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Higher-order topological insulators (TIs)1-5 are a family of recently-predicted topological 22 

phases of matter obeying an extended topological bulk-boundary correspondence principle. 23 

For example, a two-dimensional (2D) second-order TI does not exhibit gapless one-24 

dimensional (1D) topological edge states, like a standard 2D TI, but instead has topologically-25 

protected zero-dimensional (0D) corner states. The first prediction of a second-order TI1, 26 

based on quantized quadrupole polarization, has been demonstrated in classical mechanical6 27 

and electromagnetic7,8 metamaterials. Here, we experimentally realize a second-order TI in 28 

an acoustic metamaterial, based on a “breathing” Kagome lattice9, that has zero quadrupole 29 

polarization but nontrivial bulk topology characterized by quantized Wannier centers 30 

(WCs)2,9,10. Unlike previous higher-order TI realizations, the corner states depend not only 31 

on the bulk topology but also on the corner shape; we show experimentally that they exist at 32 

acute-angled corners of the Kagome lattice, but not at obtuse-angled corners. This shape 33 

dependence allows corner states to act as topologically-protected but reconfigurable local 34 

resonances. 35 

In a d-dimensional TI, the bulk-boundary correspondence principle11 states that a 36 

topologically nontrivial bulk bandstructure implies the existence of (d-1)-dimensional boundary 37 

states. In the quantum Hall effect, for example, the nontrivial 2D bulk is characterized by nonzero 38 

Chern numbers, implying the existence of topologically-protected states on each one-dimensional 39 

(1D) edge. Recent theoretical work has led to the prediction of a new class of “higher-order TIs” 40 

obeying a generalization of the standard bulk-boundary correspondence1-5,9,10,12-16. A second-order 41 

TI in d dimensions lacks topologically-protected gapless (d-1)-dimensional boundary states, but 42 

instead exhibits (d-2)-dimensional topological states on the “boundaries of boundaries”. Each (d-43 

1)-dimensional boundary can itself be treated as a first-order TI. Likewise, a third-order TI in d 44 
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dimensions supports (d-3)-dimensional topological states, and their (d-2)-dimensional boundaries 45 

are second-order TIs. So far, a few second-order 2D TIs have been realized, using classical 46 

mechanical6 and electromagnetic7,8 metamaterials. These realizations utilized square lattices with 47 

topological properties based on the quantization of quadrupole moments1,2. 48 

Here, we report on the experimental realization of a 2D higher-order TI on an acoustic 49 

Kagome lattice. This lattice has several distinctive features compared to previously-studied square 50 

lattice higher-order TIs. First, whereas the topological phases of previous higher-order TIs were 51 

characterized by quantized lattice quadrupole moments1,6-8, the present lattice exhibits quantized 52 

dipole moments. The well-known 1D Su-Schrieffer-Heeger (SSH) model17 (which has long been 53 

studied in the framework of conventional bulk-boundary correspondence11) exhibits similar 54 

quantized dipole polarizations, and our lattice can be used for the realization of a higher-order TI 55 

generalizing these features to 2D. Second, the quantized dipole moments manifest as acoustic 56 

corner states that depend not only on the bulk topology, but also on the corner shape; certain 57 

corners never support corner states, even when the bulk is topologically nontrivial. This behaviour 58 

can be explained using a topological invariant based on quantized WCs9,15. Third, although 59 

acoustics has been gaining increasing attention as a flexible platform for studying topological 60 

phases18-26, all studies of acoustic TIs19,20,23,24 in the emerging field of topological acoustics have, 61 

until now, been limited to first-order TIs; our work extends the use of acoustic platforms towards 62 

higher-order TIs. 63 

The Kagome lattice is shown in Fig. 1a. Each unit cell consists of three atoms, and the nearest-64 

neighbour couplings on the upward- and downward-pointing triangles are t1 and t2 respectively. 65 

This tight-binding model is an extension of the 1D SSH model17, and its bulk topology can be 66 

characterized by the polarization27,28, expressed as 67 
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  𝑝𝑖 = −
1

