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Abstract: Optoacoustic tomography enables volumetric imaging with optical contrast in biological tissue at depths be-

yond the optical mean free path by the use of optical excitation and acoustic detection. The hybrid nature of optoacoustic 

tomography gives rise to two distinct inverse problems: The optical inverse problem, related to the propagation of the ex-

citation light in tissue, and the acoustic inverse problem, which deals with the propagation and detection of the generated 

acoustic waves. Since the two inverse problems have different physical underpinnings and are governed by different types 

of equations, they are often treated independently as unrelated problems. From an imaging standpoint, the acoustic inverse 

problem relates to forming an image from the measured acoustic data, whereas the optical inverse problem relates to 

quantifying the formed image. This review focuses on the acoustic aspects of optoacoustic tomography, specifically 

acoustic reconstruction algorithms and imaging-system practicalities. As these two aspects are intimately linked, and no 

silver bullet exists in the path towards high-performance imaging, we adopt a holistic approach in our review and discuss 

the many links between the two aspects. Four classes of reconstruction algorithms are reviewed: time-domain (so called 

back-projection) formulae, frequency-domain formulae, time-reversal algorithms, and model-based algorithms. These al-

gorithms are discussed in the context of the various acoustic detectors and detection surfaces which are commonly used in 

experimental studies. We further discuss the effects of non-ideal imaging scenarios on the quality of reconstruction and 

review methods that can mitigate these effects. Namely, we consider the cases of finite detector aperture, limited-view 

tomography, spatial under-sampling of the acoustic signals, and acoustic heterogeneities and losses.  

Keywords: Optoacoustic imaging, photoacoustic imaging, tomography, inverse problems, ultrasound detectors, algorithms, 

acoustic waves. 

1. INTRODUCTION 

Over the past two decades, optoacoustic imaging has 

seen steady growth and has demonstrated notable capabili-

ties to visualize living biological tissues with multiple appli-

cations emerging in both small-animal and clinical imaging 

[1-10]. Nowadays, the terms optoacoustic and photoacoustic 

are equally used to describe the effect of acoustic wave gen-

eration by transient light absorption. Optoacoustic imaging is 

based on the principles of the photophonic effect, which was 

first described in the late 19th century by Alexander Graham 

Bell and Charles Sumner Tainter [11], who recognized that 

sound waves can be generated through the absorption of 

modulated light and its conversion into heat. Optoacoustics 

has been used since the late 1930s for sensitive spectroscopy 

of gases [12]. However, lack of suitable pulse-laser technol-

ogy, wideband sensitive ultrasonic detectors, and data proc-

essing capacities, have made progress and application chal-

lenging. In the 1970s, the effect was first suggested for sens-

ing biological tissue [13]. While the physical underpinnings 

of optoacoustic wave generation in solids and liquids had 

been long established [14], first imaging studies concen-  
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trated on depth profiling of one-dimensional layered tissues 

[15]. With the adoption of analytical inversion formulae 

from the field of computerized tomography, two- and three-

dimensional optoacoustic tomographies have later become 

possible [16].  

 In modern biomedical optoacoustics, the tissue is irradi-

ated with nanosecond-duration pulses of light, resulting in 

the generation of ultrasound waves due to optical absorption 

and rapid thermoelastic expansion [17]. Even though addi-

tional methods of optoacoustic signal generation exist, e.g. 
using modulated continuous wave sources [18], methods 

relying on pulsed excitation exhibit significantly better imag-

ing performance in terms of sensitivity [19]. For deep tissue 

imaging applications, optical parametric oscillators are often 

used to provide wavelength tunability with pulse repetition 

rates in the order of a few tens of Hertz and per-pulse ener-

gies in the millijoule range [8]. In optoacoustic microscopy 

and other superficial applications, where such high per-pulse 

energies are not required, other types of sources in the micro-

joule and nanojoule ranges are considered as well, including 

high repetition rate lasers [20], laser diodes [21] and fiber 

lasers [22].  

Although a great variety of optoacoustic-based tech-

niques exist for imaging and sensing of biological tissue, e.g. 
optical resolution microscopy [6] and flow cytometry [23], 

the focus of this review is solely on tomographic imaging 

scenarios, such as those found in Refs. [2, 8, 10, 24-46]. In 
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optoacoustic tomography, the optically generated pressure 

profiles are subsequently captured by ultrasound detectors 

surrounding the imaged object. Acoustic coupling between 

the imaged object and the detector is usually ensured by wa-

ter or coupling gel. The tomographic detection of ultrasound 

is performed by either scanning a single detector, or detector 

array, around the imaged object or alternatively using multi-

ple detectors to simultaneously capture the generated acous-

tic signals. The latter configuration allows for ultrafast data 

acquisition, e.g. reconstruction of three-dimensional images 

from a single laser shot [24]. In comparison to the purely 

acoustic ultrasonography, the acoustic signals in optoacous-

tic tomography are generally weaker and more broadband, 

making their detection more challenging. Nonetheless, pie-

zoelectric detectors, originally designed for ultrasonography, 

have been shown to be appropriate for optoacoustic tomo-

graphy as well, and have enabled much of the progress in the 

field. In recent years, optical interferometric detection of 

ultrasound has emerged as a possible alternative to conven-

tional piezoelectric technology, which shows promise for 

future miniaturization of optoacoustic imaging systems [34, 

39, 47-50]. 

Due to its hybrid nature, optoacoustic tomography com-

bines highly attractive features attributed to both light and 

sound, including rich contrast and high versatility in sensing 

diverse biological targets, excellent spatial resolution not 

compromised by light scattering, and relatively low cost of 

implementation. From a technical point of view, the ultimate 

goal of optoacoustic tomography is creating a quantified 

three-dimensional map of the optical absorption in tissue. In 

many cases, multispectral measurements may be used to 

extract quantified information on the distribution of tissue 

chromophores based on their optical absorption spectrum 

[51-54]. In order to achieve quantified imaging, two inverse 

problems must be solved: one acoustical and one optical. 

