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 Abstract  

This paper investigates the development of an in-situ impact detection 

monitoring system able to identify in real-time the acoustic emission location. The 

proposed algorithm is based on the differences of stress waves measured by surface 

bonded piezoelectric transducers. A joint time frequency analysis based on the 

magnitude of the Continuous Wavelet Transform was used to determine the time of 

arrivals of the wave packets. A combination of unconstrained optimization technique 

associated to a local Newton’s iterative method was employed to solve a set of non 

linear equations in order to assess the impact location coordinates and the wave speed. 

With the proposed approach, the drawbacks of a triangulation method in terms to 

estimate a priori the group velocity and the need to find the best time-frequency 

technique for the time of arrival determination were overcome. Moreover, this 

algorithm proved to be very robust since it was able to converge from almost any guess 

point and required little computational time. A comparison between the theoretical and 

experimental results carried out with piezoelectric film (PVDF) and acoustic emission 

transducers showed that the impact source location and the wave velocity were 

predicted with reasonable accuracy. In particular, the maximum error in estimation of 

the impact location was less than 2% and about 1% for the flexural waves velocity. 

 

Keywords: Impact location identification, Continuous Wavelet Transform, PVDF, 

flexural waves. 

 

1 Introduction and statement of the problem 

A real-time knowledge of the impact location source is fundamental in both 

Non-Destructive Evaluation (NDE) techniques as well as Structural Health Monitoring 

(SHM) systems. The ability to locate the impact response can be achieved through 

passive technique, wherein the signals emitted by internal or external sources are 

measured by ultrasonic transducers directly on the specimen surface or embedded into 

the structure (Balageas et al., 2006). 

Most of these techniques deal with the detection of Lamb waves caused by low 

velocity impacts. According to Viktorov (1967) theory, Lamb waves are stress waves 

that propagate within thin solid plates with free boundaries. Depending on the product 

of frequency times thickness, an infinite number of modes for both symmetric and 

antisymmetric displacements are available. Symmetric modes (Sn) are related to the 



extensional modes as displacements occur in the direction of wave propagation, whilst 

antisymmetric modes (An) are known as flexural modes as the displacements pattern is 

transverse to the plane of the plate. These Lamb modes differ in their phase and group 

velocities as well as in the strain and stress field.  

Estimating the location of an AE source is an inverse problem based on the 

detection of the time at which the stressed wave reaches a number of sensors. Several 

studies presents in literature were focused on the in situ investigations of Lamb waves 

using piezoelectric transducers attached to plate-like structures (El youbi et al., 2004; 

Giurgiutiu, 2002). An alternative to these conventional transducers was the employment 

of polyvinyldilene fluoride (PVDF) film sensors for AE applications (Hamstad M A, 

1995; Brown et al., 1996; Gaul and Hurlebaus, 1999; Monkhouse et al., 2000). These 

smart materials bonded on the surface of the structures own the characteristic of better 

interrogate large areas with a low cost availability, easily handle and broad-band 

acoustic performance. 

Usually, most of the methods for impact location use the triangulation technique 

(also known as Tobias algorithm), wherein the impact point is identified as the 

intersection of three circles, whose centres are the sensors location (Tobias, 1976). This 

approach is strongly limited by the assumption that wave velocity must be known and 

remains the same in all directions, but this is not true especially in anisotropic and 

inhomogeneous materials. Moreover, the flexural wave velocity is not constant, but it is 

function of the signal frequency that depends on the impact speed of the object hitting 

the structure.  

Furthermore, due to the dispersive nature of the flexural modes or to the 

uncertainty of the noise level of the signal measured, a suitable choice of the time–
frequency analysis for the identification of the time of arrival (TOA) is necessary. In 

these terms, Ziola and Gorman (1991) employed a cross-correlation technique for 

determining the time of propagation, whilst Kosel et al. (2003) used a combination of 

cross-correlation function with an appropriate bandpass-filter. In both approaches the 

maximum of the cross-correlation coefficient of two signals indicates the delay time 

between them. However, these methods present such limits especially when the sensors 

are placed close to the edges. In fact, multiple reflections from the boundaries generate 

ambiguous peaks in cross-correlation coefficients causing poor localisation results. 

