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In this article, the evaluation of rotational stability growth rate factors is carried out for the slab rocket motor using
a perturbation treatment that is supported by numerical evaluation. The asymptotic expressions for the stability
factors are derived over a practical range of operating parameters. For the representative motors under
investigation, the analytical estimates are shown to exhibit an error of 5% or less by comparison with numerical
integrals. Both numerics and asymptotics converge in predicting less stable systems than projected by irrotational
stability theory. The differences can be ascribed to the dismissal of time-dependent rotational coupling in many past
studies. The present investigation unravels the details of six additional growth rate corrections. These include the
rotational flow, mean vorticity, viscosity, pseudoacoustic, pseudovorticity, and unsteady nozzle growth rate factors.
The fourth and fifth terms are due to acoustical and vortical interactions with the often neglected pseudopressure.
The sixth is due to the energy associated with the unsteady rotational flow exiting the nozzle. Based on the slab-motor
geometry, we find that the flow-turning correction is canceled identically by another rotational term stemming from
multidimensional interactions. We also find that the unsteady nozzle damping effect is offset by another source of

instability due to the pseudopressure.

Nomenclature
A, = unsteady pressure amplitude
A = nozzle entrance plane admittance
AD = inert surface admittance
AV = burning surface admittance
ay = mean speed of sound
E = time averaged unsteady system energy
E2, = energy normalization function in mode m, %wl
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unit vectors in y and z directions

wave number for axial mode m
chamber length and half-height, / = L/H
surface Mach number, V,/a,
oscillation mode shape number
outward pointing unit normal vector
mean pressure

total velocity vector

mean flow velocities normalized by V,,
chamber width, w = W/H

action coordinate, 1y

normal distance from the wall

normal, axial, and temporal coordinates
growth rate (dimensional, sec™!)
viscous length, [v/(aqH)]'/?

wave amplitude, A,/ (yp)
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P = density

v = kinematic viscosity, i/ p

£ = viscous parameter k282 /M;

o) = function defined in Eq. (32)

w(y) = exponential argument defined in Eq. (31)
w, Q = unsteady and mean vorticity magnitudes
Subscripts

b = refers to the burning/transpiring surface
ir = irrotational or rotational

m = for a given mode number

N, S nozzle or inert surface

Superscripts

* = dimensional quantity

~, A = rotational or acoustical part

r, i = part of a complex variable

I. Introduction

HE rising popularity of the slab rocket motor among propulsion

analysts may be attributed to the simple geometry that it
presents. Clearly, the use of a rectangular-port motor facilitates the
design of an experimental setup by incorporating flat segments,
screens, and window panels that can drastically improve test
calibration and flow visualization capabilities. For the theoretical
investigator, it permits the use of Cartesian coordinates which not
only reduce the complexity of modeled equations but, also, facilitate
the process of constructing the desired solution.

The use of the (opposed plane) slab configuration in combustion
stability related studies may be traced back to the work of Brownlee
and Marble [1-3] who employed blocks of propellant in some of their
laboratory experiments. More recent investigations that adopt the
slab geometry include those by Casalis et al. [4—7], Liou et al. [§-10],
Yang et al. [11-13], Van Moorhem et al. [14—18], Wasistho et al. at
the Center for Simulation of Advanced Rockets (CSAR) [19], and
Vuillot et al. at the Office National d’Etudes et de Recherches
Aérospatiales (ONERA) [20-25]. In that vein, scientists at both
CSAR and ONERA have often utilized the planar/slab configuration
as the preferred geometry to either validate their full-scale three-
dimensional codes or to concentrate on one particular aspect of motor
gas dynamics.

Despite the preponderance of slab-related studies, no fundamental
formulation has yet been advanced to assess the acoustic instability
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characteristics associated with this particular geometry. Past studies
have mainly focused on the circular-port configuration as evidenced
by the work of Flandro [26-31] and Culick [32—40]. For this reason,
itis the purpose of this paper to present the stability correction factors
that arise in the two-dimensional motor chamber. This will be
accomplished by applying the linear stability formulation introduced
by Flandro and Majdalani [27] to the slab configuration. The work
will closely follow the steps delineated by Majdalani, Flandro and
Fischbach [41] and will briefly compare, in closing, the differences
due to the infinite curvature of the slab motor.

II. Geometric Model

The same nomenclature and flow descriptors adopted by Flandro
and Majdalani [27] will be used except that a Cartesian coordinate
system will be the system of choice. As usual, the chamber will be
modeled as a porous rectangular channel with internal half-height/
thickness H, width W and overall length L. Assuming that
W > 6 x H, the passive wall influence is safely ignored [42], and the
problem is treated as a case of two-dimensional flow. The flux of
gases due to combustion will be modeled by imposing uniform fluid
injection along the walls at a constant velocity V. Whereas one end
of the chamber is closed, the other is open and attached to a choked
nozzle. The fluid motion in the chamber is assumed to be symmetric
about the midsection plane and laminar. Figure 1 provides sketches
of the physical as well as the geometric model.

III. Growth Rate Calculations

Pursuant to established theory [27], the system growth rate for a
given oscillation mode can be constructed from the linear
superposition of several volume integrals. Using

N
am=a1+a2+a3+”'=Zai 6]
i=1

these integrals can be carried out individually, or in combination,
depending on their general form. Naturally, the composite growth
rate of the system is a linear sum of these factors. As before, a
negative growth rate factor represents an energy sink, while a
positive term denotes an instability contributor.

A. First Factor: Extended Pressure Coupling

The first irrotational integrals reported by Flandro and Majdalani
[27] are combined to formulate the first correction factor:

uniform injection

l l l (slab burning) exit nozzle

Fig. 1 The geometric model and its coordinate system.

w=re [ <—V- (i +3M,U(5)]
1%

MU a)]> av @

Using Gauss’s theorem, one transforms the integrand with the
divergence operator into a simpler surface integral. One gets

o) = Ejte 2 {//<—n [pai+1 M,,U(p)2]>ds
/// <M,,[u V(U u)]>dV} 3)

At this point, vector projections must be carefully evaluated along
different sections of the control surfaces delineating the idealized
slab-motor chamber. These include, first, along the burning surface,

n-i=-M,ADp, n-U=-1 )
second, along the inert surface,

n-i=-MAYp,  n-U=0 ®)
and, third, along the nozzle entrance plane,

n-i=M,Ap,

n-U=Uy (©6)

where Uy is the mean axial velocity crossing the nozzle entrance
plane at z = /.

