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Abstract: The development of unmanned aerial vehicles (UAVs) opens up a lot of opportunities but
also brings some threats. Dealing with these threats is not easy and requires some good techniques.
Knowing the location of the threat is essential to deal with an UAV that is displaying disturbing
behavior. Many methods exist but can be very limited due to the size of UAVs or due to technological
improvements over the years. However, the noise produced by the UAVs is still predominant, so
it gives a good opening for the development of acoustic methods. The method presented here
takes advantage of a microphone array with a processing based on time domain Delay and Sum
Beamforming. In order to obtain a better signal to noise ratio, the UAV’s acoustic signature is taken
into account in the processing by using a time-frequency representation of the beamformer’s output.
Then, only the content related to this signature is considered to calculate the energy in one direction.
This method enables to have a good robustness to noise and to localize an UAV with a poor spectral
content or to separate two UAVs with different spectral contents. Simulation results and those of a
real flight experiment are reported.

Keywords: drones; acoustic source localization; beamforming; microphone array; time-frequency
representation

1. Introduction

In the last decade, unmanned aerial vehicles (UAVs) such as drones have been more
and more frequently used for different purposes. It can be a very useful tool, for exam-
ple for field or farming surveillance, package deliveries and film making. It could also
potentially be a threat in some sensitive areas [1] or it could be used for illegal activities.
Therefore, it is essential to be able to deal with these threats. The first step to deal with
this issue is to know the exact location of the UAV. Several methods exist to localize an
UAV, which can be efficient depending on the type of UAV and the conditions of flight [2,3].
Many studies have shown that localization methods using the noise of UAVs can be very
effective [4–6]. Most methods use multiple microphone arrays and different algorithms
to help estimate the direction of arrival (DOA) of the source. These algorithms can be
separated in two categories: methods such as beamforming [7] and Capon [8], and sub-
space decompositions [9], such as Music [10], which sequentially scan the arrival directions
to highlight the most energetic one and which differ mainly in their ability to separate
spatially close sources and methods which will highlight the DOA by solving an inverse
problem in a single pass from the raw recordings [11] delivered by the microphone array
or from the computed time differences of arrival (TDOA) [12]. The latter methods can
also exploit source sparsity [13–15]. All of these methods use the time signals recorded
directly by the microphone array. In order to improve the signal-to-noise ratio (SNR), it
is possible to take into account the acoustic signature of the UAVs. Indeed, many studies
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have shown that multi-rotor drones and Radio Controlled airplanes produce harmonic
structured acoustic signals [16–18]. From this observation, the signal recorded by the
microphone can be filtered by taking into account the fundamental frequency of the UAV
signal. The fundamental frequency depends on the rotational speed of the rotors, and
the complexity of the spectrum of the acoustic signal emitted will be influenced by the
trajectory of the drone. Blanchard et al. [19] proposed an approach using time domain
Delay and Sum Beamforming (DSB) with pre-filtered signal thanks to the detection of the
fundamental frequency of a DJI phantom IV drone. For this purpose, a zero-phase digital
filter is used to select the relevant frequency band by processing the signal in both forward
and reverse directions. The disadvantage of this filter is that it is not easily implementable
in real time, which is at least somewhat cumbersome in terms of computational resources.
However, using DSB in the time domain seems relevant to us since it allows us to envisage
a real-time implementation while presenting a good robustness to noise. Indeed, even
if the technique requires focusing in a large number of directions, these operations can
be parallelized if one has the means. It is true that using robust adaptive beamforming
would also present an elegant solution for our purpose [20]. However, the technique
requires inverting the interference-plus-noise covariance matrix, which may also include a
regularisation step and the consideration of shorter snapshots to be averaged. The method
is also imprecise when the positions of the antenna microphones are affected by errors,
although a solution has recently been proposed [21]. These elements have, therefore, led
us to keep the structure of the processing of [19], namely the implementation of DSB in
the time domain, by completing it. The approach consists of using the time-frequency
representation of the beamformer’s output while selecting only some harmonic contents
related to the UAV’s signature and in calculating the energy related to this content. This
process in the time-frequency domain avoids zero-phase filtering. A second objective of the
paper is to go deeper into the fundamental frequency extraction process. In Ref. [19], this is
carried out with an algorithm called Harmonic Product Spectrum [22] (HPS), which consists
of multiplying compressed spectra at different compression rates. Several algorithms can
be used to track the fundamental frequency of a modal structured signal such as Harmonic
Line Association [23–25], or Spectral Harmonic Correlation (SHC) [26]. This tracking can
be called pitch tracking and is also used for musical [27] or speech signals [26]. The paper
is organized as follows: Section 2 describes the proposed method, the array configuration
as well as the parameters that were used to carry out the simulations. Section 3 presents
simulation results to establish the potential of the approach in the presence of one or two
static sources and additive noise with comparisons to other methods. The directivity of the
microphone antenna is also discussed. Section 4 is devoted to studying the performance of
two tracking algorithms that are compared. The choice of the bandwidth surrounding the
selected frequency is also discussed. Section 5 is dedicated to the consideration of motion.
The localization performances are first analyzed for a simulated trajectory. Results from a
drone recording are then presented. The influence of the area of the time-frequency plane
used to compute the energy and deduce the localization of the UAV is also studied with the
real trajectory. Section 6 finishes with a conclusion of the obtained results with perspectives.