Seydel and Chang (2001) proposed an approach based on a double peak method 

wherein the arrival time was chosen by selecting the minimum before the maximum for 

each signal. Nevertheless, the dependence of the wave velocity on frequency and the 

ambiguity of the noise level make this method inappropriate for the purpose of correct 

determination of the impact source. Therefore the use of the Continuous Wavelet 

Transform (CWT) that provides high resolution for a wide range of frequencies was 

found to guarantee more accuracy in the time-frequency analysis of acoustic waves (e.g. 

Meo et al., 2005; Jeong and Jung, 2000).  

Real-time impact algorithms must exhibit the best tradeoffs in terms of efficiency 

and accuracy and must require very little computational time (CPU cost) for different 

use in a SHM system. Kundu et al. (2009) developed an optimization algorithm for the 

determination of point of impact on aluminium and composite structures, based on 

minimizing an error function that used the difference of TOA of AE signals. Gaul et al. 

(2001) applied a Gauss-Newton method to non linear least square optimization to 

analyze “synthetic” AE signals. Conversely, an alternative approach to model-based 



methods for the identification of the impact location was the artificial neural network 

approach (Sung et al., 2000). Despite this method is suitable for complex structure, it 

cannot provide an optimum solution.  

The research study conducted in this paper was aimed to overcome the limits of 

a triangulation method for a real-time localization of the impact source and to exhibit 

the best approach for the time of arrival determination. In fact, the present work reports 

the creation of an algorithm for in-situ impact detection (AE) and wave velocity 

identification in isotropic structures, using a network of piezoelectric transducers. To 

assess the impact location and the wave velocity, the basic idea was to combine a 

globally convergent strategy, based on an unconstrained optimization associated to a 

local Newton-Raphson iterative method. In addition, the information contained in the 

time-frequency graph of the magnitude of the Continuous Wavelet Transform was used 

to determine the time of propagation of the stress waves. To validate the method, two 

different experiments with piezoelectric-film (PVDF) and Acoustic Emission sensors 

were carried out. Figure 1 illustrates the architecture of the impact location and wave 

velocity determination system. 

The layout of the paper is as follow: in Section 2 the algorithm for the source 

location and wave velocity evaluation algorithm is presented. Section 3 outlines the 

main characteristics of the Continuous Wavelet Transform in terms of multi-resolution 

analysis and energy density of the signal for the time of arrival identification. In Section 

4 the local Newton’s iterative method associated to an unconstrained optimization for 

solving systems of non-linear equations is described. Section 5 reports the experimental 

set-up and the analysis results. Then, the final conclusions of the method adopted are 

discussed. 

 

Figure 1 Architecture of impacts source location and wave velocity identification system 

 

 



2 Impact location and group wave velocity algorithm 

The algorithm for the impact source location and wave velocity determination is based 

on the differences of acoustic emission (AE) signals measured by four piezoelectric 

transducers attached on the surface of an aluminium structure. As the medium of 

interest is isotropic and homogeneous, from classical theory of thin elastic plate (Reddy, 

1999), the extensional wave group velocity  
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group velocity can be considered independent of propagation direction. 

The origin of the Cartesian reference frame was arranged at the left bottom 

corner of the plate. The impact source point I is at unknown coordinates  II yx ,  in the 

plane of the plate and the sensors are located at distance id   4,,1i  from the source 

(Fig. 2). Furthermore, the dimensions of the plate are L, length and W, width.  

 

Figure 2 Impact location and wave velocity identification procedure 

 

The resulting system of equation for the source location problem and wave 

speed identification is given as follow: 

    22

IiIii yyxxd   (2.1) 

 
g

i
i

V
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where gV  is the velocity of propagation of the stressed wave, it  is the time of detection 

of the AE signals and  ii yx ,  are the coordinates of the i-th sensor. Combining 

equations (2.1) and (2.2) we obtain: 

       0
222  giIiIi Vtyyxx  (2.3) 



which is the equation of circumference with radius  22

gi Vtr  . Equation (2.3) 

can be expanded into the following set of equations, with the unknown it , Ix , Iy  and 

gV : 
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This is a system of four equations with  seven unknown. If 1t  is the travel time 

required to reach the sensor 1 (master sensor) and jt1   4,3,2j  are the time 

difference between the sensor 1 and the other sensors, we can write: 
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and system (2.4) becomes: 
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Location and wave velocity must be calculated by solving this set of non linear 

equations with the unknown  
gII Vtyx ,,, 1x . The three time differences jt1  must be 

determined through an appropriate time-frequency analysis. 