𝑆
∬ 𝐴𝑖𝑑

2𝑘
𝐵𝑍

                                                               (1) 68 

where 𝐴𝑖 = −𝑖〈𝑢|𝜕𝑘𝑖|𝑢〉 with i=x, y is the Berry connection of the lowest band, and S is the area 69 

of first Brillouin zone. The polarization (𝑝𝑥, 𝑝𝑦) is identical to the WC. Mirror symmetries restrict 70 

the WC to two positions within each unit cell, corresponding to the two topologically distinct 71 

phases of the bulk. We refer to these as topologically ‘trivial’ and ‘nontrivial’ phases. Previous 72 

theoretical studies9 have shown that (𝑝𝑥, 𝑝𝑦) is entirely determined by the ratio t1/t2. In the present 73 

experimental scenario, we only consider positive values of t1/t2. For t1/t2>2, the system is 74 

topologically trivial and the WC lies at (0,0), defined as the center of the upward-pointing triangle 75 

(indicated in blue in Fig. 1a). For 0< t1/t2 <1/2, the system is topologically nontrivial, and the WC 76 

lies at (-1/2, -1/2√3), the center of the downward-pointing triangle (indicated in yellow in Fig. 1a). 77 

Note that even though the values of (𝑝𝑥, 𝑝𝑦) depend on the choice of unit cell, the WC positions 78 

within the lattice are unambiguous.  79 

We implement this Kagome lattice model using acoustic resonators, shown schematically in 80 

Fig.1b. Similar coupled-resonator structures have previously been used to study Weyl points and 81 

Landau levels in acoustics21,22,25,26. Each resonator is an air-filled cylindrical cavity with metal 82 

walls, of height H = 41 mm and radius r = 20 mm. The surfaces of the cavity are acoustic hard 83 

boundaries. For an isolated resonator, the resonant acoustic mode of interest is shown in Fig. 1c; 84 

the acoustic pressure varies sinusoidally in the axial (z) direction and is homogenous in the xy 85 

plane. The coupling between each pair of nearest-neighbour resonators is provided by two identical 86 

thin cylindrical connecting waveguides, placed at heights H/4 and 3H/4. The coupling strength is 87 

tunable by varying the radius of the connecting waveguides, with radius rc1 (rc2) corresponding to 88 

the coupling strength t1 (t2) in Fig. 1a. For rc1= rc2 = 5.2 mm and lattice constant a = 108 mm, 89 
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numerical simulations produce the bulk bandstructure shown in Fig. 1d, which has two dispersive 90 

bands that meet at linear band-crossing points, with an additional flat band above.  91 

To open a gap, we vary the coupling strengths t1 and t2. Upon decreasing rc1 to 2.08 mm and 92 

increasing rc2 to 8.32 mm, we achieve t1 /t2 = 0.1 (estimated by fitting simulation results to the 93 

tight-binding model). In this phase, the WCs are located at the centers of the downward-pointing 94 

triangles, marked by red stars in Fig. 2a. When a large triangle-shaped section is cut from the 95 

lattice, along the three red dashed lines depicted in Fig. 2a, the boundary runs through the 96 

downward-pointing triangles, and hence induces a separation of the charge associate with the WC. 97 

We therefore expect the corners of the large triangular section to host corner states. By the same 98 

token, the charges associated with the WCs along the edges also experience separation, giving rise 99 

to edge states. 100 

The numerically calculated eigenfrequencies and eigenmodes are shown in Figs. 2b and c-f. 101 

As expected, three degenerate corner states are found at 4197.3 Hz, within the bulk bandgap. Fig. 102 

2c shows the eigenmode of one of the corner states, showing that the acoustic pressure is highly 103 

localized at a corner resonator; there are two other degenerate corner states, localized at the other 104 

two corners. The intensity distribution of the corner states is distinct from the edge states (Fig. 2d) 105 

and bulk states (Figs. 2e-f). When we switch the values of rc1 and rc2, so that t1/t2> 2, the system 106 

becomes trivial and there are no corner states (see Supplementary Information for detailed analysis 107 

and an experimental demonstration).  108 

Our experimental sample, shown in Fig. 3a, was fabricated by drilling holes in three pieces of 109 

aluminum, and stacking them together between two organic glass sheets (see Supplementary 110 