2. Localization Method and Simulation Parameters
2.1. Delay and Sum Beamforming—Array Geometry

Delay and Sum Beamforming is a well-known method used with microphone arrays.
This method makes use of the different information coming from the microphones. When a
signal is sent by a source, each microphone receives this signal at a different time. By taking
a reference microphone, it is possible to determine the delay between each microphone in
the array and the reference microphone. The reference microphone is generally chosen at
the center of the antenna. Time domain DSB is chosen for localizing the drone especially
for its potential real-time implementation and its ability to operate robustly in the presence
of noise. Figure 1 shows the used coordinate system and the microphone array designed
by Blanchard et al. [19] to localize the drone. The geometry of the antenna was determined
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on the basis of several criteria: (1) to allow the localisation of a source in 3D (even if this is
not the case of the present study for which the position in the azimuth-elevation plane is
privileged), (2) to be sensitive to the range of frequencies emitted by the UAVs, specifically
to be able to detect several harmonics of the blade passing frequency, (3) to comprise a
limited number of sensors requiring few acquisition channels, and finally, (4) to be easy
to transport and deploy. The respect of these constraints led to the development of a 3D
antenna equipped with 10 microphones with 3 perpendicular axes, each comprising 4
microphones, one of which, the reference microphone x0, is common to all three branches.
The distances between each microphone and the reference are such that:

||x1|| = ||x4|| = ||x7|| = l1,

||x2|| = ||x5|| = ||x8|| = l2,

||x3|| = ||x6|| = ||x9|| = l3,

(1)

with l1 = 5 cm, l2 = 20 cm, and l3 = 110 cm. The distance l1 allows the maximum frequency
of the bandwidth to be set according to the spatial Shannon criterion, while the distance
l3 contributes to setting the minimum frequency. This arrangement gives the antenna a
bandwidth of [220.5, 3430] Hz, which is broad enough according to the DJI phantom IV
signature. The geometry was, thus, chosen according to a frequency bandwidth-simplicity-
portability compromise, which is obviously not the only one possible. Indeed, some studies
lead to antennas with many more microphones (from 72 to 96 MEMS in [28]) with an
arrangement obtained according to a hemispherical shape by optimising the gain in a
given direction and the attenuation of the side lobes at a particular frequency using a
genetic algorithm. A similar strategy is used in the development of a planar antenna
to characterise the acoustic sources produced by a moving train [29]. It is also possible
to optimise the geometry by constraining certain positions, for example by favouring
intersections between the axes and the spiral path in a spiral antenna [30]. In contrast,
some authors seek to optimise an antenna with only three sensors in the case of first-order
steerable differential antennas by using the least squares method to match a directivity
pattern in a given direction [31]. A recent study shows that a relevant geometry with a
low number of sensors can be obtained by using the time difference of arrival in the fitness
function to be optimised by particle swarm [32].

Figure 1. Coordinate system and microphone array used to localize the drone at M.
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In our study, the location is represented with an angle Ω = (ϕ, θ), where ϕ and θ
represent the azimuth and the elevation, respectively. The source is searched on a grid of
[−180, 180]° in azimuth and [0, 90]° in elevation. The delays used to focus the beamformer
on the virtual point are:

τi =
| ||x0M|| − ||xi M|| |

c
, (2)

where τi is the sound propagation delay between the ith microphone located at point xi
and the reference microphone, ||xi M|| is the distance between microphone i and the source
(M), and c is the speed of sound. The DOA is found by taking the direction which gives the
highest energy.

2.2. Description of the Proposed Approach

The process, applied to the signals acquired from a time section, is described in Figure 2.
It is repeated for each chosen focusing direction (ϕ, θ) included in a grid whose resolution
in azimuth and elevation is fixed a priori. The objective is to find the focusing direction that
best corresponds to that of the drone from the information provided by the 10-microphone
array. The direction that will prevail the decision is the one associated with the maximum
energy E(ϕ, θ) of the focused time signal (using time domain DSB) for specific frequency
bins. Indeed, the calculation of the energy is only based on certain components of the
signal which are selected in the time-frequency plane (obtained by the Short Time Fourier
Transform STFT of the focused signal). These are harmonics of a characteristic frequency of
the UAV’s signature obtained by a pitch tracking algorithm run during each time slot of
the reference microphone before focusing. Finally, all the time-frequency bins associated
with these frequencies are taken to calculate the energy.

