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Acoustic Force Density Acting on Inhomogeneous Fluids in Acoustic Fields
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We present a theory for the acoustic force density acting on inhomogeneous fluids in acoustic fields on
time scales that are slow compared to the acoustic oscillation period. The acoustic force density depends
on gradients in the density and compressibility of the fluid. For microfluidic systems, the theory predicts
a relocation of the inhomogeneities into stable field-dependent configurations, which are qualitatively
different from the horizontally layered configurations due to gravity. Experimental validation is obtained
by confocal imaging of aqueous solutions in a glass-silicon microchip.
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The physics of acoustic forces on fluids and suspensions
has a long and rich history including early work on
fundamental phenomena such as acoustic streaming
[1–4], the acoustic radiation force acting on a particle
[5,6] or an interface of two immiscible fluids [7], and
acoustic levitation [8,9]. Driven by applications related to
particle and droplet handling, the field continues to be
active with recent advanced studies of acoustic levitators
[10–12], acoustic tweezers and tractor beams [13–15],
thermoviscous effects [16–18], and, in general, rapid
advances within the field of microscale acoustofluidics
[19]. In the latter, acoustic radiation forces are used to
confine, separate, sort, or probe particles such as micro-
vesicles [20,21], cells [22–26], bacteria [27,28], and bio-
molecules [29]. Biomedical applications include the early
detection of circulating tumor cells in blood [30,31] and the
diagnosis of bloodstream infections [32].
The theoretical treatment of acoustic forces involves

nonlinear models including multiple length and time scales
[33]. Steady acoustic streaming [34] describes a steady
swirling fluid motion, spawned by fast-time-scale acoustic
dissipation either in boundary layers [2] or in the bulk [3].
Similarly, the acoustic radiation force acting on a particle
[18] or an interface of two immiscible fluids [35,36] is
due to interactions between the incident and the scattered
acoustic waves. This force derives from a divergence in
the time-averaged momentum-flux-density tensor, which is
nonzero only at the position of the particle or the interface.
Recently, in microchannel acoustofluidics experiments,

it was discovered that acoustic forces can relocate inho-
mogeneous aqueous salt solutions and stabilize the result-
ing density profiles against hydrostatic pressure gradients
[37]. Building on this discovery, isoacoustic focusing was
subsequently introduced as an equilibrium cell-handling
method that overcomes the central issue of cell-size
dependency in acoustophoresis [38]. The method can be
considered a microfluidic analog to density gradient
centrifugation, achieving spatial separation of different cell

types based on differences in their acoustomechanical
properties. Not surprisingly, the subtle nonlinear acoustic
phenomenon of relocation and stabilization of inhomo-
geneous fluids was discovered in the realm of micro-
fluidics, where typical hydrostatic pressure differences
(∼1 Pa) are comparable to, or less than, the acoustic energy
densities (1–100 Pa) obtained in typical microchannel
resonators [38–40].
The main goal of this Letter is to provide a theoretical

explanation of this phenomenon. To this end, we extend
acoustic radiation force theory beyond the requirement
of immiscible phases, and we present a general theory
for the time-averaged acoustic force density acting on a
fluid with a continuous spatial variation in density and
compressibility. The starting point of our treatment is to
identify and exploit the separation in time scales between
the fast time scale of acoustic oscillations and the slow time
scale of the oscillation-time-averaged fluid motion. We
show that gradients in density and compressibility result in
a divergence in the time-averaged momentum-flux-density
tensor, which, in contrast to the case of immiscible phases,
is generally nonzero everywhere in space. Our theory
explains the observed relocation and stabilization of inho-
mogeneous fluids. Furthermore, we present an experimen-
tal validation of our theory obtained by confocal imaging in
an acoustofluidic glass-silicon microchip.
Characteristic time scales.—Consider the sketch in

Fig. 1 of a long, straight microchannel of cross-sectional
width W ¼ 375 μm and height H ¼ 150 μm filled with

a fluid of inhomogeneous density ρ0ðrÞ ¼ ½1þ ρ̂ðrÞ�ρð0Þ
0
,

adiabatic compressibility κ0ðrÞ, and dynamic viscosity
η0ðrÞ. Here, ρ̂ðrÞ is the relative deviation away from the

reference density ρ
ð0Þ
0
. Assuming an acoustic standing half-

wave resonance at angular frequency ω, the wave number
is k ¼ ω=c ¼ π=W, where c ¼ 1=

ffiffiffiffiffiffiffiffiffi

ρ0κ0
p

is the speed of
sound. In terms of the parameters of the microchannel and
of water at ambient conditions, the fast acoustic oscillation
time scale t is
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t ∼
1