The acoustic inverse problem involves mapping the energy 

deposited in the tissue from the tomographic measurement of 

the acoustic signals, whereas the optical inverse problem 

involves turning the acoustic reconstruction into a quantified 

image of the optical absorption coefficient. The application 

of optoacoustic tomography to imaging living objects pre-

sents major challenges to solving both the optical and acous-

tical inverse problems. Optically, the large variations in the 

optical scattering and absorption coefficient of biological 

tissue lead to a highly complex non-linear inverse problem, 

whereas the processing of multi-spectral data often requires 

some a priori knowledge of the background spectrum [51] 

and accounting for depth-dependant variations in the light 

spectrum [53]. Acoustically, practical considerations in sys-

tem design as well as acoustic heterogeneity and loss often 

lead to distorted, incomplete measurement data, which in turn 

may result in distorted reconstructions and imaging artifacts.  

The focus of this review paper is on the technical aspects 

of the acoustic inverse problem in optoacoustic tomography. 

Mathematically, the acoustic inverse problem is agnostic to 

the type of electromagnetic energy deposited in the tissue, 

and therefore in some of the work cited in this review it is 

studied in the context of thermoacoustic tomography, where 

the excitation is performed using microwave radiation [25, 

27, 29, 32]. For a detailed review of the optical inverse prob-

lem and of applications of optoacoustic imaging, we refer the 

interested reader to Refs. [55-60] and the references con-

tained therein. As optoacoustic tomography has grown into a 

highly versatile imaging technology, the acoustic inverse 

problem in fact represents a series of problems whose formu-

lations depend on the specific implementation used. Practical 

considerations such as high sensitivity, short imaging ses-

sions, and geometrical compatibility to the imaged object 

often play a decisive role in the design of optoacoustic sys-

tems. The result is often a sub-optimal acoustic measurement 

due to factors such as the frequency response of the acoustic 

detector, the finite aperture of the detector, limited-view to-

mography, etc. It is therefore important to realize what the 

effect such practical considerations have on the resulting 

acoustic inversion and to determine which reconstruction 

algorithms are most appropriate for a given scenario. Ac-

cordingly, much of the review is devoted to the relations 

between the theoretical and experimental facets of optoa-

coustic tomography.  

The paper is organized as follows: In Section 2 we dis-

cuss the forward acoustic problem in terms of both its basic 

mathematical description and the experimental techniques 

used for acoustic detection. In Section 3 we review the state 

of the art of acoustic inversion algorithms, which we divide 

to 4 categories: time-domain (so called back-projection) 

formulae, frequency-domain formulae, time-reversal algo-

rithms, and model-based algorithms. In Section 4 we discuss 

the effect of non-ideal imaging scenarios on the characteris-

tics of the acoustic inversion, and the conclusion is given in 

Section 5.  

2. THE FORWARD PROBLEM 

In optoacoustic tomography, the acoustic forward prob-

lem relates to the calculation of the acoustic fields in time 

and space from a known heat source, or optoacoustic source, 

   
H (r, t) , which represents the electromagnetic energy depos-

ited in the medium per unit volume and per unit time. As 

discussed in the Introduction, the physical processes leading 

to the generation of 
   
H (r, t)  may be considered as a separate 

physical problem, solely related to the electromagnetic (opti-

cal) properties of the medium and of the excitation sources, 

and are outside the scope of this review.  

In the case of acoustically homogeneous liquid medium, 

under the condition of thermal confinement, the optoacousti-

cally induced pressure wave 
   
p(r, t) obeys the following dif-

ferential equation [61]: 

   

2 p r,t( )
t2

v2 2 p r,t( ) =
t

H r,t( ),

    (1) 

where v is the speed of sound in the medium, and  is a 

dimensionless parameter called the Grüneisen coefficient, 

which describes the conversion efficiency of heat to pres-

sure. Equation (1) is given in 3D, where 
   
r = x, y, z( ) . The 

conventional solution to Eq. 1 is based on the free-space 

Green’s function [62]. Briefly, replacing the right-hand side 

of Eq. 1 by 
   

(r) (t) , where  is the Dirac delta function, 

leads to the following solution: 
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Since Eq. (1) is linear, any solution can be represented as a 

superposition of the fundamental solution given in Eq. 2, i.e. 

p r,t( ) =
4

r - r' (t t ')( )
r - r'

H (r ', t)dr 'dt '

  (3) 

In most optoacoustic imaging applications, Eq. (3) may 

be simplified by recognizing that the temporal duration of 

the electromagnetic excitation is shorter than the temporal 

resolution of the acoustic detectors. In this case, the heat 

source may be approximated by 
  
H (r) (t) , where 

  
H (r) (t) is 

the deposited energy per volume, and Eq. 3 takes the form of 

   

p r,t( ) =
4 t

H (r ')

r - r'
dr '

r-r' =vt
       (4) 

where integration is performed over a sphere, as depicted in 

(Fig. 1a).  

Equation 4 offers a simple way to calculate the pressure 

field at a specific position and time instant and is the basis 

for several inversion approaches, as discussed in the follow-

ing sections. Nonetheless, when one wishes to calculate the 

pressure fields at numerous positions, so called k-wave tech-

niques are preferable [63], in which the 3D spatial Fourier 

transform is used. In k-space, for a heat source 
  
H (r) (t) , Eq. 

1 takes the form of  

   

d 2

dt2
v2

k
2

p̂ k,t( ) = Ĥ (k)
d

dt
(t),

            (5) 

where 
   
p̂(k, t)  and 

   
Ĥ (k)  are the spatial Fourier transforms 

of 
   
p(r, t)  and 

   
H (r ') , respectively, and 

   
k = (k

x
, k

y
, k

z
)  is 

the spatial frequency. The solution of Eq. 5 is found using 

the Green’s function and is given by [63] 

   
p̂(k, t) = Ĥ (k) cos k t( ) ,

         (6) 

for 0t , and 
   
p(r, t) is given by 

   
p r,t( ) = F 1 Ĥ (k)cos k t( ){ },

      (7) 

where   F
1

 denotes the inverse Fourier transform . In con-

trast to Eq. 4, Eq. 7 offers a direct way to calculate pressure 

field for all positions in space for a given time instant t in a 

single step. Equation 7 also shows that the initial pressure 

field 
   
p

0
r( ) = p r, t = 0( )  is proportional to the optoacoustic 

source: 

p
0

r( ) = H r( )
.          (8) 

2.1. 2D Representations 

Although wave propagation in optoacoustic tomography 

is inherently a 3D phenomenon, in some imaging geo-

metries, 2D representations are valid. We first consider the 

case in which the optoacoustic source lies on the plane 

z = 0 , i.e.  