The approach enables to keep the robustness to noise of the DSB. It avoids pre-filtering
each signal temporally before applying DSB, which requires a lot of processing [19]. Indeed,
in order to keep the phase information intact, it is necessary to filter the signal a first time,
time reverse the result then filter it again, and finally, time reverse the resulting signal [33].

Figure 2. Synopsis of the proposed approach.

2.3. Simulation of a Drone Signal

The quadcopter DJI Phantom IV is used in the experiments. The aim is, therefore, to
simulate the signals picked up by the microphone antenna, which should bear the signature
of the quadcopter’s behavior. Two techniques are used for this purpose, one based on the
signal model proposed in Refs. [19,34], inspired by Ref. [35], the other on numerically
propagating a real signal to the virtual antenna. For both techniques, the acoustic source
emitted by the UAV is assumed monopolar and the propagation is free-field. The real
signal is obtained from the signals acquired by the array in an anechoic room: the UAV,
held immobile by nylon wires while its motors are operated to move it, faces the antenna
at a distance of 1.5 m. Thanks to beamforming, the measured signals are focused on the
position of the UAV, providing the actual signal which can be propagated to any virtual
array. Figure 3b highlights the Power Spectral Density (PSD) of such a simulated signal on
the reference microphone. As for the model, it is built from the characteristics of the sound
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radiated by the UAVs described in the literature [16,17]. The signal emitted by the drone
presents a harmonic structured spectrum with two types of harmonics highlighting two
physical phenomena: the noise produced by rotation of the rotors (weak harmonics) and
the noise produced by the blades (strong harmonics) giving the aerodynamic noise. The
rotor frequency f0 and the blade passing frequency fbp are related according to:

fbp = Nb ∗ f0, (3)

where Nb represents the number of blades. The drone is equipped with two blades, so
strong even harmonics with predominant amplitudes are present as well as weak odd
harmonics with weaker amplitudes. Equation (4) gives the signal pi(t) received by the ith
microphone using the model:

pi(t) =
Nh

∑
n=1

β
cos(2π[2n− 1] f0(t− ||xi M||(t)/c))

4π||xi M||(t)︸ ︷︷ ︸
weak harmonics

+ α f0 (n)
cos(2π[2n] f0(t− ||xi M||(t)/c))

4π||xi M||(t)︸ ︷︷ ︸
strong harmonics

. (4)

where Nh is the number of harmonics in the signal, β sets the constant amplitude of the
weak harmonics, and α f 0(n) is used to model a logarithmic attenuation of the strong
harmonics extracted from the PSD of a real drone signal. The parameters for this study are
β = 10−1.5 and α f 0(n) = 10

1
20 (−11.6log10(2n f0)+65.4). Figure 3a shows the PSD of the signal

model with f0 = 80.6 Hz and fbp = 161.2 Hz. A comparison of the two simulated signals
shows that both types of harmonics are clearly visible, but there are fewer harmonics when
using the real signal. It can be noted that the model does not take into account the presence
of the four motors, as shown by the bandwidth around the harmonics, which is constant in
the model and not for the actual signal.

Figure 3. Power Spectral Densities of (a) the simulated drone signal provided by the model and
(b) the real drone signal, both with f0 = 80.6 Hz and fbp = 161.2 Hz.