ω
¼ 1

kc
¼ 1

π
W

ffiffiffiffiffiffiffiffiffi

ρ0κ0
p

∼ 0.1 μs: ð1Þ

In contrast, the time scales associated with flows
driven by hydrostatic pressure gradients are much slower.
Given the length scale H, the gravitational acceleration
g, and the kinematic viscosity ν0 ¼ η0=ρ0, we estimate
the time scale of inertia tinertia ∼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

H=ðgρ̂Þ
p

, of viscous
relaxation trelax ∼H2=ν0, and of steady shear motion
tshear ∼ ν0=ðHgρ̂Þ, with the latter being obtained by bal-
ancing the shear stress η0=tshear with the hydrostatic
pressure difference Hρ0gρ̂. Remarkably, in our system
with ρ̂ ≈ 0.1, all time scales are of the order of 10 ms,
henceforth denoted as the slow time scale τ,

τ ∼ tinertia ∼ trelax ∼ tshear ∼ 10 ms: ð2Þ

Furthermore, for acoustic energy densities Eac of the order
ρ0gH, the time scale of flows driven by time-averaged
acoustic forces is also τ. Hence, we have identified a
separation of time scales into a fast acoustic time scale t and
a slow time scale τ ∼ 105t. This separation is sufficient
to ensure τ ≫ t in general, even for large variations in
parameter values.
Fast-time-scale dynamics.—The dynamics at the fast

time scale t describes acoustics for which viscosity may be
neglected [41–43]. On this time scale ρ0, κ0, and η0 can be
assumed to be stationary, and the acoustic fields are treated
as time-harmonic perturbations at the angular frequency ω

[43]. The perturbation expansion for the density ρ thus
takes the form

ρ ¼ ρ0ðr; τÞ þ ρ1ðr; τÞe−iωt; ð3Þ

and likewise for the pressure p and the velocity v. In
terms of the material derivative ðd=dtÞ ¼ ∂t þ ðv · ∇Þ, the
density-pressure relation for a fluid particle is

dρ

dt
¼ 1

c2
dp

dt
; where

1

c2
¼

�

∂ρ

∂p

�

S

¼ ρ0κ0: ð4Þ

Here, c is the adiabatic local speed of sound, which
depends on the position through the inhomogeneity in κ0
and ρ0. Combining Eqs. (3) and (4) leads to the first-order
relation

∂tρ1 þ ðv1 · ∇Þρ0 ¼ ρ0κ0½∂tp1 þ ðv1 · ∇Þp0�; ð5Þ

where we have discarded terms involving v0, as they are
negligible for jv0j ≪ c. From the governing equations for
mass and momentum [41–43] follows j∇p0j ≪ c2j∇ρ0j,
and the term involving ∇p0 in Eq. (5) is also negligible.
This results in the first-order equations

κ0∂tp1 ¼ −∇ · v1; ð6aÞ
ρ0∂tv1 ¼ −∇p1; ð6bÞ

and the wave equation for the acoustic pressure p1 in an
inhomogeneous fluid [42,44],

1

c2
∂2
tp1 ¼ ρ0∇ ·

�

1

ρ0
∇p1

�

: ð7Þ

Note that the curl of Eq. (6b) yields ∇ × ðρ0v1Þ ¼ 0, which
implies that acoustics in inhomogeneous fluids should be
formulated in terms of the mass current potential ϕρ instead
of the usual velocity potential,

ρ0v1 ¼ ∇ϕρ and p1 ¼ −∂tϕρ: ð8Þ

Combining Eqs. (6a) and (8) reveals that the mass current
potential ϕρ fulfills the same wave equation as p1.
The acoustic force density.—The first-order acoustic

fields lead to no net fluid displacement since the time
average hg1i ¼ ð1=TÞ

R

T
0
g1dt over one oscillation period T

of any time-harmonic first-order field g1 is zero. The
description of time-averaged effects thus requires the
solution of the time-averaged second-order equations,
and the introduction of the time-averaged acoustic
momentum-flux-density tensor hΠi [41],

hΠi ¼ hp2iIþ hρ0v1v1i: ð9Þ

Here, I is the unit tensor, and the second-order mean
Eulerian excess pressure hp2i is given by the difference
between the time-averaged acoustic potential and kinetic
energy densities [45–47],

hp2i ¼ hEpoti − hEkini ¼
1

2
κ0hjp1j2i −

1

2
ρ0hjv1j2i: ð10Þ

In the well-known case of a particle suspended in a
homogeneous fluid in an acoustic field, the deviation in
density and compressibility introduced by the particle leads
to a scattered acoustic wave, which induces a divergence
∇ · hΠi in hΠi. The radiation force exerted on the particle