   
H r( ) = H x, y( ) z( )

.        (9) 

In this case, the solution to the forward problem may be 

found by substituting Eq. 9 in Eq. 4. The result is the same 

equation only with r replaced by 
  

= (x, y) , i.e. the integra-

tion is performed over circles rather than spheres. This 2D 

representation is often used when light-sheet illumination 

and/or focused acoustic detectors are used [2, 7, 8, 37]. The 

validity of this model for specific imaging scenarios is dis-

cussed in Section 4.5.  

An additional 2D version of the optoacoustic equation is 

obtained when homogeneity in z is assumed, leading to 

p r, t( ) z = 0 . Equation 1 thus takes the form 

  

2 p ,t( )
t2

v2

2

x2
+

2

y2
p ,t( ) =

t
H ,t( ).

   (10) 

The solution to Eq. 10 may be readily found by repeating 

the procedure in Eqs. 5-7. The result is Eq. 7 with 

k = (k
x
, k

y
) substituted in place of k, where the Fourier 

 

Fig. (1). A schematic 2D description of the 3 common detector types used in optoacoustic tomography: (a) point-like detector, whose aper-

ture is significantly smaller than any feature in the optoacoustic source; (b) line detector (either finite or infinite); and (c) focused detector. In 

3D, most ultrasound detectors used in the field may be represented as a combination of these three options. The figure further illustrates the 

different detection patterns characterizing these three geometries, where the solid curves represent positions for which the detector is sensi-

tive and the detection delay is constant. The case of point-like detectors is described by Eq. 4. For line detectors, if the detector is signifi-

cantly longer than the imaged object, it may be approximated by an infinite line, and the detection pattern is then described by Eq. 10. In the 

case of focused detectors, the full-width-at-half-maximum (FWHM) and the depth of field are given by Eq. 12 and 13, respectively.  
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transform is performed in 2D over x and y. Although it is 

unrealistic to assume that the optoacoustic source is homo-

geneous in z, this 2D model also applies in imaging scenar-

ios in which the detector is homogenous in z. In such cases 

  
p , t( )  and 

  
H , t( )  do not represent the pressure field and 

optoacoustic source, but rather their respective integrals over 

z [34, 64].  

2.2. Detector Properties 

The acoustic inverse problem relates to the reconstruction 

of the heat source H r( ) , or alternatively the initial pressure 

distribution 
   
p

0
r( ) , from a set of pressure waves measured at 

multiple positions. The pressure measurements, which are 

performed by ultrasound detectors, do not however exactly 

correspond to the mathematical description given in the pre-

vious section. Specifically, realistic ultrasound detectors are 

characterized by a finite aperture and finite bandwidth, or 

temporal resolution. The detected acoustic signals can often 

be modeled by the following equation [31, 65]: 

   

p
det

r,t( ) = h(t) p r,t( )
S

D r( )dS ,

       (11) 

where S is the detector’s surface, 
  
D r( )  is the detector’s sen-

sitivity distribution, and 
  
h(t)  is the temporal impulse re-

sponse of the detector. It is often assumed that 
  
D r( )  is uni-

form within the detector’s surface, though some detectors are 

inherently characterized by non-uniform sensitivity distribu-

tions [48, 66].  

Two types of ultrasound detectors are commonly used in 

optoacoustic tomography: piezoelectric detectors [67, 68], in 

which pressure is directly transformed into voltage, and opti-

cal detectors [34, 39, 47-50], in which pressure is interfer-

ometrically detected via its effect on the optical path of the 

interrogation beam. In the former case, the temporal re-

sponse of the detector is largely determined by the acoustic 

and electrical impedances of the piezocomposite material, 

and is thus often referred to as the electrical impulse re-

sponse. Many piezoelectric detectors are designed to reso-

nate at a specific acoustic frequency to increase their sensi-

tivity, leading to a complex electrical response. The calcula-

tion of the electrical response requires exact knowledge of its 

design [68], which may not always be provided by the manu-

facturer, and it is therefore often required that the response 

be directly measured, e.g. using the techniques in Refs. [66, 

69, 70]. In Ref. [70], the difference between optoacoustic 

techniques and pure ultrasound techniques for characteriza-

tion of ultrasound detectors is discussed. In the case of opti-

cal detectors, the temporal impulse response is determined 

by the thickness of the detection region [39, 65] and the 

acoustic impedance mismatch between the optical medium 

in which the interrogation beam propagates and the acoustic 

medium (usually water) [71]. For most optical detectors, the 

optical medium, leading to a relatively simple temporal im-

pulse response, which is nothing more than a low-pass op-

eration which corresponds to the width of the detection re-

gion [65]. The major exception to this rule is optical detec-

tors which are based on silica fibers, which are highly acous-

tically mismatched to water. In that case, the temporal re-

sponse needs to be either measured [66], or numerically 

simulated [71]. We note that when complex acoustic propa-

gation patterns exist due to acoustic impedance mismatches, 

e.g. acoustic waves guided in silica fibers [66], or angle-

dependent reflection and refraction pattern which appear in 

piezoelectric transducers, the model used in Eq. 11 loses its 

validity. Such cases would require either a more elaborate 

model or, alternatively, measuring the spatially dependent 

impulse response of the detector, as discussed in Section 3.4.  