Next Section outlines the characteristics of the Continuous Wavelet Transform 

for the time of wave propagation identification, whilst Section 3 describes the algorithm 

aimed to solve the set of non linear equations (2.6) for the assessment of the impact 

location coordinates and the speed of Lamb wave 0A . 

 

3 The Continuous Wavelet Transform 

Due the dependence of the wave velocity on frequency and the ambiguity of the noise 

level, a good impact detection method necessitates of a suitable choice of the time–
frequency analysis for the time arrival identification.  

Wavelet transformation method provides a good compromise between location 

and frequency resolution and it is able to analyze low and high frequencies at the same 

time, even respecting the uncertainty principle (also known as Heisenberg inequality). 

Let     21 LL  be the analysing wavelet called also the mother wavelet, where 



  is the domain of real numbers and the space  2L  is the set of all square-integrable 

functions defined on  . The mother wavelet must satisfy the admissibility condition 

defined as: 
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where ̂  is the Fourier transform of  . Eq. (3.1) is the necessary condition for ensuring 

the existence of the inverse wavelet transform. The Continuous Wavelet Transform 

(CWT) is a linear transform that decomposes an arbitrary signal )(tf  through basis 

functions that are simply dilatations and translations of a parent wavelet )(t , by the 

continuous convolution of the signal and the scaled or shifted wavelet (Mallat, 1998): 
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where  t  denotes the complex conjugate of the mother wavelet )(t , a is the 

dilatation or scale parameter defining the support width of the wavelet and b the 

translation parameter localising the wavelet in the time domain. The factor a1  is used 

to ensure that all wavelets at all scales have the same area and contain the same energy.  

The time-frequency resolution of the wavelet transform can be expressed as 

function of the scale parameter a through the following relationships: 
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where t  and   are the duration and bandwidth of the wavelet function, 

respectively, and Zm  with Z the set of positive integers. 

According to the uncertainty principle (Le and Argoul, 2004), time-frequency 

localization domain for any time frequency point is a rectangle of width tam  and 

height ma  with a constant area of ft . Consequently, time resolution of the CWT 

increases as frequency decreases and frequency resolution increases as time decreases. 

For these reasons, differently from the Short Time Fourier Transform wherein 

resolution is constant, the CWT is called multi-resolution analysis. 

 

3.1 Morlet wavelet 

Several studies present in literature deal with the use of the wavelet transform 

applied to acoustic emission (Hamstad et al., 2002). Gaul and Hurlebaus (1999) and 

Jeong and Jung (2000) applied the Gabor wavelet to identify the coordinates of an 

impact load on aluminium plate and Meo et al. (2005) used the Morlet wavelet to detect 

a source location of an acoustic emission on CFRP composite panel. In this study 

complex Morlet wavelet was employed as, in contrast with real wavelets, is able to 

separate amplitude and phase, enabling the measurement of instantaneous frequencies 

and their temporal evolution (Mallat S., 1998). Furthermore, it was experienced (Meo et 



al., 2005) that Morlet wavelet enables the measurement of the localization frequency for 

signals with faster and slower oscillations, providing a flexible window that narrows at 

high frequencies and widens when observing low-frequency phenomena. The complex 

Morlet wavelet is expressed by the following equation: 
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Morlet wavelet seems like an impulsive waveform with a central frequency 

 2ccf   when its shape control parameter bF  (wavelet bandwidth) can be set to be 

a small value. Conversely, when bF  increases, the wavelet waveform tends to be a 

harmonic waveform (Fig. 3). However, for practical purposes, because of the fast decay 

of its envelope towards zero, Morlet wavelet is considered admissible for 5c . 

Furthermore, maximising equation (3.4) in the frequency domain, we obtain a unique 

relation between the scale parameter a and frequency of interest f: 

 
a

f
f c  (3.5) 
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ˆ cb ffaF
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where  af̂  is the Fourier transform of  t . 

 

 
Figure 3 (a) (b) (c) (d) Morlet wavelet with different values of Fb (1.5 blue colour, 0.1 red colour). In 

figures (a) and (b) are represented the real and imaginary part of Morlet wavelet, whilst figures (c) and (d) 

depict the modulus and the phase angle. 