3. Simulation Results in the Static Case
3.1. Directivity Pattern of the Designed Antenna

The directivity of the antenna can have an influence on the localisation performance
of the algorithms applied to the captured signals, especially in the presence of a disturbing
source. This depends on the geometry of the antenna but also on the frequency studied
and the focus point. To characterise the directivity pattern, the width of the main lobe in
azimuth and elevation and the maximum level of the side lobes are used [36]. The lobe
widths in azimuth and elevation are determined by the angular distance between the point
of maximum energy and the point 3 dB below. The Maximum Side-lobe Level (MSL) is
the level difference between the main lobe and the secondary lobe. The directivity pattern
is obtained in the (ϕ, θ) plane from a monopole source simulated in one direction at 1 m
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[see Figure 4a–c for 175 Hz, 350 Hz, and 525 Hz]. The chosen frequencies correspond to
the blade passing frequency measured in the presence of the UAV of Section 5 with two
harmonics (4 ∗ f0, 6 ∗ f0). As the frequency increases, the main lobe is narrower and more
secondary lobes appear for the same direction. The three parameters are calculated from
the directivity pattern and plotted (see Figure 4d–i). The trajectories of the drone flight
mentioned in Section 5.1 (solid line) and Section 5.2 (dotted line) are indicated on each
map. Figure 4d–f show the main lobe azimuth widths calculated for the different source
directions, for 350 Hz (d), with a zoom for the same frequency (e), and 525 Hz (f). It can
be seen that for a source with an elevation higher than 80°, the azimuth width takes all
the 360°. Everywhere else and especially around the trajectory, the width is in [38°, 60°]
for 350 Hz (e) and in [29°, 39°] for 525 Hz (f). The width of the main lobe in elevation
(g), (h) is different, it is in [35°, 40°] for 350 Hz (g) when the array focuses on [20°, 70°] in
elevation and around 25° for 525 Hz (h). Figure 4i shows a MSL around 0 dB for azimuth
around −180° and 180° for 350 Hz. Other directions provide a MSL between 1 and 3 dB
with a periodic pattern. The trajectory considered gives an MSL around 1 dB, so it could be
difficult to differentiate the secondary lobe from another source in the case of a multi-source
flight. The cartography exhibiting the width of the main lobe in azimuth for frequency
525 Hz in the range [0°, 90°] is similar to Figure 4d as well as MSL to Figure 4i (350 Hz).

Figure 4. Directivity pattern of the array for (0°, 45°) direction and 175 Hz (a), 350 Hz (b), 525 Hz (c),
with characteristics for all the directions in the azimuth/elevation plane: main lobe azimuth width (°)
for 350 Hz (d), zoom for 350 Hz (e) and 525 Hz (f), main lobe elevation width (°) for 350 Hz (g) and
525 Hz (h), maximum side-lobe level (dB) for 350 Hz (i). The studied flight trajectories are in red.
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3.2. Simulations with One Source

The proposed approach is first tested with a simple configuration involving a static
source with a stationary rotor speed. This rotation speed is chosen to give a fundamental
frequency of 80.6 Hz (which corresponds to a rotation speed of 4836 rpm). Some white
Gaussian noise is added to the simulated signal with a SNR of 20 dB (standard power ratio
between signal and noise). The performance of the approach to the noise will be evaluated
later on. Two locations are tested, the first source is placed at (0°, 45°) which corresponds
to 0° in azimuth and 45° in elevation and the second at (100°, 70°). The distance between
the source and the antenna is 10 m. Beamforming is used to provide the energy in the
azimuth/elevation plane with a grid resolution of (4°, 2°), respectively, in azimuth and in
elevation. Energy is computed on a time signal of 2048 samples. Figure 5 shows the results
of classical DSB using both source simulation techniques, based on the model [(a) and
(b)] or the actual drone signal [(c) and (d)] for source positionning at (0°, 45°) [(a) and
(c)] and (100°, 70°) [(b) and (d)]. As these results seem independent of the simulation
technique, that of the approach using the Time-Frequency Representation (TFR) are only
provided using the model at (0°, 45°) (e) and (100°, 70°) (f). For localizing a static drone, the
signal model simulated according to Equation (4) thus seems to perform well. Five even
harmonics are extracted from the TFR which means that the addition of the energy relative
to the components 2 ∗ f0, 4 ∗ f0, 6 ∗ f0, 8 ∗ f0, 10 ∗ f0 is computed. All the bins contained
in [2 ∗ i ∗ f0 − f 0

10 ; 2 ∗ i ∗ f0 +
f 0
10 ] intervals are selected with i = 1, . . . , 5, and the frequency

bandwidth is ∆ f =
fbp
10 = 2∗ f0

10 = 16.12 Hz. Indeed, when the SNR is low (≤40 dB), only
the strong harmonics are present in the spectrum, so only even components are selected in
this approach. The Fast Fourier Transform (FFT) is computed with 4096 points on Hanning
windows of 2048 points with 512 points of overlapping. The maps represented in these
figures are the calculated energies of the different angles Ω in the azimuth/elevation plane.
Both locations show good accuracy for the classical DSB with a maximum energy (cross)
close to the actual position of the source (circle). The TFR-based method shows similar
results but with a little more energy where the source is located. This result shows that it
is possible to locate a source by using only a restricted spectral content. It can be useful if
some information is lost or if other sources overlap in another frequency range.