Knowing that A(r) is small compared with other terms, Egs. (4-6)
can be substituted back into Eq. (3). The first integral becomes

[ = —E2e2miM, // <,32 [—A},” - %] +p? [Ajv’) + %UN]>dS
N
@)

At this juncture, one may want to insert the value of p? and carry out
the time averaging; this operation leads to

1=1E,’M, (/f {cosz(kmz) [AE)') + %]} ds
Sy
- // {cosz(kmz) [A;;) +%UN:|} dS) ®)
Sy

In much the same way, the second integral of Eq. (3) can be written as

1 = —E;2e2n! // (Myla- V(U - )]y dvV

14
= E72M, e~ // (U-)V-d)dv ©)
vV

where the divergence of the mean flow vector has been set equal to
zero. The latter can be expanded into

=i [[f (v @psie ey o)
|4

Using Gauss’s theorem and time averaging, the volumetric integral
can be transformed into a surface integral; one obtains
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=52 [[ o Ui as = o ( [[ 1530
N Sy
- [J1oiias) i

Sy

Combining Eqgs. (8) and (11), Eq. (2) becomes

=1IM,E, {//{osz(kmz) ds — /[ZUNcosz(kmz)] dS}

+ 1M, E,, ( [ {cos*(k,2)[A}’ + 1]} dS
+ ) {cos2<kmz>[—A(N”—%UN]}ds) (12)
Sy

which gives

=1M,E, { / /cosz(k z)[A(') + 1] dzdx
- 2/ /bosz(k,,,z) [Ax) + UN] dxdy} (13)
o Jo

By applying a mass balance to an internal burning slab rocket motor,
one gets 2WLV, = 2WHUj or Uy = I. Then using Af\,r) =(y—-1l,
and Eq. (13), the first growth rate factor becomes

a) = HwM,EZ[(AY + 1) —2y] = 2M,[(AY + 1) =2y (14)

B. Second Factor: Dilatational Energy Correction
The fourth irrotational term leads to

a, = E;2e 2t /// (8% - V(V - @) dV (15)
\4

Using the definition of acoustic velocity and pressure, one can put

V(V- i) =
= —k2, exp(a,,1) sin(k,,1) sin(k,,z)e. (16)

Vlk,, exp(e,, 1) sin(k,,t) cos(k,,z)]

After time-averaging, Eq. (15) reduces to

0y = 3557 [ sin y2) av a7
14

Using dV = dz dy dx, the triple integral can be expressed as

w 1 1
a, = =5k 8°E,? A A A sin? (k,,2) dz dy dx = —Swlk2,8°E,,’

x [1 = sin(k,, 1)/ 2k, )] = —2wlk8E,? = —8eM3  (18)

C. Third Factor: Acoustic Mean Flow Correction
The fifth term can be evaluated from

oy = Ej2e 2t // (M, - (@ x R)})dV (19)
\%4

Being the mean flow vorticity, £ can be approximated from
@ =Qé, =1ir’zcos(f)e, (20)
and so

xR =Qi.e, —Qie, 21

Thus
0-(ix Q)= (ie, +ie,) (—Qie, + Qie,)=—i,Qi,
+,Q0, =0 22)

Evidently, substituting this result into Eq. (19) will cause o5 to
vanish.

D. Fourth Factor: Flow-Turning Correction

The sixth term is a function of the unsteady vorticity. Following
standard nomenclature [43], this term will be dubbed “the flow-
turning correction.” Starting with

oy = E;2e 2n! // (Myu - (U x w))dV
v

= —E;2k;\M,e 2t /// (Vptan(k,r) - (U x w))dV  (23)
\%4

one recalls that 3, /dz = O(M}) so that @ = V x & = (dii,/dy)e,.
Using the definition of i_, the unsteady vorticity is expressible by

r

U cos (k1) +a " sin(k,, z)] (24)
dy dy

® =exp(a,, t)|:a

Then, using the fact that U x @ = (U,w)e, — (U,w)e,, one can
rewrite o, as

ay =—E;>M,e 2! ///(sin(k,,,z)eo‘m’ sin(k,,)U,w)dV  (25)
v

Equation (25) can be partitioned now into two terms

= 2e2zx,,,t //]<U sin(k,,z)e* sln(2k,,,l)

1

+ 2U, sin(k,,z)e**'sin® (k,, 1) '”> dav (26)

s

Forthwith, term I gives
[P . au,
I ={;3U, sin(k,,z) exp(2a,,?) sin(2k,, 1) o

Ky , diir, [27/kn
= ——exp(2a, 1)U, sin(k,z) —— / sin(2k,,t)dt =0 (27)
4 ay 0

aﬁ;>
27/

aum

Term II can be calculated from

o= <Uy sin(k,,z)e**n'sin

ko
sin?(k,,t) dt

=1nk,e*n' U, sin(k,,z )

9iii
= L2t U sin(k,,2) ;m 28)
After combining its separate parts, Eq. (26) reduces to
oy = —IM,E;? [[/ (29)
vV
where the derivative must be evaluated from
88 M = —cosnexp¢ ( W) sin(k,,zcosn) + ... (30)
y

where
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YO) =2k, /M)t fan [l +0) ]} 6D

and
$(3) = —(&/m) {sec tan(n) + afan[tx(1 + ) |} 32
Only the leading term in this derivative is shown, being one order

of magnitude larger than other quantities precipitated from chain-rule
differentiation. The latter can be written as

3 u ;}l ~ km

oy MU, cos(1) exp(¢) sin(y) sin[cos(n)k,,z] (33)

The first integral with respect to z renders

sec? (i y) sin [ka Icos? (i er)]