FIG. 1. Sketch of a long, straight acoustofluidic microchannel
of length L ¼ 40 mm along x, width W ¼ 375 μm and height
H ¼ 150 μm with an imposed half-wave acoustic pressure
resonance (sinusoidal curves) inside a glass-silicon chip. A salt
concentration (black, low; white, high) leads to an inhomo-
geneous-fluid density ρ0ðrÞ, compressibility κ0ðrÞ, and dynamic
viscosity η0ðrÞ. The gravitational acceleration is g ¼ −gez.
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may then be obtained by integrating the force density
−∇ · hΠi over a volume enclosing the particle, thereby
picking out the divergence at the particle position [18,48].
In the case of an inhomogeneous fluid, the gradient in the

continuous material parameters ρ0ðrÞ and κ0ðrÞ will like-
wise lead to a nonzero divergence in hΠi. This is the origin
of the acoustic force density f ac acting on the inhomo-
geneous fluid at the slow time scale. Consequently, we
introduce f ac as

f ac ¼ −∇ · hΠi ¼ −∇hp2i − ∇ · hρ0v1v1i: ð11Þ

Here, hp2i is given by the local expression (10), which
remains true in an inhomogeneous fluid, while the diver-
gence term is rewritten using Eq. (6a) for ∇ · v1 and Eq. (8)
defining the mass current potential ϕρ,

∇ · hρ0v1v1i ¼ hv1 · ∇ðρ0v1Þi þ hρ0v1ð∇ · v1Þi; ð12aÞ

¼
��

1

ρ0
∇ϕρ

�

· ∇ð∇ϕρÞ
�

þ hð∇ϕρÞðκ0∂2
tϕρÞi; ð12bÞ

¼ 1

2ρ0
∇hj∇ϕρj2i − κ0hð∇∂tϕρÞð∂tϕρÞi; ð12cÞ

¼ 1

2ρ0
∇hj∇ϕρj2i −

1

2
κ0∇hj∂tϕρj2i; ð12dÞ

¼ 1

2ρ0
∇hjρ0v1j2i −

1

2
κ0∇hjp1j2i: ð12eÞ

In Eq. (12c) we have used hf1ð∂tg1Þi ¼ −hð∂tf1Þg1i, valid
for time-harmonic fields f1 and g1.
Combining Eqs. (9)–(12) and evaluating the time aver-

ages [49], we arrive at our final expression for the acoustic
force density f ac acting on an inhomogeneous fluid,

f ac ¼ −
1

4
jp1j2∇κ0 −

1

4
jv1j2∇ρ0: ð13Þ

This main result, obtained in part by using the mass current
potential ϕρ, demonstrates that gradients in compressibility
and density lead to a time-averaged acoustic force density
acting on an inhomogeneous fluid.
Our theory is consistent with the classical expression for

the radiation pressure on an immiscible fluid interface
given by the difference in the mean Lagrangian pressure
hpL

2
i ¼ hEpoti þ hEkini (not the Eulerian pressure hp2i)

across the interface [45]. Considering a straight interface at
y ¼ 0 between two immiscible fluids a and b, we may
write the fluid property q (either ρ0 or κ0) using the
Heaviside step function HðyÞ as qðyÞ ¼ qa þ ΔqHðyÞ,
where Δq ¼ qb − qa. Integrating f ac across the interface
then yields the force per area Fac=A on the interface,

Fac

A
¼ −

1

4
½jp1j2Δκ0 þ jv1j2Δρ0�n ¼ −ΔhpL

2
in; ð14Þ

where n is the normal vector pointing from fluid a to b, and
the continuous acoustic fields p1 and v1 are evaluated at the
interface. Inserting into Eq. (14) the explicit expressions for
p1 and v1 in the case of a normally incident wave being
partially transmitted from fluid a to fluid b, we recover
the radiation pressure given by Lee and Wang [45] in
their Eq. (109).
Analytical approximation for jρ̂j ≪ 1.—We can obtain

analytical results that provide physical insight into the
experimentally relevant limit of fluids with a constant speed
of sound c and a weakly varying density [37,38]. Writing

the latter as ρ0ðr; τÞ ¼ ρ
ð0Þ
0
½1þ ρ̂ðr; τÞ�, where jρ̂ðr; τÞj ≪ 1

and the superscript (0) indicates zeroth-order in ρ̂, we
obtain ∇κ0 ¼ 1

c2
∇ð1=ρ0Þ ¼ −ðκ0=ρ0Þ∇ρ0. To first order in

ρ̂, f ac in Eq. (13) thus becomes

f
ð1Þ
ac ¼

�

1

4
κ
ð0Þ
0
jpð0Þ

1
j2 − 1

4
ρ
ð0Þ
0
jvð0Þ

1
j2
�

∇ρ̂: ð15Þ

Compared to Eq. (13), this expression constitutes a major
simplification since it is linear in ∇ρ̂ and it employs the

ρ̂-independent homogeneous-fluid fields pð0Þ
1

and v
ð0Þ
1
.