Figure 5. Normalized energy in the azimuth/elevation plane as a function of the position of the
source [(0°, 45°) left, (100°, 70°) right], the method and the simulation technique used, (a,b): classical
DSB, model; (c,d): classical DSB, real drone signal; (e,f): TFR, model (the circle represents the actual
position of the virtual source, the cross represents the maximum energy position).
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3.3. Simulation with Two Sources

Simulations conducted with two sources are reported in this subsection using the
model signal defined in Equation (4). The same parameters are used in these simulations
(resolution, SNR, ||x0M||) except for the fundamental frequency f0, which is different here
for each source. Generally, when two sources are present, they rarely simultaneously have
the same spectral contents because of the different rotation speeds. Thus, two different
fundamental frequencies are chosen close enough, for the first source f01 = 150 Hz and
for the second source f02 = 175 Hz. The first source is located at (0°, 45°) and the sec-
ond at (100°, 70°). Figure 6 presents the results for the classical DSB, for the TFR-based
method taking frequency bins of the two sources in [2 ∗ i ∗ f01 − f01

10 ; 2 ∗ i ∗ f01 +
f01
10 ] and

[2 ∗ i ∗ f02 − f02
10 ; 2 ∗ i ∗ f02 +

f02
10 ] with i = 1, . . . , 5, and for the TFR-based method using

only one source. The results show that using the TFR increases the localization accuracy
of the source placed at (0°, 45°) [3° in Figure 6a and 1° in Figure 6b]. Thus, depending
on the location, the TFR-based method can improve location accuracy. The other interest
of this approach is the separation of sources using their spectral contents. Indeed, when
only the spectral content of source 1 is taken into account to calculate the energy, only
source 1 is located in the energy map (Figure 6c). The same is true for the second source
(Figure 6d); thus, it is a useful tool for separating multiple sources if each of them has a
different spectral content.

Figure 6. Normalized energy maps in the presence of two sources taking (a) the whole energy,
(b) 5 harmonics of both sources in the TFR, (c) 5 harmonics of source 1 ( f01 = 150 Hz), (d) 5 harmonics
of source 2 ( f02 = 175 Hz) (the circles and the crosses represent, respectively, the actual positions of
the virtual sources and the positions of the two energy maxima).



Sensors 2022, 22, 4021 9 of 18

3.4. Performance Evaluation

The previous simulations have shown the performance of the TFR with different
configurations and little noise (SNR = 20 dB). This subsection presents the evaluation of
performance with different white Gaussian noise levels added to the simulated signals of
the array. These signals are obtained by focusing signals measured in an anechoic room in
the presence of the drone then propagating the beamformer’s output to the array at (0°, 45°)
and 1 m. Figure 7 shows the angle errors with a varying SNR. In total, 50 virtual sources of
4096 samples with sampling frequency of 20 kHz were simulated for each noise condition
and the shown result is the average of the direction estimations. Beamforming is processed
with 2048 samples. The methods compared here are classical DSB, the TFR-based method
with 1 and 5 harmonics, and Beamforming with Temporally Pre-Filtered Signals (BTPFS)
using 5 harmonics [19]. Classical DSB gives an error of 0° in azimuth until −6 dB of SNR,
whereas the approaches using the TFR with 1 and 5 harmonics start to rise at 10 dB and
−14 dB, respectively. BTPFS with 5 harmonics start to have a rising error close to classical
DSB with a faster rise. The standard deviation starts to increase in the same way as the
mean errors. According to these results, it is better to use more harmonics in the TFR to
have a better performance with lower SNR. The error in elevation is around 1° and starts to
rise from −6 dB for classical DSB, from 10 dB for the TFR with 1 harmonic, from −14 dB for
the TFR, and from −2 dB for BTPFS with 5 harmonics. The standard deviation is null and
starts to rise when the error mean rises. For the azimuth and the elevation, the TFR-based
method performs better with an error close to 0° until −16 dB in azimuth and 1° until
−14 dB in elevation.

Figure 7. Evolution of the angle errors and standard deviations (SD) as a function of the SNR for the
(0°, 45°) source with classical DSB, 1 harmonic considered in the TFR, 5 harmonics in the TFR and in
the BTPFS.

4. Pitch Tracking and Frequency Bandwidth

In the previous simulations, the fundamental frequency was assumed to be known,
but this is not the case in reality. It is, thus, important to test and compare some algorithms
to track the fundamental frequency. Two algorithms are presented here for pitch tracking:
Harmonic Product Spectrum (HPS) and Spectral Harmonic Correlation (SHC). The way
to choose the frequency bins around the frequency tracked for the energy calculation is
also discussed.