1
oy = —wk, E;? cos(ln ) -
4 L 2 y 4km

csc? (i rry) sin [Zk,,,lsin2 (i ny)]
4k

+ sin(Y)exp(@)dy  (34)

m

At this juncture, one must carefully examine the spatial behavior
of each term in Eq. (34). One finds that linearization of certain terms
will be appropriate prior to integration. To start, both 1 and ¢ must be
fully expanded using MacLaurin series; one finds

v = (km/Mb)(y + 370V + 357y + ety + - ) (35)

o= _5()’ + %”2)’3 + %”4)’5 + 1()27{”20”6y7 +.. ) (36)

It can be easily shown that the leading-order representations for y
and ¢ yield reasonably accurate approximations. Interestingly, these
simple one-term expansions perform fairly adequately, especially
near the burning surface where one can put

sin(y) = sin(k,,y/M,) + O() (37)

exp(¢) = exp(—&y) + O(G?) (38)

To be consistent, all (but the last two terms) remaining in Eq. (34)
must be linearized to the order of y. The resulting expression for o
becomes

1
s = —wky 57 [ sin(l /M) exp(—6)
0
x [%l — Lsin(2k,,1) /km] dy (39)
At first glance, the exact integral of Eq. (39) appears to be
intractable. Nonetheless, an inviscid result can be extracted by

suppressing the viscous parameter £. The inviscid form of «, turns
out to be

af = —SwIM,E,[1 — sin(2k,, 1)/ (2k,,1)] (40)
Knowing that the exact integral must match the inviscid solution in
the limit as £ — 0, we use inductance and reevaluate Eq. (39); at the
outset, we find
oy = —LwIM, E;2[1 — sin(2k, 1) /(2k,,,l)](1 + M8 /k;ﬂ)“
= —Jwint, £,7 (1 + M3E/R,)
- _gM,,(l n n*zMggzzzm*Z)" 1)

This expression approximates Eq. (23) to within a few percent
over a wide range of M,, &, [, and m.

E. Fifth Factor: Rotational Flow Correction

Traditionally only the integrals considered thus far have been
accepted in stability assessments. Nevertheless, consistent retention
of unsteady rotational terms gives rise to several additional integrals
that must not be dismissed. The first rotational flow correction
presented by Flandro and Majdalani [27] can be written as

a5 = e 2l 2 /// (—a - Vp)dv 42)
|4

The integrand stems from
— i - Vp = k,, sin(k,,z) exp(2a,,1) [ﬁfncosz(kmt)
+ u!, sin(k,,1) cos(kmt)] 43)
so that o5 can be evaluated from
as = kmEgze’z"""’/]/(ez"‘m’[sin(kmz)ﬁf,,cosz(kmt)
vV
+ sin(k,,z) i}, sin(k,,t) cos(k,,t)]) dV (44)
Carrying out the time-average of the last expression, one gets
as =k, Ex2 /O " d fo 1 /0 " cos(iy) exp(@) sin(¥)
x sinfk,,z cos(n)]sin(k,,z) dzdy (45)
Following the same lines as before, a5 becomes
s = gMb(l + n*ZMggzﬂm*?)’l (46)

Except for having an opposite sign, this expression is identical to
the flow-turning integral (o5 = —cy). It demonstrates that, for the
slab-motor configuration, the flow-turning term is “exactly
canceled” by the rotational flow correction both at leading order
and when higher order approximations are retained. This result
corresponds to the case for which the simulated burning surface
extends over the entire chamber length.

F. Sixth Factor: Mean Vorticity Correction
The fifth rotational term can be written as

ag = E;2e™2on! /]/(Mbﬁ (U x w))dv 47)
|4

This can be further simplified into
ag = M, E,2e"2n! ///(exp(amt)[ﬁfn cos(k,, 1) + i, sin(k,,1)]e,
4

- (U,we, — Uywe,)) dV (48)

After carrying out the time-averaging operation, one is left with
1 -2 I (=2 =i \?
@ =—m,E.2 [If U5 [(um) + (um) ] av  @9)
vV

By substituting the values of &, and &}, into Eq. (49), one collects

o5 = —iM,E;? /// U, {cos?(n) exp(2¢)sin®[k,,z cos(n)]}, dV
\4

(50)

where the subscript denotes partial differentiation with respect to y.
Then, by evaluating
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—iM,,E;lzf//({Uycosz(n)ez‘”sinz[kmz cos(n)},

d
— sin?[k,,z cos(n)]cos?(n)e>* % Uy) av (51)
the corresponding triple integral becomes

1
g = %wM;,E,ZZ/ sin®(k,,z) dz — iwnM;,E;f
0

11
x / / sin?[k,,z cos(n)]cos? () sin(n)e?® dy dz (52)
0 Jo
The first integration gives

1
o = %E,‘,,szw(l - JTA cos?(n) sin(n)ez‘i’%{l — 1kt

X sec(%rry) sin[kalcos (%ny)]} dy) (53)

By asymptotically expanding the latter expression, one arrives at
g = %E;,ZMbw[l 1 /01 e (Glmy — lmy? + 5ln°y?
+..) dy} (54)
In the inviscid limit (§ = ¢ =0), Eq. (54) can be evaluated
explicitly; based on the form obtained, one may use symbolic

programming and the properties of exponentials to estimate the value
of the last integral from

s = L2 Mywil — H(kyE ) (2 — 12)]) (% .y

+ %&—‘07/50) (4rlk,, + 3)(1262(1 + 26 — %)
+ (3% — 3 —2E3 + £(3 +26)]})} (55)

This expression reduces to
g = éM,,{l — 2—14[m712§4e‘25(n2 — 121! (g—z + é&'

+ 17—3e¥*107/50) (4mn? + 3)(1282(1 + 26 — %)

+ 7 {3e%* — 3 — 263 4+ £(3 + 26)]1)} (56)

G. Seventh Factor: Viscosity Correction

The seventh and eighth rotational groups involve viscous damping
expressions. In the classical stability calculations, viscous effects are
discounted. A correction to the dilatational effect is represented in the
seventh rotational term. Following the same procedure used before,
this term can be transformed into a surface integral, viz.