 

3.2 Time of arrival identification using the CWT 

CWT coefficients are useful for the identification of non stationary signals like transient 

phenomena hidden in vibration signals or impacts (Kim and Melheim, 2004). 

In particular, the real part of the CWT is well suited for the determination of 

dominant scales, whilst the squared modulus of the CWT called also scalogram 

indicates the energy density of the signal at each scale at any time (Mallat S., 1998). 



Hence, the scalogram is able to reveal the highest local energy content of the waveform 

measured. The squared modulus can be express as: 

 ),(),(),(
2

baWTbaWTbaWT   (3.7) 

Furthermore, the maximum value of the coefficients of the scalogram with a 

high concentration of energy is achieved at the instantaneous frequency, corresponding 

to the dominant frequency in the signal analysed at each instant in time. These 

coefficients taken at the instantaneous frequency in a time-frequency domain determine 

the ridges (Mallat S., 1998; Haase and Widjajakusuma, 2003). Therefore, the frequency 

of interest is chosen as the dominant frequency in the signal analysed by each sensor at 

each instant in time, i.e. the frequency corresponding at the maximum value of the 

Continuous Wavelet Transform squared modulus coefficients (ridges). Each frequency 

of interest is related to the scale parameter by the following relationship: 

 
aT

f
freq c  (3.8) 

where freq  is the frequency of interest, cf is the central frequency of the wavelet used 

and T is the sampling period. The projection on the time domain of the ridge 

corresponds to the time of arrival (TOA) of the stress waves (Fig. 4). Once the TOA is 

known, we can calculate the time differences jt1  (eq. 2.5) with respect to the master 

sensor. Hence, based on the algorithm discussed in the next Section, the coordinates of 

the impact source location and wave group velocity can be determined. 

 

Figure 4 3-D plot of the scalogram of the CWT in which the ridge is took at the instantaneous frequency 

of 310 kHz 

 

4 Newton’s method for solving systems of non-linear equations 

The strategy adopted in this paper to solve the set of equations (2.6) and to make 

the algorithm robust and convergent from almost any guess point is to combine a 

Newton’s method with a Line Search algorithm.  



Newton-Raphson or Newton’s method is a very efficient iterative algorithm for 
finding the roots of non linear system of equations, since it locally converges from 

around an initial guess point 0x sufficiently close to the root (Dennis, 1996).  

Let assume nn

iF : , where n denotes n-dimensional Euclidean space, to 

be a twice Lipschitz continuously differentiable function. The set of non linear equations 

(2.6) can be expressed as: 

   0xF   (4.1) 

where F  is the vector of the functions iF  ( 4,,1i ) and x  is the vector of 

unknown jx  ( 4,,1j ). Equation (4.1) has a zero at n
x  such that   0

xF . 

Newton’s method converges quadratically to 


x  (i.e. the order of convergence is 

approximately two) by computing the Jacobian linearization of the function F  around a 

guess point 0x , and then using this linearization to move closer to the desired zero. The 
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n

x  is given by: 
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where     xFxJx  1  is the Newton step and  xJ  is the Jacobian matrix, 

which contains first derivatives of the objective function  xF  with respect to the four 

unknowns of the problem: 
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Newton’s method can be modified and enhanced in various ways for solving 
systems of non linear equations, but in particular conditions, when the starting point is 

not near the root, it may not converge (Nocedal, 1999). The reasons for this failure are 

that the direction of the current iterate 
n

x  may differ to be a direction of descent for F , 

and, even if a search direction is a direction of decrease of F , the length of the Newton 

step x  may be too long. Hence, a globally convergent algorithm associated to a 

Newton’s method can be designed to find the solution of a system of non linear 

equations from almost any guess point 0x . The approach adopted in this paper was to 

combine the Newton’s method applied to the system (2.6) with the unconstrained 

problem of minimizing the objective function F:  

 


n

x n
:min F   (4.4) 



In unconstrained optimization, the most widely used function to be minimized 

(also known as merit function) is a scalar-valued function of F , i.e. the squared norm of 

F : 

        xFxFxFx 
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1 2
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where the factor 
2

1
 is introduced for convenience. Obviously any root of f fulfils 

the identity   0
xf . Among the class of powerful algorithms for unconstrained 

optimization, in this paper we will focus on the Line-Search methods because of its 

simplicity, and because they do not depend on how the Jacobian is obtained. 