Numerous aperture types have been demonstrated for op-

toacoustic tomography, some chosen owing to technological 

constraints and some due to limitations imposed by the ge-

ometry of the imaging application. Nonetheless, with but a 

few exceptions [72, 73], detector surfaces used in the field 

may be described by a combination of two out of three sim-

ple detector types in 2D space: point, line (or line segment), 

and focused. In other words, the 2D surface of the detector 

often has a separable geometry, where the geometry on each 

of the surface’s dimensions corresponds to one of the three 

simple 1D curves listed above. (Fig. 1) shows schematically 

the three basic detector geometries. The figure further illus-

trates the different detection patterns characterizing these 

geometries. In the case of a point detector, the sensitivity is 

isotropic while the signals detected at a given time instant 

are assumed to originate from sources located on spheres 

(3D) or arcs (2D), as shown by Eq. 4. A detector may be 

considered as a point detector if its size is significantly 

smaller than the size of the features in the optoacoustic 

source 
  
H r( ) . In the case of a line detector, sources whose 

detection delay is the same (i.e. the time it takes for the 

acoustic signals they generate to be detected) generally lie on 

a line in 2D space parallel to the detector. If the detector is a 

finite line-segment, the sensitivity is anisotropic and gener-

ally higher for regions directly facing the detector [74]. For 

infinite-line detectors, the sensitivity depends only on the 

distance from the detector [34]. Focused detectors are used 

in order to limit the sensitivity to a small region. The full-

width-half-maximum (FWHM) of the focal zone depends on 

the focal length f, the transducer aperture size 2a , and 

acoustic wavelength  [67]: 

  
FWHM = 1.41 f / 2a .        (12) 

The depth of field (DOF), i.e. the distance over which the 

sensitivity field remains within the 50% of its maximum 

value, is given by 

  
DOF=9.7 f / 2a( )

2

.        (13) 

when using Eqs. (12) and (13), two points must be consid-

ered. First, these equations have been developed for focused 

transducers in 3D space with circular apertures (focused 

disks) [67]. 2a in this case represents the disk diameter. In 

the case of non-circular apertures, or detectors that are fo-

cused only along one axis, a deviation from the constant nu-

merical factors in Eqs. (12) and (13) is expected, but not in 

the dependence on the physical parameters. The second point 

is that in optoacoustic tomography, the source does not emit 

acoustic waves with a single frequency and wavelength, but 
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is rather characterized by a broad spectrum. We elaborate 

further on this point in Section 4.5, where the reconstruction 

using focused transducers is discussed. 

For detectors in 3D space, the three 2D options depicted 

in (Fig. 1) lead to 6 different combinations of detector types. 

For detectors which are point-like in both their dimensions, 

the most successful implementation so far has been optical 

[10, 39] since in optical detection the detector’s sensitivity is 

often independent of its surface area. In contrast, the sensi-

tivity of piezoelectric detectors scales with their size. Ac-

cordingly, miniaturized piezoelectric detectors used for op-

toacoustic tomography are often significantly larger than 

their optical counterparts and thus may only be considered 

point-like for larger features in the optoacoustic source. The 

combination point-line relates to detectors which are very 

small in one dimension and are large and straight in the 

other. This combination enables increasing sensitivity while 

still maintaining a relatively compact detector design. How-

ever, the increase in sensitivity depends on the acoustic 

wavelength, whereas higher wavelengths are less empha-

sized in the detection owing to the effect of spatial averaging 

on the long dimension of the sensor [74]. Piezoelectric im-

plementations of this geometry are often based on commer-

cially available ultrasound linear arrays [75], whereas optical 

implementations are based on long Mach-Zehnder or Fabry-

Perot interferometers [34]. In the latter case, the length of the 

detector may be made sufficiently large, such that it can be 

approximated by an infinite line. Further increase in sensitiv-

ity could potentially be achieved by using the line-line com-

bination, i.e. detectors which are flat and significantly larger 

in both their dimensions than the typical size of the features 

in the optoacoustic source [29-31]. 

Similarly to line detectors, focused detectors may achieve 

higher sensitivity than point-like detectors due to their larger 

size. However, unlike line detectors, the sensitivity en-

hancement attained in the focal zone is independent of 

acoustic wavelength. Thus, the sensitivity achieved by a fo-

cused detector may be significantly higher than the one 

achieved by a flat detector of the same size when imaging 

objects which are considerably smaller than the detector’s 

size. Additionally, since the sensitivity of focused detectors 

is confined to a small region, it is only necessary to create 

the optoacoustic source within that region. Detectors which 

are focused in one dimension are often referred to as cylin-
drically focused detectors. In such detectors, the focal zone 

has a planar geometry [2, 7]. For such detectors, the second 

dimension may be considered as either a point [37] or a line 

[76]. Detectors which are focused in two dimensions are said 

to be spherically focused, and their focal zone lies on a line 

[3], [67]. Although focused detectors are most commonly 

implemented using piezoelectric technology, it has been re-

cently shown that an optical implementation may be enabled 

by using a focusing mirror [38].  

We note that the choice of a specific detector type is not 

trivial and is affected by both technological considerations 

and the particular application. Large-area detectors have the 

advantage of higher sensitivity, but their size also inhibits 

their use in array configurations, which can simultaneously 

measure ultrasound at multiple positions and potentially re-

duce the imaging time. In some cases, focused detectors can 

mitigate the requirement for high-power lasers for creating 

the optoacoustic source by partially focusing the laser beam 

to a small region on the surface of the imaged object to better 

match the focal zone [3, 7]. However, the benefit from this 

approach diminishes as the size of the imaged object in-

creases owing to scattering of the laser light within the ob-

ject. Some geometries might be preferable in terms of sensi-

tivity, but require more complex inversion algorithms to 

form an image. In some cases, e.g. in small animal imaging 

applications, imaging speed might be favored over spatial 

resolution in order to enable high throughput and reduce 

motion artifacts [24, 77], whereas in some stationary clinical 

applications, it may be preferable to have longer imaging 

sessions in order to obtain the highest resolution possible 

[26]. In addition to the aforementioned technical tradeoffs, it 

is also clear that an imaging system needs to be reliable, ro-

bust, and relatively easy to use. In light of these considera-

tions, it is not surprising that so many detector geometries 

have been tested for optoacoustic tomography. 