Based on Eq. (15), we demonstrate analytically that
our theory is capable of explaining recent experimental
results [37,38]. For the system in Fig. 1, with a horizontal
acoustic half-wave pressure resonance of amplitude pa, the
homogeneous-fluid field solution takes the form,

p
ð0Þ
1

¼ pa sinðkyÞ with k ¼ π

W
; ð16aÞ

v
ð0Þ
1

¼ pa

iρ
ð0Þ
0
c
cosðkyÞey: ð16bÞ

In this case Eq. (15) reduces to

f
ð1Þ
ac ¼ − cosð2kyÞEð0Þ

ac ∇ρ̂; ð17Þ

where E
ð0Þ
ac ¼ 1

4
κ
ð0Þ
0
p2
a is the homogeneous-fluid time-

averaged acoustic energy density. Consider a fluid that is
initially stratified in horizontal density layers ρ̂ðr; 0Þ ¼ ρ̂ðzÞ
(not the vertical layers seen in Fig. 1), with the dense fluid
occupying the floor of the channel (∂zρ̂ < 0). Equation (17)
then predicts that the fluid layers will be pushed down-
wards near the channel sides, but upwards in the center.
This explains the initial phase in the slow-time-scale
relocation of the denser fluid to the center of the channel
observed experimentally [37].
Slow-time-scale dynamics.—Our experiments confirm

the observation [38] that acoustic streaming is suppressed
in the bulk of an inhomogeneous fluid. On the slow time
scale τ, the dynamics is therefore governed by the acoustic
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force density f ac, the gravitational force density ρ0g, and
the induced viscous stress, such that the Navier–Stokes
equation and the continuity equation take the form

∂τðρ0vÞ ¼ ∇ · ½σ − ρ0vv� þ f ac þ ρ0g; ð18aÞ

∂τρ0 ¼ −∇ · ðρ0vÞ; ð18bÞ

where σ is the stress tensor, given by

σ ¼ −pIþ η0½∇vþ ð∇vÞT � þ
�

ηb
0
−
2

3
η0

�

ð∇ · vÞI:

Here, the superscript T indicates tensor transposition and ηb
0

is the bulk viscosity, for which we use the value of water
[17]. The inhomogeneity in the fluid parameters is assumed
to be caused by a spatially varying concentration field
sðr; τÞ of a solute molecule with diffusivityD, satisfying the
advection-diffusion equation

∂τs ¼ −∇ · ½−D∇sþ vs�: ð18cÞ

In our experimental setup, aqueous solutions of iodix-
anol are used to create inhomogeneities in density, while
maintaining an approximately constant speed of sound. The
relevant solution properties have been measured as func-
tions of the iodixanol volume-fraction concentration s in
our previous work [38]. For the density ρ0 and viscosity η0,
the resulting fits, valid for s ≤ 0.6 and s ≤ 0.4, respectively,

are ρ0¼ρ
ð0Þ
0
½1þa1s� and η0 ¼ η

ð0Þ
0
½1þ b1sþ b2s

2 þ b3s
3�,

with ρ
ð0Þ
0

¼ 1005 kg=m3, η
ð0Þ
0

¼ 0.954 mPa s, and a1 ¼
0.522, b1 ¼ 2.05, b2 ¼ 2.54, b3 ¼ 22.8. The diffusivity
was measured in situ to be D ¼ 0.9 × 10−10 m2=s.
Comparison to experiments.—Our experimental setup is

described in detail in Ref. [38]. The microchannel in the
glass-silicon microchip has the dimensions given in Fig. 1.
The horizontal half-wave resonance is excited by driving an
attached piezoelectric transducer with an ac voltage U
swept repeatedly in frequency from 1.9 to 2.1 MHz in
cycles of 1 ms to ensure stable operation. The resulting
average acoustic energy density is measured by observing
the acoustic focusing of 5 μm beads [50]. The channel inlet
conditions are illustrated in Fig. 1: a fluorescently marked
36% iodixanol solution (white) is laminated by 10%
iodixanol solutions on either side (black) [51]. The corre-
sponding density variation is 13%, with the maximum at
the channel center. At the outlet, after a retention time of
τret ¼ 17 s, the fluorescence profile is imaged using con-
focal microscopy in the channel cross section. The char-
acteristic time for diffusion across one third of the channel
width is τdiff ¼ ð1=2DÞðW=3Þ2 ¼ 87 s, so diffusion is
important but not dominant in the experiment.
We simulate numerically the time evolution in the system