Furthermore, if the initial Newton step is proved to be unsatisfactory, the polynomial 

backtracking method will be considered. 

 

4.1 Line Search methods with step selection by backtracking 

In Line Search method the algorithm chooses a direction n
x  and searches along this 

direction from the current iterate to a new iterate 
1n

x that guarantees a lower value of 

 xf . The iteration is expressed by the following formula: 

 101   nnnn
xxx  (4.6) 

where   is called step length. Whether the initial iterate 0x  is close to the solution, the 

common strategy is to use a full Newton step n
x  by setting 1 . Otherwise, we move 

downhill along the Newton direction trying a sufficiently small value of   until 
1n

x  

satisfies the following criterion (known as Armijo condition): 
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A good value of the parameter   is 410 . The descent direction of the Newton 

step from the current point 
n

x  to a new point 
1n

x  is verified by the fact that the 

directional derivative of f at 
n

x  in the direction n
x  is negative: 
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Moreover, the strategy for reducing   guarantees that the Newton step may not 

be too large. The procedure can be performed through a backtracking Line-Search 

method (Dennis, 1996). It consists in finding the value of   which minimizes the model 

of the following polynomial function: 

    nnnn fg xx    (4.9) 

Hence, given any descent direction n
x , equation (4.9) satisfies (4.7) and (4.8) such 

that: 

     nTnn fg xx    (4.10) 



Initially, the model of g is given and assumed linear: 
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Setting 10  , if the model satisfies the following condition: 

      001 ggg    (4.12) 

we terminate the search. Otherwise,  g  is expressed through a quadratic 

approximation by interpolating the three information available,  0g ,  1g  and  0g : 

             00001 2 ggggggq    (4.13) 

The new trial value 1  is defined as the minimiser of  qg : 
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If 1  is too small the quadratic model is poorly accurate and we set a limit value of  , 

1.0min  . Conversely, a cubic model of  cg  is more acceptable since it provides 

more accuracy especially in situations where f has a negative curvature:  

      0023 ggbagc    (4.15) 

From eq. (4.15), solving with respect to the coefficients a and b, we obtain a set of two 

equations using the last two previous values of   (  0g  and  1g ): 
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By differentiating eq. (4.13), the minimum point 2  is given by: 
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Therefore, if any i  is either too close and smaller than 1i , i  must be limited 

between the values 1max 5.0  i  and i 1.0min  . This procedure allows obtaining 

reasonable progress on each iteration, and the final   will not be too small. 

Thereby, with this procedure the algorithm was optimized and using the code 

written in Matlab on a standard pc, the computational time for each source location was 

less than 2 s, which means that the results can be obtained in quasi real-time using a 

compiled code. 

 

5 Experimental set-up and procedure 

Two different experiments were carried out for the validation tests in the present 

study. In test 1, an aluminium plate with dimensions 520 mm x 410 mm x 0.97 mm was 



employed with four commercially available piezoelectric-film (PVDF) sensors 

(thickness 110 m , length 420 mm) adhesively surface bonded (Fig. 8). These smart 

materials bonded on the surface of the structure own the characteristic of better 

interrogate large areas with a low cost availability, high flexibility, low weight, easily 

handle and broad-band acoustic performance (up to 10 MHz). The impacts were 

generated by dropping a 9 mm diameter steel ball on the surface of the plate in two 

different positions. Sensors location and impact source coordinates are reported in table 

1. 

Table 1 Sensors and impact coordinates in test 1. 

 Sensor 1 Sensor 2 Sensor 3 Sensor 4 Impact A 1 Impact A 2 

x-coordinate (mm) 100 420 420 100 207 270 

y-coordinate (mm) 300 300 100 100 150 220 

 

Figure 5 Experimental set-up and sensors arrangement in test 1 

Test 2 consisted of an aluminium plate with dimensions 1487 mm x 999 mm x 

0.98 mm instrumented with four 300 kHz Acoustic Emission sensors, provided by 

courtesy of Airbus UK (Fig. 9). The AE transducers were attached to the surface of the 

plate using non-corrosive coupling gel. They were firstly connected to pass-band filters 

with a frequency range between 200 and 400 kHz and then linked to preamplifiers. Two 

different configurations of the transducers location were studied, and the impacts were 

induced by a hand-held modal hammer, manufactured by Meggit-Endevco. Following 

tables show the sensors and impact coordinates in both configurations.  