‘g‘/f (82ﬁ~V(V-ﬁ))dV:—%82f/(n-Ilap(')/at)dS (57)
Vv S

Clearly, Eq. (57) must be negligible insofar as it scales with the
product of 8 (see Nomenclature) and the radial unsteady velocity at
the boundaries.

The eighth term with viscous damping is not quite negligible.
Starting with

= E;2e"2n! (=8@ +a) - (Vxw))dV (58)
I

one may set

a; = 8E;2 exp(—2a,,1) ///(A + B)dV (59)
|4

where A=—u-(Vxw)and B=—u-(V x w) so that

) 0%
A=—ii- (VX o) = e sin(k, 2) sin(k,,,t)a—”; (60)
y

. . . 0%
B=—-u-(Vxw)= e"""’[ufn cos(k,,t) + u}, s1n(kmt)] a—yz 61)

Using standard descriptors, the second derivative can be
partitioned into

2~ s 2

— =exp(a,,?) |:8 ~cos(k,,t) + g

o~ ”j” sin(k,, t)i| (62)

Substituting back into A and B, one gathers

2~

= sin(k,,z) exp(2a,, 1) |:8 Mzm sin(k,, 1) cos(k,,1)
dy

2l

20 sinz(kmt):| 63)
dy

and
82 r 82
B = expa,,1)| it 5y i o= cos? (k,, 1) + it 5,7 5 sin? (k,, 1)
25 2
+ u, aa Mz cos(k,,1) sin(k,,t) + i, Bau cos(k,,1) sm(kmt)i|

(64)

After insertion into Eq. (59), time-averaging enables us to reduce
these expressions into

152 2~r 32 : 82 i
a7=2E2//]|: “n | by stk tn i|dV (65)

Using the same asymptotic rationale for expanding Eq. (33), on can
put

i, (ke \? |
e () eostn exp(@) sostw) sinfeostknd] (60

dy M,U,
and
82 r k 2 . .
ayz’” ~ —(W) cos(n) exp(¢) sin(y) sin[cos(n)k,,z]  (67)
bYy

The integral becomes
oy = LE28 1M // {sec(i))e? cos (1) sin(k,,2) sinfk,,z cos(n)]
|4

— e¥sin’[k,,z cos(n)]} dV (68)
Asymptotically, it can be shown that

| sec(n) exp(@) cos() sin(k,,2) sin[k,,z cos(n)]]
< | exp(2¢)sin®[k,,z cos(n)]| (69)

Therefore, this integral collapses into

—%E;zﬁzkan;ZMexp(2¢)sin2[kmzcos(n)] dv  (70)
|4
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As usual, expanding the triple integral renders
w 1 1
oy = —E,;252k2,,,M;2/ / / {exp(2¢)sin®[k,,z sin(n)]} dy dz dx
o Jo Jo
(71)
so that
1
o = —%wE,‘,,ZSZkf,LM;Z/ exp(e){l — ik;,!
0
x sec(n) sin[2k,,l cos(n)]} dy (72)

Recalling Eq. (36), subsequent linearization and integration lead
to

a;, = —L(24lk,, — 7*) " WE;28E 3k, M, (% + et ‘°)(lkm

—Hm)(Be {161k, & (e* — 1) + 7°[1 — e* + 25(1 + ©)]})

(73)
or, written differently,
oy = =572 (24m — 7?) " m(m — )72 M2 (%
+ Bt =21/ 10) (e %{16mg*(e* — 1) + n[1 — e* + 2&(1
+ ) (74)

H. Eighth Factor: Pseudo Acoustic Correction

The last two terms are due to the coupling between the
pseudopressure associated with the vortical field and either the
unsteady acoustical or rotational velocities. The first term can be

expressed by
ag = E;;le 2! /]/(—ﬁ -Vp)ydv (75)
14

Following the usual form [27], one writes
D = exp(a,,1) [[){n cos(k,,t) + pi, sin(kmt)] (76)
where
P = —5M,,zsin(y) sin(1) cos(n) exp(¢) sin[k,,zcos(m)]  (77)
and
Pin = 3tMz cos(y) sin(1) cos(1)) exp(¢) sinlk,,zcos(m)]  (78)
Accordingly,
Vp = exp(a,,?) [Cos(kmt)V[?f,, + sin(kmt)V[)in] (79)

where
. d /. a /. .
Vih =gy (Ph)es + 5 (P )e =~k /U2 cosy) sintn)
x cos(n) exp(¢) sin[k,,z cos(n)]e, — ixM,, sin(y) sin(z)
x cos(n) exp(¢){sin[k,,z cos(n)] + k,,z cos(n)
x coslk,,zcos(n)]}e. (80)

and

. . 9 ..
Vb = a—y(ﬁin)er 3 (Pi)e. = —(k,/U,)zsin(y) sin(n)

x cos(1) exp(¢) sinfk,,z cos(n)le, + 2wM,, cos(1) sin(1)
x cos(n) exp(¢){sin[k,,z cos(n)] + k,,z cos(n)
x cos[k,,z cos(n)]}e. (81)

Before time averaging, the integrand in og can be expanded into
i -Vp >~ InM, exp(2a,,1) sin(k,,z) sin(k,, ) sin(1)

x cos(n) exp(¢){sin[k,,z cos(n)] + k,,z cos(n)
x coslk,,z cos(n)]}[cos(¥) sin(k,, 1) — sin(y¥) cos(k,,1)]  (82)

hence,
(@ - Vp) =tnM,e*" sin(k,,z) sin(n) cos(n)e? cos(y){sin
X [k,,zcos(n)] + k,,z cos(n) cos[k,,z cos(n)]} (83)

The corresponding integral becomes
oy =~ 52 [ exp(@)sinGl,2) sin(n)coston cost)
14

x {sinfk,,z cos(n)] + k,,z cos(n) cos[k,,zcos(n)]} dV (84)

