 shows the curves of the AE rate
and the load for the specimens. It can be observed that
the limestone specimen and the granite specimen produced
more AE events than the siltstone specimen and the granulite
specimen in beginning loading stage. However, the AE rates
of the granite and granulite specimens were higher than
the limestone and siltstone specimens. 
e granite specimen
generated the smallest number of the AE events, whereas it
had the largest number of the AE rates. 
e siltstone did not
generate a large number of the AE events before the sudden
burst failure.

Figure 10 shows the wavelet transformed energy spec-
trum coe�cient of the rock specimens. It can be observed
that the spectrum coe�cient of the granulite, granite, and
limestone specimens was mainly distributed in CA6, CD6,
CD5, and CD4 bands. 
e distribution for the siltstone
specimen was distributed in CA6 and CD6 bands.

Table 2 lists the distribution of the frequency band in
each layer. 
e frequency range of the AE signals could be
determined by the wavelet transform. 
e frequency of the
hard and brittle rock (the granulite, granite, and limestone
specimens) ranged from 0 kHz to 625 kHz. 
e siltstone
belongs to a moderate strength and slightly plastic rock, and
the frequency ranged from 0 kHz to 312.5 kHz in a narrower
band.

4. The Recognition of the AE Signals
Using the ANN

4.1. ANN Structure. 
e numbers of the neurons in the input
layer, output layer, and the hidden layer and a proper transfer
function should be determined in a typical ANN structure.

Input layer vector: there were 11 input neurons in the
ANN model as shown in Table 3: rise time (�1), ring count
(�2), energy (�3), duration time (�4), amplitude (�5), peak
frequency (�6), the CA6 value of the wavelet decomposition
(�7), the CD6 value of the wavelet decomposition (�8), the
CD5 value of the wavelet decomposition (�9), the CD4 value
of thewavelet decomposition (�10), and the CD3 value of the
wavelet decomposition (�11).

Output layer vector: there were three neurons in the
output layer. 
e output parameters (�1, �2, and �3) should
be either one or zero. 
eir combined value indicated the
signal types (Table 4). For example, the output value 001
(�1 = 0, �2 = 0, and �3 = 1) predicted the signal generated
by a granulite specimen.

According to the number of the input neurons and the
output neurons, the number of the neurons in the hidden
layer can be obtained as follows [19]:

�1 = √� + 
 + �, (3)

where �1, 
, and � are the numbers of the neurons in
the hidden layer, the input layer, and the output layers,
respectively, and � is a constant between 0 and 10. Since the
input vector dimension was set to be 11 and the output vector
dimension was set to be 3, �1 could range from 4 to 14. 
e
number of the neurons in the hidden layer was set to be 14 in
the ANNmodel.


ree transfer functions, including Tan-Sigmoid transfer
function (tansig), Log-Sigmoid transfer function (logsig), and
linear transfer function (purelin), are the most commonly
used transfer functions for multilayer networks.

Two transfer functions were required in the ANN struc-
ture. 
e input parameters, such as the rise time, ring
count, energy, duration time, and the amplitude, had been
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Figure 7: Fracture patterns for the four types of rock specimens.

Table 2: 
e distribution of the frequency band in each layer.


e layer of wavelet decomposition
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Figure 8:
e curves of the accumulated AE counts and load for the
four specimens.

normalized into the range [−1, 1] before input into the
transfer function tansig as arguments. Compared with the
transfer function purelin, logsig was better to link the hidden
layer and the output layer. Aer one-minute training at the
360th iterative step, the mean squared error was less than
0.005 (Figure 11). For the purelin function, the mean squared
error did not reach 0.009 until 100,000 steps (Figure 12).

4.2. BP Network Training. Six types of elastic wave signals
were considered in the ANNmodel, including the four types
of the rocks, the electrical noise, and arti�cial knock noise.
Totally 120 sets of the rock AE signals (30 sets of the granulite
AE signals, 30 sets of the granite AE signals, 30 sets of the
limestone signals, and 30 sets of the siltstone AE signals)
were used for training. 
ere were 30 sets of the electrical
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Figure 9:
e curves of the AE rate and load for the four specimens.

noise signals and 15 sets of the arti�cial noise signals for
training. 
e RPROP algorithm was applied in the training,
the mean squared error of the objective function was set to
be 005, the maximum number of iterative steps was 100,000,
and the number of independent training times was set to be
more than 50. As shown in Figure 13, the mean squared error
reached the speci�edminimum value aer 374 training steps.