Table 2 Sensors and impact coordinates in test 2, configuration 1 

 Sensor 1 Sensor 2 Sensor 3 Sensor 4 Impact B 1 

x-coordinate (mm) 494 409 1156 1242 750 

y-coordinate (mm) 332 723 778 167 500 

 



Table 3 Sensors and impact coordinates in test 2, configuration 2 

 Sensor 1 Sensor 2 Sensor 3 Sensor 4 Impact B2 

x-coordinate (mm) 494 409 741 1156 890 

y-coordinate (mm) 332 723 780 778 398 

 

(a) 

(b) 
Figure 6 (a) (b) Experimental set-up and sensors arrangement in test 2. 

 

For the signal acquisition, a four channel oscilloscope (Tektronic TDS 3014) 

with a sampling rate of 2 MHz was used, and it was triggered by one of the sensors 

(master sensor). The time histories of the signals received by the sensors were stored on 

a computer and processed using a Matlab software code implemented by the author. 

 

6 Impact location results 

The signals were analyzed in terms of group (energy) velocity–frequency 

relationship. A numerical routine was developed to find the 0A  Lamb wave mode peaks 

to extract the arrival time of the wave packets with largest energy contribution (ridges of 

the scalogram) (Fig. 7, 8, 9). Hence, according to Section 3, the maxima coefficients of 

the scalogram in both experiments were found at two different frequencies, 3452 Hz for 

the tests with the PVDF (referred as A1 and A2 in the article) and 273.4 kHz with 



acoustic emission transducers (referred as B1 and B2 in the article). Therefore, arrival 

times of the flexural waves can be identified at these instantaneous frequencies. 

Nevertheless, it was noticed that the frequencies of interest 3452 Hz for the tests with 

PVDF (A1 and A2) and 273.4 kHz with acoustic emission transducers (B1 and B2) 

were not the same for all four sensors. This can be seen in sub-figure (c) of Figure 7, 

sub-figures (a) and (c) of Figure 8 and sub-figure (c) of Figure 9, wherein the time 

representation of the wavelet coefficients does not seem to match the maximum of 

contour plot of the relative scalogram. However, for those transducers for which the 

scalogram maximum coefficients resulted different, the associated frequency was 

approximately the same (a maximum difference of 10 Hz) with respect to the values 

mentioned above. This means that the arrival time evaluation error due to this frequency 

shift is negligible.  

The results of the impact location and wave velocity identification are 

summarized in Fig. 7 for test 1 and are reported in Fig. 8 and 9 for test 2.  

 

 
(a) 

 
(b) 

  

 
(c)  

(d) 

Figure 7 (a) (b) (c) (d) Each sub-figure illustrates the time histories of the four signals measured by the 

PVDF transducers, the contour-plot of the scalogram of the CWT and line profile of the scalogram 

illustrating the procedure to extract the TOA at Hzf 3452  for test 1 and impact A1. 

 



(a) 
 

(b) 
 



(c) 
 

(d) 
Figure 8 (a) (b) (c) (d) Each figure illustrates the time histories of the four signals measured by the 

acoustic emission transducers, the contour-plot of the scalogram of the CWT and line profile of the 

scalogram illustrating the procedure to extract the TOA at kHzf 4.273  for test 2 and impact B1. 

 



(a) 
 

(b) 
 



(c) 
 

(d) 
Figure 9 (a) (b) (c) (d) Each figure depicts the time histories of the four signals measured by the acoustic 

emission transducers, the contour-plot of the scalogram of the CWT and line profile of the scalogram 

illustrating the procedure to extract the TOA at kHzf 4.273  for test 2 and impact B2. 

 

The results of the predicted impact source location for both configurations in test 

1 and 2 are shown in Fig. 10. 



 (a) 

 (b) 

 (c) 



 (d) 
Figure 10 Source location results of test 1 (a) - (b) and test 2 (c) – (d). The calculated and true impact 

positions are shown as an open circle (o) and a star (*), respectively. The sensor positions are represented 

by a plus sign (+). 