Finally, we note that the distinction we made between 

point and line detectors is not always absolute and may de-

pend not only on the characteristic size of features in the 

imaged object, but also on the detection surface (see Sections 

2.3 and 4.2). For imaging purposes, a more general defini-

tion of a point detector may be adopted based on the discus-

sion in Sections 4.2: A detector may be considered to be a 

point detector if reconstruction algorithms for point detectors 

may be applied without distorting the features of interest in 

the imaged object. As discussed in Section 4.2, in some 

cases, e.g. spherical detection surface, such reconstruction 

properties may be achieved even when the detector is larger 

than the features of interest in the imaged object.  

2.3. Detection Surface 

The detection surface on which the acoustic measure-

ments are performed has a direct effect on both the quality of 

the reconstruction achieved as well as on the choice of re-

construction algorithms. Mathematically, if the pressure 

wave
   
p r, t( )  is known over a closed surface S that encloses 

the optoacoustic source, a unique solution to the inverse 

problem exists as well as stable inversion procedures [78-

81]. The practical implication of this property is the follow-

ing: If point-like detectors with sufficient bandwidth are 

placed over such a surface with sufficient density, an exact 

reconstruction of the optoacoustic source over any given 

resolution may be achieved. Three detection surfaces are of 

special importance in optoacoustic tomography due to their 

mathematical properties as well as due to practical consid-

erations; these are the spherical, cylindrical, and planar de-

tection surfaces, as shown in (Fig. 2). 

The three detection geometries depicted in (Fig. 2) are 

often discussed in mathematical texts since they possess ana-

lytical solutions to the acoustic inversion problem [32, 40, 

82]. We note that these solutions are unique even though the 

cylindrical and planar surfaces, which are infinite, are not 

closed. Practically, these surfaces, or their truncated versions 

in the cylindrical and planar cases, are compatible with most 

of the detection technologies employed in the field. For ex-

ample, piezoelectric detector arrays are commonly manufac-

tured over flat [83, 84] or curved surfaces [8, 24, 36], and 
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mechanical scanning is considerably easier to perform over 

circular or straight paths than over irregular paths which of-

fer no apparent advantage except for special cases [85]. Al-

though most mathematical texts focus on point-detectors, 

these three detection surfaces have been used with a variety 

of finite-size detectors. (Table 1) summarizes the different 

combinations of detection surfaces and detector types which 

have been discussed in the literature. 

3. RECONSTRUCTION ALGORITHMS  

The mathematical foundation for much of the early de-

velopment of optoacoustic reconstruction algorithms [16, 

86], whether involving approximate or exact solutions, has 

been known for several decades now and has been applied in 

the fields of ultrasonic reflectivity imaging and X-ray com-

puterized tomography [87, 88]. Nonetheless, the large diver-

sity of imaging scenarios which exists in optoacoustic tomo-

graphy, as discussed in Sections 2 and 4, as well as its 

unique physical underpinnings has led to new challenges 

specific to optoacoustic tomography. The exponential 

growth in computational power as well as the emergence of 

new algorithms in fields such as image and signal processing 

have created new possibilities for more versatile reconstruc-

tion algorithms which would have been considered highly 

impractical less than a decade ago. It is therefore not surpris-

ing that many new image-reconstruction algorithms are still 

being developed. Since novel detector types [39, 49, 48, 72] 

and detection geometries [85] are still emerging, this trend is 

expected to continue.  

In the following we review the state-of-the-art in algo-

rithms for optoacoustic reconstruction in 3D and 2D. Al-

though numerous algorithms have been proposed to this end, 

most may be included in one of the following categories: 

closed-form time-domain (back-projection) solutions, 

closed-form frequency-domain solutions, numerical time 

reversal techniques, and numerical model-based algorithms. 

For the 2D inverse problem, we note that in the case of ho-

mogeneity in z (Eq. 10), the solution 
  
H , t( )  is equal to 

   
H r, t( )  integrated over z  and therefore does not constitute a 

full solution to the inverse problem on its own. Nonetheless, 

a set of recovered functions 
  
H , t( )

 
obtained at different 

orientations of the source may be used to recover H r, t( ) via 

the 2D inverse Radon transform [34]. In contrast, in case of 

an optoacoustic source which is assumed to be restricted to a 

plane (Eq. 9), recovering 
  
H , t( )  is equivalent to recovering 

  
H , t( ) for the imaged plane. Practically, the reconstruction 

procedure may be applied for different imaging planes in the 

imaged object, thus recovering the entire 3D optoacoustic 

source plane-by-plane without the need for additional inver-

sion steps [7]. 

3.1. Time-domain Algorithms  

Time-domain algorithms are commonly based on project-

ing each of the 1D acoustic signals onto 3D space in a way 

that is consistent with the time-of-flight principle. The back-

projection process generally involves 3 steps: 

1). Pre-processing: A mathematical operation performed on 

each of the measured acoustic signals 
   
p r

n
, t( )  to form a 

 

Fig. (2). The three most common detection surfaces used in optoacoustic tomography: (a) spherical, (b) cylindrical, and (c) planar. These 

detection surfaces may be achieved experimentally by scanning either a single detector or a detector array over the surface. The arrows show 

the directions in which a single detectors needs to be scanned. The detector types appropriate for each of these detection surfaces are listed in 

(Table 1).  

Table 1. A Review of the Combinations of Detection Surfaces and Detector Shapes Used in Optoacoustic Tomography. We Note 

that the Distinction Between Point and Line Detectors is not Absolute and Depends on the Feature Sizes in the Imaged 

Object and Possibly on the Detection Surface, as Discussed in Section 4.2.  

 Spherical Cylindrical Planar 

Point [25], [26] [32], [33] [10], [39], [40] 

Point-line [27],[28] [34]  

Line-line (flat) [29]-[31] [35] [41] 

Cylindrically focused  [2], [7],[8], [36]-[38]  

Spherically focused   [42], [43]  
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new function, which we denote here by b r
n
, t( ) , where 

1
{ }

=

N

n nr  are the locations of the acoustic detectors. 