Information for details). The acoustic measurement is conducted by exciting a resonator through 111 

a small hole in the bottom organic glass sheet, and then measuring the acoustic pressure of another 112 
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resonator through a small hole in the upper organic glass sheet. We measure the bulk transmission 113 

by exciting and measuring the two resonators marked ‘1’ and ‘2’ in Fig. 3a; the results are shown 114 

as the black curve in Fig. 3b. Two peaks are observed at 3950 Hz and 4400 Hz, corresponding to 115 

the two bulk bands observed in the simulations of Fig. 2b, separated by a bandgap. The 4400 Hz 116 

peak is higher because of a higher density of states. 117 

We then measure the edge transmission spectrum by exciting and measuring the resonators 118 

marked ‘3’ and ‘4’ in Fig. 3a. The measured transmission, indicated by the blue curve in Fig. 3b, 119 

shows a peak at around 4080Hz, corresponding to the edge states (see simulation in Fig. 2b). There 120 

is another peak at around 4400 Hz, coincident with the higher bulk band, but no peak 121 

corresponding to the lower bulk band was observed. This seems to be because the bulk states in 122 

the upper band have significant spatial overlap with the lattice edges, whereas those in the lower 123 

band have negligible spatial overlap (see Figs. 2e and f). Next, we measure the response of the 124 

lower left corner resonator by exciting and measuring from the same resonator. As shown by the 125 

red curve in Fig. 3b, the resulting spectrum shows a strong peak at around 4200 Hz, consistent 126 

with the frequency of the corner states predicted in the simulation of Fig. 2b. To demonstrate the 127 

robustness of corner states, we introduce disorder by placing small metal cylinders with random 128 

heights into all resonators, except the three corners (see Supplementary Information). The 129 

measured spectrum for the same lower left corner resonator (green curve in Fig. 3b) exhibits a 130 

similar resonance peak at around 4200 Hz, verifying the robustness of corner states against bulk 131 

disorder. 132 

To further characterize the corner states, we map the distribution of acoustic pressure by 133 

exciting each resonator and measuring the acoustic pressure of the same resonator. As shown in 134 

Fig. 3c, at around 4200 Hz, the measured acoustic pressures at the three corners are much higher 135 
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than at other points of the lattice. Figs. 3d-f also show the spatial distributions of the edge, lower 136 

bulk and upper bulk states. All these results match the simulation results in Fig. 2. 137 

The aforementioned triangular sample had only one type of corner. We constructed an 138 

additional parallelogram-shaped sample that has three different types of corners, denoted by A, 139 

B1,2, and C in Fig. 4a. This structure can be considered as being cut from the infinite lattice through 140 

the green dashed lines in Fig. 2a. Based on the preceding theoretical analysis, we expect a corner 141 

state at A (similar to the corners of the previous triangular sample), and edge states on the edges 142 

adjacent to that corner. However, the left and top edges are different: they do not pass through 143 

WCs, so we expect no corner states at C, B1 and B2, and no edge states on the left and top edges. 144 

The numerically-calculated eigenstates, shown in Fig. 4b, confirms this reasoning. Our 145 

experimental results, based on the same protocol described in the previous paragraph, are shown 146 

in Fig. 4c, and agrees well with the theoretical and numerical predictions. In Fig. 4d, we plot the 147 

acoustic spectra measured at the four corners. Corners B1 and B2 exhibit a peak around 4080 Hz 148 

because of the edge states, and another peak around 4450 Hz resulted from the higher-frequency 149 

bulk states. The corner C only has two peaks around 4000 Hz and 4450 Hz, for the two bulk bands. 150 

Over the whole frequency range of interest, only corner A possesses a peak around 4200Hz, which 151 

corresponds to the corner state predicted in Fig. 4b and observed in Fig. 4c.  152 

By exchanging the values of t1 and t2, we can switch between the two topologically distinct 153 

phases, which transfers the corner state originally at corner A to corner C. (This is equivalent to 154 

simply rotating the structure by 180°.) However, corners B1 and B2 remain isolated from any corner 155 

state, and never exhibit corner states. 156 

The above results demonstrate the acoustic analogue of a second-order TI on a Kagome lattice. 157 