This can be evaluated from

==t 57 [ [ [ sintiy2y sinGn) costmer cost)
x {sin[k, z cos(l(;)] +O k,:z cos () coslk,z cos(m)]} dy dz dx
= —LrwM,E;? / [ / ' sin(k, 2) sin(y) cos(n)e? cos(v)
iy cos()] + by <cos(n) coslyzcos(l} dy (59

At this juncture, one can directly integrate Eq. (85) with respect to
z. The outcome is

1
og = —%HWMbE;lz/ O(y) dy (86)
0

where

1
64k,

x coslk,, [ cos(m)]esc* Gmy)sect Gmy)[cos(lk,, — my)

+ cos(lk,, + my) — 2 cos(lk,)]} + H{esc* Gmy)sect (Gy)

x [lk,, sin(lk,, — 2my) + Ik, sin(lk,, + 2wy) — 24 cos(lk,,)
— 4cos(lk,, — wy) — 4 cos(lk,, + my)]sink,,Icos(n)]}) (87)

o(y) = exp(¢) cos(¥) sin(1) cos(n) ({lk,, cos(1)

The result must then be linearized and integrated with respect to y.
One obtains

ag ~ —wrM,E,? Ll et cos(kmy/Mb){élny +y? [—ﬁlrﬁ
+ %n(#nz — PR + . )]} dy (88)
and so
oy = —LwrIME;? (gZM,Z, - k2) (.gzMg + kfn)’2 (89)
This can be rearranged into
oy = —51°M; (EzMi —m?

20

n2r2) (gZM,z + m2n2r2)‘2 (90)
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I. Ninth Factor: Pseudo Vorticity Correction

The last term is due to the less obvious coupling that is formed
between vorticity-induced pseudopressure and the unsteady
rotational velocity. The significance of this term can be derived from

g = —E;2e 2! /// (@-Vp)dv o1)
14

One carries out the time averaging to obtain

(- V) = —4mM,, exp(2a,1) exp(2¢)cos () sin(iy)
x sin?[k, 2 cos(7)] (k2 cos(n) cotlk,,z cos ()]
+ {1+ 2k, cos(n) cotk,z cos()]}) 92)

The volumetric integral becomes
oy =M, E,? /]/ exp(2¢)cos?(n) sin(n)sin?[k,,z cos(n)]
v
X (kyz cos(n) cotlk,,z cos(m] + {1 + zk,, cos(n)
x cotlk,,zcos(n)]}) dV 93)

and so,

[l
o :%anhE#/o [0 exp(2¢)cos?(n) sin(n)sin?[k,,z cos(n)]

x (k,,z cos(n) cotlk,,zcos(n)] + {1 + zk,, cos(n)
x cot[k,,z cos(n)]}) dy dz 94)

Next, the integral with respect to z is evaluated. The subsequent
expression is transformed into y, linearized near the wall, and
integrated term-by-term. After some effort, one finds

ay = inwiM,E,, /1 exp(2¢)cos?(n) sin(n)sin?[k,,z cos(n)] dy
0
(95)

Equation (95) requires an asymptotic treatment that relies, in part,
on trigonometric identities. One collects

oy = imwIM,E;, / Gy — Zmdy? + 8515y +..)dy - (96)

which, at length, gives

a0 = fuihty £, (1 = 32) (8 + 36 + 58 + e
-1
+ M+ L ) ©7)

otherwise, one can put

_2 — i) (4 W g B2 4 AT o
oy = 15M, (1 P )(425 + 3 58 s+t
1

e+ ﬁsﬁ)_ 98)

J. Tenth Factor: Unsteady Nozzle Correction

The tenth correction factor in stability calculations is due to the
unsteady rotational energy crossing the motor exit plane. This
growth rate is precipitated by the third and fourth rotational terms;
these can be lumped together into

Q= —M, E;2e~2nt // (@ +@)-VU-@)dV  (99)
|4

This triple integral can be converted using

(o = —M, Ex2e2mt //([n (@ + D))(U - @) dS
Sy
M E e // (#2U.)as + o(m3) (100)

one gets

oy = —3M,E;,2em 2! /f{zcosz(n)sinz[kmz cos(n)]

Sy
x €% e2n![cos?(Y)sin® (k,,t) + sin®(y)cos?(k,,1)
— 2 cos(¥) sin(k,,t) sin(y) cos(k,,1)] sin(n)) dS (101)

which, after time-averaging, yields
oo = —TM, E;;? /f zexp(2¢)cos’ () sin(n)sin?[k,,z cos(7)] dS
(102)
and so
oy = —37IM, E;? Aw Al exp(2¢)cos?(n)
x sin(n)sin?[k,,z cos(n)] dy dx (103)

Subsequent integration gives

1
oy = _%nwleEf/(; exp(2¢)cos?(n) sin(n)sin’[k,,z cos(n)] dy

(104)
which can be expressed as
4
a0 ==y My (1= 372 ) + 356 + 58 + 38 + 33
-1
A8+ ) (105)
Remarking that o,y = —ay, the last two factors cancel out
identically.

IV. Discussion
A. Standard Formulation

The degree of refinement associated with the current results may
be assessed by comparing the rotational predictions with those
derived from the irrotational stability formulation. Again, the
characteristic parameters of the four representative cases introduced
by Flandro [43] will be used. As indicated earlier, the classical
stability formulation does not retain unsteady rotational effects
except through the flow-turning term, which is indeed needed in a
one-dimensional representation. In essence, the growth rate
predicted by the irrotational model consists of

o; = oy = —SwIM,E,y, — 3wk} 8 E,* — lwiM, E,?
x (1 + Mggz/kzn)’1 (106)

where y, = 2y — (A, + 1). Recalling that the irrotational energy
normahzatlon is givenby (E2,); = wL/H, Eq. (106) can be putin the
formo;_4, = K M,,; the irrotational growth rate coefficient is simply

K==y, M3 — [ L+ MR/ )| aon)

The sign of K; will directly prescribe motor stability.
Understanding how K; changes sign as & is varied is the key to
studying the changes in the stability behavior. This can be best
accomplished by examining Cardano’s discriminant for K; = 0. One
finds
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A, =92 + y,)y; + m>r?[27 + 16y,(9 + 4y,)IM7  (108)
When A; < 0, K; will change sign at the critical damping parameter
of

1
£ = —2M§ {|:, vz — %ﬁmzﬂzMil‘z sin(_%sin" {(yz

3
M) [ + 24— 16y mieai 2|

]

It may be instructive to note that whenever y, < —1, K; will be
negative, hence indicating a stable system. Conversely, having
¥, > 0, K; > 0 leads to an unstable case. However, when A; < 0, an
unstable system is realized for £ > &;; it appears that the irrotational
formulation considered here is missing a key component so long as it
predicts a more unstable system with successive increases in friction,
or £. Physically, increasing & at a given oscillation mode number
(beyond some critical value) should have a stabilizing effect because
it can only be accomplished by increasing the dimensionless
viscosity §, decreasing the surface Mach number, or decreasing the
length of the motor. Any of these changes should lead to a more
stable system.