2). Back-projection: Each of the functions 
   
b r

n
, t( )  is pro-

jected onto concentric spheres in 3D space based on the 

following equations: 

   
B

n
r( ) = b r

n
, r r

n
/( ) .     (14) 

The physical interpertation of Eq. 14 is that the signal at 

each time instant t is projected to all the positions in 

which it could have originated, i.e. a sphere centered on 

  
r

n
 with a radius of t . Additional spatial processing, 

e.g. weighting, may be performed on 
   
b r

n
, t( ) .  

3). Summation: Image formation by summing up all the 

functions calculated in Step. 2. 

A geometrical representation of the back-projection pro-

cedure is given in (Fig. 3). As shown in the figure, the suc-

cess of the back-projection approach may be understood 

from a purely geometrical perceptive, independent of the 

exact functions that are back-projected. It is therefore not 

surprising that early applications of the back-projection con-

cept in optoacoustic tomography achieved good reconstruc-

tions while relying on mostly heuristic reasoning [1, 89, 90], 

rather than rigorous mathematical analysis, which was only 

later developed. Arguably, the most basic implementation of 

the back-projection procedure is the so-called delay-and-sum 

algorithm in which no pre-processing is performed and 

   
p r

n
, t( )  are projected directly [1]. Although this approach 

accurately quantifies the position and size of simple optoa-

coustic sources, it is inadequate for quantitative imaging, as 

revealed by more rigorous formulations. 

More advanced back-projection algorithms have been 

developed for the case of far-field acoustic detection [25, 33, 

86]. Namely, it is assumed that the distance between the im-

aged object and the detectors is significantly larger than the 

size of the object or, alternatively, than the size of features of 

interest. Mathematically, the condition for the far-field ap-

proximation is that for every 
  
r

s
on the detection surface and 

every r  within the imaged object, 
  
r

s
r r

s
. Consequen-

tially, the integration over the spheres in Eq. 4, may be ap-

proximated by integration over plane, leading to the 3D Ra-

don transform. Far-field inversions have been developed in 

spherical, cylindrical, and planar geometries by Xu et al. 

[25] and [33]. More recently, Burgholzer et al. generalized 

the far-field inversion equation to arbitrary closed surfaces 

and obtained the following equation [81]: 

   

H r( )
1

2
t

p r
s
,t( )

t
S

t= r
s

r

d
r

r
s( ) ,

   (15) 

where 
  
d

r
r

s( )  is the solid angle element corresponding to 

the detector surface element dS when viewed from r, as  

 

Fig. (3). A graphical 2D illustration of the process of back-

projection, discussed in Section 3.1. (a). A point source detected at 

4 positions on a circular detection surface r
i{ }

i=1...4
 with the corre-

sponding distance from the source

   
i{ }

i=1...4
. (b) The acoustic 

signals measured by the 4 detectors with delays proportional to the 

distances 

   
i{ }

i=1...4
. (c) Each of the signals is projected to an arc 

(or spherical shell in 3D) with a radius equal to its original distance 

  i
. The only location where all the arcs intersect is the original 

position of the source. Thus, the contributions of all the back-

projected signals can add up coherently only at the original position 

of the point source. If the reconstruction formula is exact and the 

number of back-projected signals is sufficiently large, the originat-

ing point source will be recovered. In the case of approximate for-

mulae, the reconstructed source may be distorted, but will still be 

well-localized owing to the geometrical properties of the back-

projection procedure. 

 

Fig. (4). An illustration of the variables used in the back-projection 

formulae of Eqs. 15 and 16. An arbitrary detection surface S en-

compasses the optoacoustic source H (r). The vectors r and rs  

represent positions in the optoacoustic source and detection surface, 

respectively. ns (rs) is a unit vector orthogonal to the surface at the 

position rs, respectively. dS is the infinitesimal surface element and 

d (rs) is the corresponding infinitesimal solid-angle element.  
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depicted in (Fig. 4). The analytical representation of 
  
d

r
r

s( )  

is given by 
dS

r
s

r
2

n r
s( )

r
s

r

r
s

r
, where 

  
n r

s( ) denotes the 

normal vector at 
sr  pointing outwards, and denotes the 

scalar product between two vectors. Recalling the far-field 

approximation, d
r

r
s( )  may be simplified to 

( )
2

s
s

ss

dS r
n r

rr
. 

Finally, in the case of spherical, cylindrical, and planar 

detection surfaces, exact back-projection formulae are 

known. One of the most notable formulations of the back-

projection algorithm is the universal back-projection algo-
rithm, developed by M. Xu et al., which is exact for all three 

detection surfaces [82]: 

H r( ) =
2

p r
s
,t( ) t

p r
s
,t( )

t
S

t= r
s

r

d
r

r
s( )

0

   (16) 

where 
 0

 is the solid angle of the whole detection surface, 

and therefore is equal to  4  for spherical and cylindrical 

surfaces, and to  2  for planar surfaces. We note that the 

only difference between Eq. 16 and Eq. 15 is the addition of 

the term 
   
p r

s
, t( )  in Eq. 16, which is indeed negligible under 

the far-field approximation. 

Despite the elegant representation of Eq. 16, its exact 

numerical implementation is computationally demanding, as 

noted in Ref. [81]. The main reason for this numerical com-

plexity is that for each voxel in the reconstruction grid, the 

solid angle element has to be calculated for every discrete 

value of 
  
r

s
. For an object with  M M M  voxels and cor-

responding  M M  back-projected signals, the result is a 

complexity of 
  
O M 5( )  for the trigonometric calculations in-

volved with the calculation of 
  
d

r
r

s( ) . However, under the 

far-field approximation, 
  
d

r
r

s( )  does not depend on r and, 

thus, its calculation involves only 
  
O M 2( )  operations. If the 

detection surface is also spherical, d
r

r
s( )  may be approxi-

mated by the constant 
   
dS r

s

2

, leading to a significantly 

lower computational complexity. Despite the high complex-

ity often associated with back-projection formula, recent 

implementations on graphical-processing-units (GPUs) [91, 

92] have been shown to be highly efficient, enabling real-

time reconstruction in 3D.  