4.1. Harmonic Product Spectrum

The HPS method developed by Schroeder et al. [22] exploits the harmonic structure
of the signal spectrum. Since the harmonic signal has a spectrum with peaks multiple
of the fundamental frequency, if the spectrum is compressed, the spectrum still has an
harmonic structure but all the peaks’ frequencies are divided by two. When the spectrum is
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compressed multiple times, there is still a peak at the fundamental frequency. Therefore, the
product of the different compressed spectra gives a high peak at the fundamental frequency
and lower peaks at other frequencies. This process is performed according to Equation (5):

f0 = arg max
f

∑
k∈N∗

log10|X(k f )|, (5)

where X( f ) denotes the spectrum. Figure 8 shows the initial spectrum of the simulated
drone signal with a fundamental frequency of 175 Hz, which corresponds to fbp, and the
two first compressed spectra. Because of the lower SNR, weak odd harmonics are not
visible in the spectrum; therefore, the first frequency detected is fbp instead of f0. The last
subfigure shows the product of the spectra. The product gives a peak with high amplitude
at the fundamental frequency and some peaks of lower amplitude elsewhere.

Figure 8. Part of the spectrum of the simulated drone signal (a), first (b) and second (c) compressions
of this spectrum, and the product of the three spectra (d).

4.2. Spectral Harmonic Correlation

Spectral Harmonic Correlation (SHC) is based on a pitch tracking algorithm dedicated
to speech signals called Yet Another Algorithm for Pitch Tracking (YAAPT) [26]. The
idea of this algorithm is to calculate the correlation between one frequency and a chosen
number of multiples of this frequency. When the correlation is strong, the result is close
to 1 and the absence of correlation is linked to 0. Equation (6) describes how the SHC is
obtained at time t and frequency f using the time-frequency representation S(t, f ) and
other parameters to calculate the correlation: Lw is the window length used in the frequency
domain. This means that for one frequency, the correlation is calculated between multiple
windows of length Lw that are equally spaced. Each windowed portion of the spectrum is
selected with the coefficient r varying from 1 to NH + 1 the number of harmonics chosen
for the correlation.

SHC(t, f ) =

Lw
2

∑
f ′=− Lw

2

NH+1

∏
r=1

S(t, r f + f ′). (6)

Figure 9 shows the Fourier Transform’s magnitude of a simulated drone windowed sig-
nal centered at time t and the associated SHC calculation. For this simulation, Lw = 10 Hz,
NH = 4, and the calculation of the SHC is done between 100 Hz and 500 Hz because the
blade passing frequency is in this interval for the DJI Phantom IV [34]. The SHC performs
well and gives a correlation at this frequency ( fbp = 175 Hz) and nowhere else.
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Figure 9. Magnitude of the Fourier transform of the simulated drone signal (top) and the SHC
calculated with this spectrum (bottom).

4.3. Performance Evaluation

Just as the localization methods were tested with varying noise levels, the pitch
tracking methods are evaluated here with different SNRs. Both methods use the spectrum
for pitch tracking, so the performance depends on the number of points in the FFT, and on
the parameters inherent to each method. Figure 10 presents the results for three different
numbers of points for the FFT and with a varying number of harmonics in the SHC and
compressions in the HPS. For each noise condition, 100 virtual sources have been simulated
and the result shown is the average. The fundamental frequency of the simulated signal is
f0 = 87.5 Hz ( fbp = 175 Hz). The lowest number of points 2048 enables to have an accurate
blade passing frequency estimation until −14 dB of SNR for the HPS and −16 dB for the
SHC. The SHC appears to perform better than the HPS in the presence of strong noise. It
can also be seen that when the number of points is doubled, estimation performance allows
for more unfavorable SNR levels of 2 dB. These results combined with results shown in
Figure 7 give the simulation limits of the SNR for the localization methods presented in
this paper.

Figure 10. Evolution of the estimated blade passing frequency as a function of the SNR for a simulated
source with HPS with three or four compressions and SHC with NH = 3 or NH = 4, with 2048 points
(a), 4096 points (b), and 8192 points (c) for the FFT.

4.4. Frequency Bandwidth around the Tracked Frequency

In the process of harmonic selection in the TFR, another influential parameter is the
frequency of the considered bandwidth. Indeed, after the STFT, only some time-frequency
bins are chosen to calculate the energy. The selected bins are at least those for which
frequencies are equal to fdetect ∗ i, i = 1, . . . , nh, with fdetect the frequency detected by
the pitch tracking algorithm and nh the number of harmonics chosen. fdetect normally
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corresponds to fbp. More frequency bins can be chosen in the neighborhood of fbp and its
harmonics. The bandwidth can be defined as independent of the center frequency to be
selected, e.g., constant, or as dependent on the center frequency as with bandpass filters
with a quality factor. In the latter case, the frequency bandwidth ∆ f of each harmonic, thus,
varies with the harmonic frequency according to:

Q =
fdetect
∆ f

. (7)

In this way, all the bins whose frequencies are in the [ fdetect ∗ i ∗ (1− 1
2Q ); fdetect ∗ i ∗

(1 + 1
2Q )] band, i = 1, . . . , nh, are taken to calculate the energy. Table 1 gives the maximum

quality factor fdetect
∆ fmin

depending on the frequency step ∆FFT (between adjacent spectral lines)
given by the number of points used in the FFT.