Our structure is simple to realize and can serve as a basis for further studies. For example, the 158 
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acoustic structure can be extended to three dimensions to build higher-order TIs with corner or 159 

hinge states. The establishment of quantized WCs as a topological invariant may stimulate more 160 

studies in predicting and characterizing higher-order TIs. The shape-dependence of corner states 161 

provides an extra degree of freedom, apart from the bulk topology, to switch on and off the 162 

topologically protected local resonances. These acoustic topological corner states may have useful 163 

applications in, for example, biomedical microfluidic devices, enabling the robust acoustic 164 

trapping and manipulation of cells or drug particles, and in high-precision acoustic sensors to 165 

selectively measure vibrational signals in a small region.  166 

After the submission of our manuscript, several recent experimental papers on higher-order 167 

TIs were brought to our attention29-32. We note that the use of WCs as a topological invariant for 168 

predicting and charactering higher-order TIs is a distinctive feature of the present work.  169 
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Methods 252 

Fabrication and simulation. The aluminum plates are fabricated using mechanical machining. 253 

All the simulations are performed using finite element solver COMSOL Multiphysics (Pressure 254 

Acoustics module), with the walls modelled as acoustic hard-wall boundaries. 255 

Data Availability.  256 

The data that support the plots within this paper and other findings of this study are available from 257 

the corresponding author upon reasonable request. 258 
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 276 

Figure 1 | Kagome lattice and its acoustic implementation. a, Tight-binding model for the 277 

Kagome lattice. The dashed hexagon denotes the unit cell. The blue (yellow) lines denote nearest-278 

neighbour couplings of strength t1 (t2), which form the sides of upward- (downward-) pointing 279 

triangles. b, Unit cell of the acoustic Kagome lattice, with a cylindrical resonator at each site joined 280 

by thin waveguides at heights H/4 and 3H/4. The connecting waveguides have radii rc1 or rc2, 281 

corresponding to the t1 and t2 coupling strengths. c, Real part of the acoustic eigenpressure field 282 

for a single acoustic resonator at 4185.4Hz. d, Numerically-computed bulk bands for the acoustic 283 

Kagome lattice shown in b, at the critical point rc1 = rc2. 284 

 285 

 286 
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 287 

Figure 2 | Eigenmode simulations of a triangular acoustic structure. a, Lattice schematic, with 288 

red stars indicating the Wannier center positions in the topological nontrivial phase t1/t2<1/2. Red 289 

and green dashes indicate the edges for finite triangular and parallelogram-shaped samples. b, 290 

Numerically-computed eigenfrequencies for a triangular sample cut along the red dashed lines in 291 

a. Gray, blue and red dots denote bulk, edge and corner states, respectively. Three degenerate 292 

corner states occur at 4197.3 Hz. c-f, Typical acoustic eigen pressure fields of corner (c), edge (d) 293 

and bulk (e and f) states. 294 

 295 

 296 

 297 
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 298 

Figure 3 | Observation of topological corner states in a triangle-shaped finite acoustic 299 

structure. a, Photograph of the fabricated triangle-shaped structure. b, Upper: Measured bulk 300 

(black) and edge (blue) transmission spectra. Lower: Measured corner spectra for lattice with 301 

(green) and without (red) disorder. c-f, Measured acoustic pressure distributions in the nontrivial 302 

phase at typical frequencies for corner (c), edge (d) and bulk (e and f) states. 303 

  304 
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 305 

Figure 4 | Observation of topological corner states in a parallelogram-shaped finite acoustic 306 

structure. a, Photograph of the fabricated parallelogram-shaped structure. b, Numerically-307 

computed eigenfrequencies of the structure. Gray, blue and red dots denote bulk, edge and corner 308 

states, respectively. There is a single non-degenerate corner state, localized at corner A. c, 309 

Measured acoustic pressure distributions at 4170 Hz and 4066 Hz. d, Measured spectra for the 310 

four corners A, B1, B2 and C.  311 

 312 