In the case of 2D imaging, back-projection algorithms 

have been developed for plane-bound 2D sources (Eq. 9) and 

infinite sources (Eq. 10). In the case of plane-bound source, 

Filbir el al. demonstrated an approximate back-projection 

formula that may be applied to arbitrary detection geometries 

[93]. Formally, the reconstructed object in this algorithm is 

not the source, but rather a convolution of the source with a 

point-spread function (PSF) which approximates the delta 

function. In the case of infinite sources, Burgholzer et al. 
[64] demonstrated a procedure that enables applying any 3D 

back-projection formula to the 2D case. 

One of the advantages of the back-projection approach is 

that it is based on robust physical principles, and therefore 

may produce visually pleasing results useful for identifying 

the underlying anatomy of the imaged specimen even when 

the description of the imaging scenario does not coincide 

with the conditions for exact reconstruction. In such non-

ideal scenarios, image quality may be often improved by 

introducing additional weighting to the back-projected sig-

nals 
   
b r

n
, t( ) . In Ref. [94] this concept was used for the case 

of limited-view tomography (see Section 4.4) to prevent 

over-extenuation of features for which a better angular cov-

erage was given. In Refs. [95, 96] a more complex weighting 

function was used to account for acoustic heterogeneities 

assuming some a priori information on their distribution. 

Weighting was performed to favor signals originating close 

to the detectors, as they are less likely to suffer from defor-

mation due to acoustic heterogeneities.  

3.2. Frequency-domain Algorithms 

Frequency-domain algorithms are based on solving the 

inverse problem in the Fourier domain and transforming the 

solution back to the spatial domain. For   t > 0  the acoustic 

forward problem is described by the homogeneous wave 

equation. As a result, the acoustic fields may be written as an 

infinite sum of known product functions in four-dimensional 

space 
   

r, t( ) : 

   

p r,t( ) = a
n

f
1,n

r
1

( )
n

f
2,n

r
2

( ) f
3,n

r
3

( ) f
4,n

t( ),

   (17) 

where r
1
, r

2
, and r

3
 are the three spatial variables that corre-

spond to the geometry of the problem. We note that Eq. 17 is 

only an abstract, general representation of p r, t( ) , in which 

the sum over n may also correspond to integrating over a 

continuous parameter. The ability to transform 
   
p r, t( )  into a 

sum of separable functions is at the heart of many of the 

frequency-domain techniques used in optoacoustic tomogra-

phy. Since the base functions are pre-determined, knowing 

the coefficients 
na equates to knowing 

   
p r, t( )  for all values 

of r and t. The procedure leading to the forward solution in 

Eq. 7 may also be understood in the context of Eq. 17: In the 

forward problem, 
   
p r, t( )  is known for   t = 0  for all values of 

  
r
1
,
  
r

2
, and 

  
r

3
. The known function 

   
p r, t = 0( )  can be trans-

formed in the three-dimensional space of r using the same 

base functions as in Eq. 17: 

   

p r,t = 0( ) = b
n

f
1,n

r
1

( )
n

f
2,n

r
2

( ) f
3,n

r
3

( ).
  (18) 

In order to compare Eqs. 17 and 18, it is required that a 

unique dispersion relation be known between the temporal 

and spatial functions, i.e. that each of the combinations of 

spatial functions in Eq. 18 corresponds to only to a single 
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temporal function. Then, when substituting 0t =  in Eq. 17 

and equating to Eq. 18, one obtains 

a
n

=
b

n

f
4,n

0( )
          (19) 

The analysis performed in Eqs. 5-7 is equivalent to the one 

given above with 
  
r
1
,
  
r

2
, and 

  
r

3
 being the Cartesian spatial 

coordinates and the functions f
,n

r( ){ }
=1:4

 being complex 

exponential functions. The calculation of 
 
b

n
 from p r, t = 0( )  

is thus performed in this case by the 3D Fourier transform.  

The procedure performed in Eqs. 18 and 19, when put in 

a broader context, enables calculating p r, t( )  in 4D space 

when it is known over three of its four variables. In the for-

ward problem, ( ),p tr  is known over the three spatial vari-

ables at a given time instant. In the inverse problem, 
   
p r, t( )  

is known over two spatial variables and over the time vari-

able for a single value of the third spatial variable. In other 

words, 
   
p r, t( )  is known over a surface which corresponds to 

the geometry used in the decomposition in Eq. 17. In both 

the forward and inverse problems, the degeneracy in the dis-

persion relation, corresponding to fields which propagate in 

opposite directions but have the same spatial profile, needs 

to be addressed by applying constraints to the problem. In 

the case of planar geometry [40, 97], the decomposition is to 

planar waves and the detection surface must also be planar. 

Accordingly, in the cases of cylindrical and spherical geo-

metries [25, 32, 98], the waves are cylindrical and spherical, 

and the detection surfaces are a cylinder and a sphere, re-

spectively. The planar case is favorable both in its mathe-

matical simplicity and numerical efficiency because the de-

composition in Eq. 17 may be implemented by the Fourier 

transform. In contrast, cylindrical and spherical waves in-

volve complex mathematical functions, and the decomposi-

tion cannot be performed with high efficiency. We therefore 

limit our discussion here to the planar geometry, whereas the 

solutions to the cylindrical and spherical geometries may be 

found in Refs. [25, 32, 98]. Finally, we note that Wang et al. 

recently developed an exceptionally simple Fourier-domain 

formula for the spherical case that is not based on the de-

composition given in Eq. 17 [99].  

3.2.1. Planar Geometry 

The following analysis is based on the one given in Ref. 

[97], and a detailed numerical implementation of the inver-

sion algorithm may be found in Ref. [100]. The analysis also 

applies to the 2D inversion problem described by Eq. 10 

with only minor modifications [34]. We assume that 
   
p r, t( )  

is known at   z = 0  and wish to find 
  
H r( )  or, alternatively, 

the equivalent initial pressure distribution 
   
p r, t = 0( )  (Eq. 8). 