Table 1. Maximum quality factors depending on the frequency resolution and the central frequency
(sampling frequency: fs = 20 kHz, NFFT : number of points in the FFT, ∆FFT : frequency step).

NFFT Duration (s) ∆FFT (Hz) ∆ fmin (Hz) Qmax Qmax
(f = 175 Hz) (f = 350 Hz)

16,384 0.8 1.22 3 58 116
8192 0.4 2.44 5 35 70
4096 0.2 4.88 10 17.5 35
2048 0.1 9.76 20 8.75 17.5
1024 0.05 19.53 40 4.37 8.75

5. Localization of a Moving Source: Simulation and Experiment

In this section, the case of a moving source is studied, first with a simulated source,
then with the real flight of the quadcopter DJI Phantom IV. The goal is to show the rele-
vance of the proposed method but also to see the influence of tracking on the localization
performance. The effect on drone localization of the area taken into account around the
harmonics in the time-frequency representation is investigated. SHC is chosen as the pitch
tracking algorithm.

5.1. Classical DSB versus TFR Approach for Source Localization: Simulation

For this simulation, the drone starts on the ground with a distance from the antenna
around 2 m, rises at a maximum height of 3.1 m, then goes down to the ground at a distance
of 4 m from the antenna. Figure 11 shows the simulated trajectory in 3D Cartesian coordi-
nates. During a real flight, the drone can adjust its rotor rotation speed so that the frequency
content can vary slightly. Thus, in this simulation, a frequency modulation is implemented.
The drone signal is simulated with a SNR of 5 dB. Time domain beamforming as well as
SHC is provided on windows of 4096 samples from simulated signals of 5000 points to be
sure to process the 4096 delays.

Figure 12 shows the simulation results for localization. The first subfigure exhibits
the estimated blade passing frequencies with SHC over time and their harmonics, the
second subfigure presents the localization results provided by the proposed approach
with 5 harmonics, the classical approach, and the reference position. The TFR approach is
performed with a bandwidth dependent center frequency with Q = 10. Subfigure (a) also
highlights the simulated frequency modulation: fbp fluctuates around 175 Hz ( f0 is around
87.5 Hz). The fundamental frequencies are well estimated and the classical and TFR-based
methods give a precision error around 1.7° in azimuth and 1.1° in elevation. However, the
TFR-based method performs slightly better than the classical approach, both in azimuth and
elevation, according to the upper part of Table 2 dedicated to the localization performance
in the simulated trajectory.
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Figure 11. Simulated trajectory of the drone in Cartesian coordinates (the circle represents the starting
position of the drone).

Table 2. Steering errors: mean (µ) and standard deviation (σ) for the azimuth (ϕ) and elevation (θ) in
the simulated and experimental trajectories.

Azimuth ϕ (°) Elevation θ (°)

µ σ µ σ

Simulated trajectory

Classical DSB 1.8 0.8 1.1 0.7
TFR with 5 harmonics 1.7 0.8 1.1 0.7

Experimental trajectory

Classical DSB 2.9 2.6 2 1.5
TFR with 5 harmonics (Q = 10) 2.3 2.5 2.8 1.9

TFR with 5 harmonics (∆f = 17.5 Hz) 2.3 2.5 2.6 1.9
BTPFS 2.5 2.4 4.7 6.1

Figure 12. Spectrogram of the simulated source with the estimated frequencies in red (a). Evolution
of the azimuth and elevation in time with the classical DSB, the TFR, and the theory (b).