 

The following table reports the results of source location in terms of location error   

defined in Paget’s paper (2003).  
Table 4 Impact positions and errors for test 1 and test 2 

 Impact A1 Impact A2 Impact B1 Impact B2 

x-coordinate source 

location (from 

algorithm) 

209.8 mm 267.2 mm 752.23 mm 891.69 mm 

x-coordinate source 

location (real value) 

207 mm 270 mm 750 mm 890 mm 

y-coordinate source 

location (from 

algorithm) 

148.6 mm 218.4 mm 497.67 mm 401.42 mm 

y-coordinate source 

location (real value) 

150 mm 220 mm 500 mm 398 mm 

Location error   3.13 mm 3.22 mm 3.21 mm 3.63 mm 

 

6.1 Group velocity evaluation 

The velocity group values of 0A  Lamb wave mode of both aluminium specimens 

determined in the optimization procedure (see table 5), are compared with that obtained 

through an analytical approach using the Rayleigh-Lamb frequency relations (Viktorov, 

1967) known as the dispersion equations. The wave numbers of antisymmetrical Lamb 

modes can be expressed as function of the frequency-thickness by the following 

equation (Fig. 11): 
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where 22
kkq t  , 22

kkp l  , k is the wave number,    222 lk , 

 22 tk ,   and   are the Lame constants,   is the density,   is the angular 

frequency and d is the thickness of the plate. Relation analogous to (6.1) can be found 

for the group velocity by assuming 
k

V
kVV

ph

phg 


  where phV  is the phase velocity, 

expressed as kVph  . 

(a) 

(b) 
Figure 11 (a) (b) Dispersion curves of fundamental antisymmetrical Lamb mode for both aluminium 

plates. From test 1 (a), @ 3452 Hz the correspondent group velocity is at 441 sm , whilst in test 2 (b), @ 

273.4 kHz the correspondent group velocity is at 1350 sm . 



 
Table 5 Flexural Lamb mode wave velocity results for test 1 and test 2 

 Impact A1 Impact A2 Impact B1 Impact B2 

Group velocity (from 

algorithm) 
439.4 sm  442.6 sm  1346.34 sm  1353.05 sm   

Group velocity (from 

dispersion curves) 
441 sm  441 sm  1350 sm  1350 sm  

 

The general conclusions derived from the above table are that this algorithm 

generates results with reasonable accuracy (maximum error in estimation of the 

coordinates of the impact location was less than 4 mm and about 3 sm  for the wave 

velocity determination) for both types of impacts considered. In addition, from the 

experiments on the test 2, it was observed that whether the distance of the transducer 

from the impact source was bigger than 650 mm, the effects from the edges of the plate 

and the reflected waves led to a wrong estimation of the stress waves arrival time. 

Hence, an error of 27% on the impact source location was induced. This information 

can be useful for the optimal location of sensors bonded in large structures. 

 

7 Conclusions 

 

This research work presents an impact localization system able to identify the source of 

acoustic emission signals and to determine the velocity of flexural waves in isotropic 

structures. Four piezoelectric film and acoustic emission transducers were used to 

measure the Lamb modes. The relative signals were processed by the analysis of the 

Continuous Wavelet Transform (CWT). The information contained in the ridge of the 

scalogram of the CWT that represents the highest energy contribution of the signal, was 

employed to determine the time of arrival (TOA) of stress waves. The coordinates of the 

impact location and the wave velocity were calculated by solving a system of non linear 

equations by a combination of Line Search and backtracking techniques with a 

Newton’s iterative method. One of the main advantages of the proposed algorithm is 

that it is able to converge from almost any guess point. Computational time for each 

source location to less than 2 s, meaning the impact algorithm can be obtained in quasi 

real-time using a compiled code. 

This method overcomes the limits of a triangulation technique, as it does not 

require any knowledge of the material properties as well as a previous estimate of the 

group velocity. For the validation of the method, several experiments were carried out 

using two aluminium specimens. Good agreement between the theoretical and 

experimental results show that the point of impact and the wave velocity can be 

predicted with high accuracy. In particular, the maximum error in estimation of the 

impact location was less than 2% and about 1% for the flexural waves velocity. 

Moreover, even if this study was based on measuring the flexural Lamb mode 

0A , this method can be also applied to the inspection of the extensional Lamb mode.  
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