Another way of assessing the stability of the system is by
examining the other critical values of remaining parameters which
may cause the system to cross from stability to instability and vice
versa. After some algebra, one finds

(109)

My = (85212)*%[—3;/,,512 —4m?n? + (9y§g214 + 16m*n*

— 24y, EPmin? — 48;;n2mzﬂ)7]i (110)

to be the critical value of the injection Mach number. Moreover one
can proceed to find

#= (3803 4 1) (v + 8803) w2 an

to be the critical characteristic length of the slab motor that will cause
a change in the stability status of a given system. As such it can be
determined that whenever M, < M}, or [ > [* the system becomes
unstable. Note that [* is unphysical, being purely imaginary.

B. Improved Linear Formulation

For a more precise stability estimation, one must involve all
available rotational interactions. This can be accomplished by taking

10
o =0Q_1p = E oy
n=1

where the corrected energy normalization is based on work presented
by Flandro and Majdalani [44]

(112)

(Ef,,) =SwL/H (113)

The superposition of these terms gives «;_;g = % M, K ,; the rotational
stability coefficient is realizable from

K, = C—4M3E M3 (8M3 — w22 12) (£M3 + i1 2)

(114)
where
C=—y, + {1 = f[mrgter - 12)] [+ &t
+ Fexp(—176) | (ma® + 31 + 26— )
+ 736 — 3 - 26[3 + £ + 29 126°]}
— mm) ™ @am — 7)1 3+ Bexp(—38) |
x (mr —31) & e = 16mE (e — 1)
+ 771 — e* +26(1 + 9)]}) (115)

Equation (114) enables us to seek direct relations between
chamber parameters that will promote a stable system by ensuring a
negative K,. Similar relations can be helpful in the developmental
stages of motors exhibiting less simplistic grain configurations.

It is worth mentioning at this point that this expression is valid only
when M, <0.01 and &£ < 1.0. These ranges encapsulate the
parametric spectrum associated with most solid rocket motors.

The complexity of Eq. (115) makes obtaining an analytical
expression for the critical value of £ infeasible. At this point we will
only present the critical values of the other key parameters. One finds

mi

M} =
b é;_l

{(—n2 + 8CE) ! [—In? — 8CE® + In(n? + G4CE)}
(116)

to be the critical value of the injection Mach number. Moreover, one
evaluates the critical value of the slab-motor length to be

_ mi
&M,

*

(=7 + 8CE) [ — 8CE + (o + G4CE)
117)

In conformance with physical observations, we find that an unstable
case follows from M, > Mj; or [ > I*.

C. Comparing Numerics and Asymptotics

Summarized in Tables 1 and 2 are the results from the irrotational
and rotational formulations. These dimensional growth rates are
related to the nondimensional values via «* = aa,/H. In Table 1, all
factors are computed by numerically evaluating the volumetric
integrals. In Table 2, the analytical expressions derived earlier are
used to estimate the corresponding factors. From these tables, one
realizes that a significant discrepancy exists between the irrotational
prediction «j_, and the rotationally adjusted value of ,. This
discrepancy varies from 36% for the equivalent Cold-Flow
Experiment to about 111% for the equivalent (slab-scaled) Small
Rocket Motor. Again, the latter discrepancy suggests a less stable
system than projected by irrotational theory. Clearly, the additional
rotational corrections play an essential role in the proper assessment
of instability.

Comparing numerical results from Table 1 to analytical ones from
Table 2, one can discern the excellent capability of analytical
approximations to reproduce the numerically integrated growth rate

Table 1 Numerical integrals of cumulative and individual growth rates (sec™!)

Motor o oy 2% o o o e o o o o a
Small motor —0.135 39.77 100 360 —16.27° —36.2 36.2 17.6 —13.8 833 1.82 —1.82
Tactical rocket —27.9 —2.04 92.7 —-7.11 —1.437 —17.7 17.7 5.95 —0.888 84575 4.31 —4.31
Cold flow —38.9 —25.06 35.6 —27.1 —9.547° —7.45 7.45 2.56 —0.509 0.0117 1.73 —1.73
Space shuttle SRB —3.24 —0.50 84.4 —1.08 —4.43-% —1.80 1.80 0.580 —0.0054 0.0030 0.502 —0.502

“The sum of the growth rates is multiplied by % to be consistent with the rotational formulation based on an energy normalization value of (E2,), = %wl instead of (E2); = wl.
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Table 2 Analytical estimates of cuamulative and individual growth rates (sec™!)

Motor ot @i 2% o o o o o o o o oy
Small motor —4.39 39.50 111 36.0 —16.27° —39.96  39.96 17.5 —13.95 8327 1.82 —1.82
Tactical rocket —28.0 —-2.02 92.8 —7.11 —1.437 —17.82 17.82 5.96 —0.878 8457 431 —4.31
Cold flow -390 —25.04 35.8 —27.1 —9.5476 —7.24 7.24 2.57 —0.502 0.0117 1.73 —-1.73
Space shuttle SRB —3.25 —0.50 84.5 —1.08 —4.4378 —1.81 1.81 0.579  —0.005 0.0030  0.504 —0.504
“The sum of the growth rates is multiplied by % to be consistent with the rotational formulation based on an energy normalization value of (E2,), = 3 wl instead of (E2); = wl.

factors. The encountered error varies from 0% in the equivalent
reusable solid rocket motor configuration, to about 1.32% in the
equivalent tactical rocket. Because of their asymptotic nature, the
analytical expressions can be substituted for rather costly numerical
simulations in the domain where the values of & < 1.0 and
M, <0.01. This restriction will ensure that the asymptotic
approximations used in perturbing the respective growth rate
expressions remain valid. The corresponding physical range is in fact
quite appropriate for practical motor chamber conditions.