5.2. Influence of the Frequency Bandwidth in the TFR on Localization: Moving Drone

To evaluate the influence of the frequency bandwidth extracted in the TFR, experimental
tests have been carried out with the Phantom IV drone from the company DJI on a field of Le
Mans University. The array used for recording the data has the geometry given in Figure 1
and is equipped with 10 BSWA Technology MPA 416 1/4 in. microphones (20 Hz–20 kHz).
The acquisition system is based on a PXI-1036 chassis from National Instruments connected
to a laptop computer. The acoustic signals are recorded simultaneously on ten channels
using a sampling frequency of 20 kHz. The trajectory is similar to that in the simulation
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presented previously. The drone starts on the ground at a distance of 3 m from the antenna,
rises with a moderated speed until a height of 3.2 m, and then goes down to the ground.
The azimuth and elevation angles of the drone are deduced from the embedded global
positioning system (GPS). Note that the GPS has an incertitude around 3 m, which should
not, however, be too penalizing for the studied trajectory. The localization performance
was also examined by integrating a variable number of harmonics (3, 4, 5, 10, 15, and 20) in
the power computation. With this trajectory, the errors do not evolve much (from 2.7° to
4.2° in azimuth and 12.8° to 15.6° in elevation), but the results are better when considering
4 or 5 harmonics, which is a reasonable compromise between localization accuracy and
computation cost. The spectrogram of the center microphone is presented in Figure 13 with
the detected frequency fdetect in red corresponding to fbp = 175 Hz. Windows of 4096 points
are used for SHC. It shows the tracks due to the four rotors running at different speeds.
These tracks are compact in low frequencies but more spread out at higher frequencies.
Figure 14a,b show the areas involved in the energy calculation for Q = 5 and Q = 17.5.
For Q = 5, almost all of the useful energy appears to be extracted, while for Q = 17.5, the
area is more selective and traces of a motor emission are found outside. Several tests were
conducted with different quality factors and also constant frequency bands. They were
evaluated by comparing the temporal evolution of the localization in azimuth and elevation
with the reference given by the GPS. On the tested trajectory, the differences are not very
marked, the results always remaining quite correct. Figures 15 and 16 show the localization
results for Q = 10 and for ∆ f = 17.5 Hz, which corresponds to the bandwidth around the
first harmonic for Q = 10. A grid resolution of (1°, 1°) is used for the different localization
methods and beamforming is provided on windows of 4096 points. Figure 17a,b highlight
the areas considered in the time-frequency plane in these two cases. The lower part of
Table 2 also contains the results of the experimental flight in terms of mean steering errors
and standard deviations for the different approaches tested. The TFR method in azimuth
gives deviations around 2.3° on average for both bandwidths, which is slightly lower than
classical DSB (see Figure 15). The constant bandwidth allows for fewer localization errors
towards the end of the trajectory. In elevation (see Figure 16), the constant bandwidth allows
to have more estimates close to the reference position for elevations greater than 40°. On
average, the error is slightly more important than in azimuth and classical DSB performs
better, but the TFR method is still close. To have an idea of the computational cost, the
algorithm speed has been measured for the TFR approach on one slot. It is computed using
Matlab® on a 3.20 Ghz processor (AMD Ryzen™ 7 5800H) and takes 10.7 s to provide a
DOA estimate on a 5000-point slot with a (4◦, 2◦) resolution. As said in the introduction,
this computation time can be reduced by carrying out parallel operations. The algorithm
can also be optimized by reducing the grid search around the previous estimate, assuming
that it is relevant.

Figure 13. Spectrogram of the experimental trajectory (the red points are the estimated fundamental
frequencies detected by SHC corresponding to fbp).
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Figure 14. Spectrogram of the experimental trajectory with the selected content in the TFR for (a) Q = 5
and (b) Q = 17.5 (the red points are the estimated blade passing frequencies detected by SHC).

Figure 15. Evolution of the azimuth with time for the experimental trajectory, for the two types of
bandwidth, with Q = 10.
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Figure 16. Evolution of the elevation with time for the experimental trajectory, for the two types of
bandwidth, with Q = 10.

Figure 17. Spectrogram of the experimental trajectory highlighting the selected content in the TFR for
Q = 10 (a) with the bandwidth varying with the center frequency, (b) with the constant bandwidth
around harmonics (the red points are the estimated blade passing frequencies detected by SHC).

6. Conclusions and Perspectives

This paper presents a processing chain to localize a moving UAV based on its acoustic
signature. It presents a good robustness to noise by the use of a microphone array associated
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with the technique of time domain Delay and Sum Beamforming. The process improves the
method of Ref. [19], based on temporal filtering before the beamforming stage, which has
the disadvantage of requiring the use of zero-phase filters, whose implementation is not
inherently in real time. Here, the processing is based on the time-frequency representation
of the focused signal, i.e., the beamformer’s output and could be carried out in real time. It
allows selecting only the content related to the UAV’s signature to calculate the energy for
each 2D position in the azimuth-elevation plane, whose maximum will give the searched
drone’s DOA. It has been shown that this method gives good precision while taking only
few spectral contents of the source. However, the use of several harmonics (for example, 5)
improves the results in the presence of strong noise. The fact of being able to choose freely in
the time-frequency plane the interesting components gives a great flexibility to the method,
which is also encouraging when it is necessary to locate several sources simultaneously.
The tested trajectory highlighted the interest of the pitch tracking algorithm by Spectral
Harmonic Correlation and showed that taking a few frequencies around the harmonics
of the blade passing frequency was effective for accurate drone localization. The method
deserves to be tested on more complex trajectories with several drones in flight. Efforts
could also be made to adapt the geometry of the microphone array in order to improve the
localization performance in certain positions.
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