4.3. ANN Recognition. Some basic parameters, such as the
rise time, the ring count, the energy, the duration time,
and the amplitude, describing the characteristics of the AE
signals, were combined as an input vector in the network.
Moreover, the wavelet transform method was applied to
decompose the signal waves to obtain the frequency spec-
trum. 
e decomposed energy spectra at di�erent layers
were also treated as the input parameters. 
e trained neural
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Figure 10:
e distribution of the energy spectrum aer the wavelet
transform.
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Figure 11: Convergence curve using the logsig function.

network was used to predict the signal types by establishing
the mapping function between the input parameters and the
output parameters.


e predicted results proved that the BP neural network
based on the wavelet transform analysis can achieve a high
accurate ratio to recognize di�erent rock AE signals. Table 5
listed the recognized AE signal types of the 110 sets of signals
using the ANN model. 
ere were 20 sets of the granulite

100

101

M
ea

n
 s

q
u

ar
ed

 e
rr

o
r

Iterative step

0 1 2 3 4 5 6 87 9 10

10−3

10−2

10−1

×104
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Figure 13: 
e convergence curve in the training.

Table 4: Output parameters and their signal types.

Signal type �1 �2 �3 Output value

Granulite 0 0 1 001

Granite 0 1 0 010

Limestone 0 1 1 011

Siltstone 1 0 0 100

Electrical noise 1 0 1 101

Knock noise 1 1 0 110

signals, 20 sets of the granite signals, 20 sets of the limestone
signals, and 20 sets of the siltstone signals. 
e average
accuracy of the signal prediction for the rocks was greater
than 90%. It should be noted that all the signals for the
granulite, the siltstone, and electrical noises were predicted by
the ANNmodel. Only one set of the limestone AE signals was
predicted to be generated by the granulite specimens, and two
sets of the granite AE signals were predicted to be generated
by the siltstone specimens. Four sets of the knock noise
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Table 5: Signal type prediction using the ANN.

Signal types Signal set number
Predicted results

Accuracy
Granulite Granite Limestone Siltstone Electrical noise Knock noise

Granulite 20 20 0 0 0 0 0 100%

Granite 20 0 17 0 2 0 1 85%

Limestone 20 1 0 19 0 0 0 95%

Siltstone 20 0 0 0 20 0 0 100%

Electrical noise 20 0 0 0 0 20 0 100%

Knock noise 10 0 4 0 0 0 6 60%

signals were recognized as the granite signals, indicating that
the signal waves generated by the granite specimens were
much similar to the arti�cial knock signals. In�uenced by the
random factors and the environmental factors, the accuracy
for the arti�cial knock noise recognition was as low as 60%.
To achieve good monitoring results, manmade noises should
be reduced or eliminated in laboratory AE tests on rocks.

5. Conclusions


e wavelet transform and arti�cial neural network were
applied to determine rock types from their AE characteristic
parameters. 
e wavelet transform was used to decompose
the AE signals, and the arti�cial neural network (ANN) was
established to recognize the rock types and noises (arti�cial
knock noise and electrical noise). 
e following conclusions
can be drawn.

(1) Di�erent rocks had di�erent rupture features and
AE characteristics. 
e wavelet transform provided a
powerful method to acquire the basic characteristics
of the rock AE and the environmental noises, such
as the energy spectrum and the peak frequency.

e signal parameters were input into the network,
and the predicted results showed that the wavelet
transform method was e�ective and accurate for AE
signal decomposition.

(2) 
e ANN was proved to be a good method to
recognize AE signals fromdi�erent types of rocks and
the environmental noises. 
e AE signal parameters
decomposed by the wavelet transform composed the
input layer, the tansig function was selected as the
transfer function of the hidden layer, and the logsig
function was selected as the output layer. 
e average
recognition accuracy of the four kinds of rock AE
signals was above 95% in the BP neural network.

(3) 
e signals generated by the granite specimens were
much similar to the arti�cial knock signals. 
e
electrical noises were easy to be recognized by the
BP neural network, but it had a low accuracy for the
arti�cial knock noise recognition. To avoid adjacent-
channel interference, manmade noises should be
reduced as much as possible in laboratory AE tests on
rocks.
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