Tables 1 and 2 can be used to assess the order of magnitude of
various growth rates. The largest contributors can be readily
identified to be pressure coupling, flow turning, rotational flow, mean
vorticity, viscosity, pseudovorticity, and unsteady nozzle correc-
tions. Conversely, the dilatational energy, acoustic mean flow, and
pseudoacoustic corrections are either vanishingly or negligibly
small. Because of intermediate cancellations, only pressure
coupling, mean vorticity and viscosity corrections survive in the
overall assessment. These must of course be supplemented by
corrections due to particle damping, distributed combustion, and
two-phase interactions.

D. Growth Rate Sensitivity

An integral part of assessing the acoustic instability growth in
solid rocket motors rests in understanding the role that the various
working parameters play in this process. To that end, a number of
illustrations presented subsequently in this section will describe the
effect of varying the key parameters in a fashion that reproduces
different operational settings. A careful analysis of these illustrations
will further serve to validate the mathematical model as present
results will be shown to follow correct physical predictions.

Figure 2 is devoted to showing the stability predictions based on
the irrotational formulation in contrast to those based on the approach
presented in this study. In Figs. 2a and 2b, numerical stability growth
rates based on the current work are plotted versus the viscous
parameter at several injection Mach numbers. It is clear that the plots
generally follow the physical predictions corroborated by the
asymptotic solutions; for example, one notes that an increase in £ at
constant M, promotes system stability. Conversely, an increase in
M, at constant £ is destabilizing.

By comparing Figs. 2a and 2b, one can identify the role of viscous
friction to be rather unimportant in short motors (e.g., L/H = 20); it
becomes more appreciable, however, as the length is increased (in
Fig. 2b where L/H = 50). This result may be ascribed to the longer
residence time and trajectory of particles in longer chambers.

Figure 2c displays numerical stability growth rates based on the
irrotational formulation as function of the viscous parameter. Note
that the trends associated with the irrotational model contradict those
presented earlier. From Fig. 2¢ one can infer that the system becomes
less stable as the viscosity of the fluid is increased. Moreover, a
decrease in M, at constant £ appears to be destabilizing. Despite their
unphysicality, these trends are confirmed by the analytical criteria for
the irrotational model, namely, Egs. (109) and (110). The observed
irregularity in predicting acoustic instability in the slab-motor
configuration has also been reported by Flandro and Majdalani [27]
in a similar study of the full-length cylindrical motor. It may be
carefully traced back to the retention of flow turning in the three-
dimensional irrotational formulation. This term, albeit essential in a
fundamentally acoustical representation, is unnecessary in two or
three dimensions.

This important observation is further reinforced by the results
given in Fig. 3. An increase in § at constant injection Mach number
and motor length (thus an increase in £) is shown to predict a more
stable system in Figs. 3a and 3b. The rotational stability framework
proves to be consistent with the physically stabilizing nature of
friction. This is not the case in Figs. 3c and 3d which depict the
numerical stability curves based on the virtually one-dimensional
formulation. Using the irrotational model, the system grows sharply
unstable as viscosity, a salient stability ingredient, is increased.

E. Comparison to Earlier Work on the Cylindrical Chamber

Additional insight may be gained by briefly comparing the results
of the planar and cylindrical configurations. To start, we recall from
Majdalani and Van Moorhem [17] that an increase in chamber radius
results in an increase in the depth of penetration of steady rotational
effects. A similar trend characterizes the unsteady rotational effects
(see Sec. 8fin Majdalani and Flandro [45]). These too occupy a larger
fraction of the chamber with successive increases in curvature. It is
clear that the planar geometry, being of infinite radius, exhibits a
much larger depth of penetration than that of an internal burning
cylinder. Then, by considering that viscous effects are blown off the
wall and relocalized to the core region (situated at the edge of the
depth of penetration), they play a weaker role in the planar geometry
where the viscous shear layer is thinner in comparison to the
cylindrical configuration. Figure 4 illustrates this effect by displaying
the influence of &, the viscous parameter, on motor stability for the
slab and cylindrical chambers. As & is increased, the combined
growth rate factor for the cylindrical motor decreases much more
rapidly than that of the slab motor (also seen in Fig. 2). This can be
attributed to the larger sensitivity on £ in the cylindrical case. A
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tﬁ I
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Fig. 2 Numerical stability curves at constant 3, shown over a useful
range of £ and select values of L/ H. The system is more sensitive to the
stabilizing role of £ at higher L/H and M. Here A" =1.75, y = 1.3,
andm = 1.
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Fig. 3 Numerical stability curves at constant M, shown over a useful
range of § and select values of L/ H. The rotational formulation predicts
a less stable system when § is lowered or when L/ H or M, are increased.
This explains, in part, the additional instabilities observed in elongated
motors. The irrotational formulation predicts the opposite trends. Here
y=13and m=1.

similar correlation can be obtained for the combined growth rate and
8. As a final comment, one may note that the equations associated
with the planar growth rates are not simpler but rather much more
involved than in the cylindrical case. Their evaluation requires the
retention of more terms in the integral expansions to yield
meaningful results. The stability calculations constitute one of the
few cases where the simplicity of the calculations favors the
cylindrical geometry.