using the finite-element solver COMSOL Multiphysics [52],
by implementing Eqs. (17) and (18) with the measured
dependencies of density ρ0ðsÞ and viscosity η0ðsÞ on

concentration s. The initial concentration field sðr; 0Þ is
set to the inlet conditions allowing the concentration field
sðr; τretÞ to be compared to the experimental images. The
acoustic energy density Eac entering the model is set to the
measured experimental value, which leaves no free param-
eters. Concerning the validity of the numerical solutions,
several convergence tests were performed [17], and the
integral of s over the domain was conserved in time with a
relative error of the order 10−3.
In Fig. 2 we compare the numerically simulated and

experimentally measured concentration fields sðr; τÞ at
time τret ¼ 17 s for three acoustic energy densities Eac.
For Eac ¼ 0 J=m3, the initially vertical center fluid column
of high density (Fig. 1, white) has collapsed and relocated
to the channel bottom due to gravity. For Eac ¼ 15 J=m3,
the acoustic force density stabilizes the denser vertical fluid

FIG. 2. Theoretical prediction from simulation (top row) and
experimental confocal image (bottom row) of the cross-sectional
concentration of iodixanol after 17 s retention time for three
acoustic energy densities Eac. Initially, the denser fluorescently
marked fluid (36% iodixanol, white) is in the center and the less
dense fluid (10% iodixanol, black) is at the sides; see Fig. 1. The
stable configurations confirm the observation in Ref. [38] that
acoustic streaming is suppressed in inhomogeneous fluids. There
are no fitting parameters.

FIG. 3. Simulation for Eac ¼ 10 J=m3 of the time evolution of
the iodixanol concentration profile in the vertical y-z plane
symmetric around y ¼ 0 (the dashed line), with only the left
half, − 1

2
W ≤ y ≤ 0, shown. Three different initial configurations

of the dense (36% iodixanol, white) and less dense (10%
iodixanol, black) solution give rise to different time evolutions.
(a) Avertical slab of the dense fluid in the center. (b) A horizontal
slab of the dense fluid at the bottom. (c) Two vertical slabs of the
dense fluid at the sides. All configurations develop towards a
stable configuration, with the dense fluid located as a nearly
vertical slab in the center.
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column against gravity, such that it broadens only by
diffusion. For the intermediate value Eac ¼ 2.4 J=m3,
where the gravitational and acoustic forces are comparable,
the stable configuration has a triangular shape. Note that the
good agreement between the simulated and measured
concentration profiles has been obtained without fitting
parameters.
In Fig. 3 we show time-resolved simulations obtained

with Eac ¼ 10 J=m3 for (a) the stable initial configuration
with the denser fluid at the center, (b) the unstable initial
configuration with the denser fluid at the bottom, and
(c) the unstable initial configuration with the denser fluid at
the sides. While the stable initial configuration (a) evolves
only by diffusion, the unstable initial configurations (b) and
(c) evolve by complex advection patterns into essentially
the same stable configuration, with the denser fluid at the
center. This fluid relocation is in full qualitative agreement
with recent experiments [37]. Movies are provided in the
Supplemental Material [53].
Discussion.—Our theory for the acoustic force density

acting on an inhomogeneous fluid explains recent exper-
imental observations [37,38] and agrees with our exper-
imental validation without free parameters. The additional
observation that steady acoustic streaming, driven by
dissipation in the acoustic boundary layers, is suppressed
in the bulk of an inhomogeneous fluid [38] has not been
treated in this Letter. However, Figs. 2 and 3 demonstrate
that the acoustic force density stabilizes a particular
inhomogeneous configuration, which suggests that there
is a competition between the inhomogeneity-induced
acoustic force density (13) and the boundary-driven
shear-force density associated with acoustic streaming.
The experimental observation of stable inhomogeneous
configurations further suggests that the latter is negligible.
By adding acoustic boundary layers to our model, we are
currently investigating this hypothesis. The extension of
acoustic radiation force theory to include inhomogeneous
fluids through the introduction of the acoustic force density
(13) represents an increased understanding of acousto-
fluidics, in general, and further has the potential to open up
new ways for microscale handling of fluids and particles
using acoustic fields.
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