V. Concluding Remarks

By incorporating the total kinetic energy of the unsteady rotational
disturbances into the energy density equation, a more inclusive and
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Fig. 4 Numerical stability curves for the slab (solid lines) and cylinder
(broken lines) at constant M ; results are shown over a useful range of &
and select values of L/ H. The system is more sensitive to the stabilizing
role of £ when the curvature is reduced (cylinder) or the Mach number is

increased. Here A;') =175, y=13,and m = 1.

physically meaningful assessment of acoustic instability factors has
been demonstrated here for the slab rocket motor. The new
framework is shown to offer critical advantages which can be used to
enhance the widely adopted formulation based on an irrotational
representation of the acoustic field. The new formulation gives rise to
six additional growth rate terms that have been discounted in
irrotational stability models. These include corrections owing to the
rotational flow, mean vorticity, viscosity, pseudoacoustic,
pseudovorticity, and unsteady nozzle effects. These are summarized
in Table 3 in both general and asymptotic forms, including the
original corrections evolving from one-dimensional wave theory.
The new terms are precipitated, no doubt, from the unsteady
rotational disturbances and their interactions with the acoustic wave
motion. Interestingly, the rotational flow and unsteady nozzle
corrections are identically equal but opposite in sign to the flow
turning and pseudovorticity corrections, respectively. At the outset,
three linear growth rates survive the attendant cancellations. These
are pressure coupling, mean vorticity, and viscosity corrections.
Work is under way to incorporate the last two in the standard stability
prediction (SSP) code by French, Flandro and Majdalani [46]. This
code, which is based on Culick’s comprehensive framework [39], is
widely used in the propulsion community.

From a physical standpoint, the cancellation of flow turning by
another term is confirmed by the 1982 mathematical proof offered by
Van Moorhem [47]. In his well-known analysis, Van Moorhem is
able to demonstrate that flow turning, which stems from the need to

Table 3 Asymptotic growth rate corrections for the slab motor

Improved rotational set in general form

Evaluated growth rates (dimensionless)

= %ﬁ[(ﬁm)z + ﬁm :

B2 exp(—20,0) [(V - [pii + 1M, U(p)]
M, - V(U - @)]) dV

E.2exp(—2a,,1) [[($8%i - V(V - &)) dV
E;2exp(—2a,1) [[(M,{a- @ x R)})dV
E;?exp(—2a,,1) (M- (U x @))dV
—E,2exp(—2a,,1) f{a-Vp)dV
E;2exp(—2a,,1) (M, a(U x w)) dV

o : Pressure coupling

o, Dilatational
o3: Acoustic mean
oy Flow turning
o5: Rotational flow

o: Mean vorticity

o7 Viscosity

—E;2exp(—2a,,1) (8@ +a)- (Vxw))dV

ag: Pseudo acoustic
o Pseudo vorticity

E;2exp(—2a,1) f(—a-Vp)dv
—E;2exp(—2a,,1) f{u-Vp)av

ayo: Unsteady nozzle —E;2exp(—2a,,t) f{M,@ +a)- V(U -u))d

ﬁm + Qﬁm : ﬁin + 'ern : ii;z + ﬁlin : 'Z:n] dav
IM[AY +1-2y]
—deM; < O(1)
0
—2M,(1 + 72 MR )
gMb(] + ]T_2M2§212m_2)_]

be{l — L mnzé“ezé(rr 12)]7'2 825;' + Hexp( 107)5](4m71 +3)
x(12.§ (1 +2&—e%) + 712{3e2E — 3263+ 5(3 +285)1)}

— L2 Q4m — 1) I8 E My 2[§;+ exp(——g)}(m——)(3@’25‘16m$2

x(e% — 1) + 71 — e¥ + 26(1 + 6)]))
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satisfy fundamental conservation laws in a chamber with sidewall
mass addition, is a needed adjustment only if a problem is formulated
in one-dimensional space. In multidimensional settings, such as
those employed in most recent investigations, flow turning is absent.

The second interesting cancellation is that of pseudovorticity by
virtue of the unsteady nozzle damping. This outcome brings the
results to a closer agreement with conventional theory; the latter
downplays the role of the pseudopressure (or pseudosound) in the
overall energy assessment. In our problem, the only remaining term
due to the pseudopressure is g, which is indeed very small and,
hence, negligible.

As usual, using the four representative motor properties to define
four case studies, the improvements in prediction capability are
quantified and shown to be nonnegligible when compared with the
irrotational estimates. The analytical expressions presented here for
the slab rocket motor are also shown to provide expeditious
approximations for the volume integrals that arise in the stability
calculations. Generally, the error in the analytical prediction is shown
to differ from the numerical solution by a percent or less.

The analytical expressions lead to explicit relations between the
salient flow attributes and stability. This permits calculating critical
motor lengths and Mach numbers that must not be exceeded if hoping
to mitigate acoustic instabilities. Physically, the proposed
formulation confirms experimental findings by projecting a less
stable environment in longer motors, at higher surface Mach
numbers, and for propellants exhibiting higher surface admittance
values. In the same vein, a more stable environment is promoted at
higher oscillation mode numbers (which absorb more trigger energy)
and at increasing levels of viscous damping. The role of the latter
becomes more appreciable in longer motors or at higher Mach
numbers. Not surprisingly, both irrotational and rotational relations
agree on the role of surface admittance, but seem to be conflicting on
other counts. For this reason, our study suggests the important
physical need to incorporate all rotational corrections in future
stability calculations.

In recent years, the slab-motor geometry has increased in
popularity, especially, in academic studies of acoustic instability.
Our results are hoped to supplement the existing literature and serve
as a benchmark for next generation numerical experiments;
additional corrections for the slab motor need to be assessed, and
these are hoped to be unraveled in forthcoming investigations.
Among instability contributors omitted here are corrections due to
time-dependence of the mean pressure, particle damping and
multiphase interactions, distributed combustion, parietal vortex
shedding, and intrinsic mean flow instabilities that have been
recently reported by Lupoglazoff and Vuillot [48,49], and Griffond
and Casalis [5,6]. It is speculated that such instabilities may appear
even in the absence of protrusions, baffles, inhibitors, or
intersegmental gaps. The instability discussed by Griffond and
Casalis [5,6] appears to be a property of the mean flow itself and may
need to be separately accounted for in the overall energy balance. For
each of these factors, additional work lies ahead.
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