According to Eqs. 6-8, the decomposition of p r, t( )  into a 

sum of separable functions for t > 0  is given by Eq. 20. 

For simplicity of the analysis, we assume that Eq. (20) is 

valid for all values of t , enforcing time symmetry on p r, t( ) , 

i.e. 
   
p r, t( ) = p r, t( ) . We denote the measurement on the 

plane z = 0  with 
  
u x, y, t( ) , and its Fourier transform by 

  
U k

x
, k

y
,( ) , as shown in Eq. (21). Since 

  
u x, y, t( )  is real and 

symmetric in t, its Fourier transform is symmetric in , 

leading to the equivalent representation given in Eq. (22). 

Substituting z = 0  in Eq. (20), one obtains Eq. (23). Com-

paring Eqs. (22) and (23) one obtains the dispersion relation 

between  and k and its differential, given in Eqs. (24a) and 

(24b). Substituting Eqs. (24a) and (24b) in Eq. (23), and 

comparing to Eq. (22), one obtains Eq. (25). 

Equation 25 reveals that 
  
H x, y, z( )  and 

  
H x, y, z( )  create 

the same pressure on 0=z , i.e. planar measurements cannot 

determine from which side the pressure waves arrive at the 

plane 0=z  [97]. By assuming a symmetric source, for 

which 
  
P k

x
, k

y
, k

z( ) = P k
x
, k

y
, k

z( ) , one obtains 

   

p r,t( ) =
1

2

3

P k
x
,k

y
,k

z( )cos k t( )e
ik

x
x+ ik

y
y+ ik

z
z

dk
x

dk
y

dk
z

            (20) 

  

u x, y,t( ) =
1

2

3

U k
x
,k

y
,( )e

ik
x
x+ ik

y
y+ i t

dk
x

dk
y

d .

              (21) 

  

u x, y,t( ) =
1

2

3

d 2U k
x
,k

y
,( )cos t( )e

ik
x
x+ ik

y
y

dk
x

dk
y

0

,

             (22) 

   

u x, y,t( ) =
1

2

3

dk
z

P k
x
,k

y
,k

z( )cos k t( )e
ik

x
x+ ik

y
y

dk
x

dk
y

            (23) 

                        (24a) 

                        (24b) 

= k = k
x

2
+ k

y

2
+ k

z

2

   
d =

2
k

z dk
z
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P k
x
,k

y
,± ( )

2

k
x

2 k
y

2
=

2k
z U k

x
,k

y
,( )

   (26) 

The inversion procedure may thus be summarized as fol-

lows: 

1). Given the measurement data 
  
p x, y, z = 0, t( )  for t > 0 , 

calculate the time-symmetric function 

  
u x, y, t( ) = p x, y, z = 0, t( ) + p x, y, z = 0, t( )  and its corre-

sponding 3D Fourier transform 
  
U k

x
, k

y
,( ) . 

2). Calculate 
  
P k

x
, k

y
, k

z( )  using Eq. 26. Numerically, this 

step involves interpolating the data given on discrete val-

ues of  to discrete values of 
zk based on the dispersion 

relation [100]. 

3). Calculate 
   
p

0
r( )  by performing the 3D inverse Fourier 

transform on 
  
P k

x
, k

y
, k

z( ) . 

4). The result of Step 3 will be a source which is symmetric 

with respect to   z = 0 . If it is known that the source is 

non-zero only for   z > 0 , multiply the result by 
  
2μ z( ) , 

where  is the Heaviside step function.  

One of the factors that determine the quality of the recon-

struction using Fourier-domain algorithm in the planar ge-

ometry is the accuracy of the interpolation performed in Step 

2. To minimize image artifacts resulting from interpolation 

errors, regularization may be used [101]. Alternatively, Fou-

rier-domain reconstruction may be performed without the 

need of regularization by using the Fourier domain synthetic 

aperture focusing technique (F-SAFT) [102, 103]. In F-

SAFT a frequency-domain free-space propagator is used to 

find 

  
P k

x
, k

y
, z = ,( ) ,  i.e. the Fourier transform of the acous-

tic wave on the plane 

 
z = , from 

  
P k

x
, k

y
, z = 0,( ) = u k

x
, k

y
,( ) . 

The algorithm steps are as follows: 

1). Calculate U k
x
, k

y
,( ) . 

2). Propagate  the  fields  from 0z =   to all values of z  in 

which the optoacoustic source is to be found using  the 

following equation: 

  

P k
x
,k

y
, z,( ) = U k

x
,k

y
,( ) exp isign( )z ( )

2

k
x

2 k
y

2  

3). Integrate over frequency to find the pressure  distribution 

at 0t = : 

  

P k
x
, k

y
, z = , t = 0( ) = P k

x
, k

y
, z = ,( ) d . 

4). Perform the 2D inverse Fourier transform on 

  
P k

x
, k

y
, z, t = 0( )  to find the initial pressure distribution 

  
p x, y, z, t = 0( ) . 

3.3. Time-reversal Algorithms 

Time reversal generally implies that the pressure distribu-

tion p r, t( )  at some   t > 0  may be propagated backwards in 

time, e.g. by solving Eq. 1, to achieve the initial pressure 

distribution and thus the optoacoustic source (Eq. 8). A triv-

ial implementation of this concept would thus require know-

ing p r, t( )  at a specific time instant   t > 0  for all positions in 

space. However, as the detection of the acoustic signals is 

performed over a surface, and not over a volume, such a triv-

ial implementation is impractical. The first time-reversal 

formula compatible with the optoacoustic measurement was 

developed by Xu et al. [78] and Finch et al. [79] and was 

based on the Green’s function subjected to the Dirichlet 

boundary condition. Under the far-field approximation, it 

was shown that this formula leads to the universal back-

projection formula (Eq. 16) [78]. Thus, the early analytical 

formulation of the time-reversal approach could be included 

within the back-projection framework (Section 3.1). Much of 

the later work on time-reversal algorithms has been based on 

numerical implementations [81, 104, 105], which deviated 

from the back-projection formalism and enabled exact recon-

struction for more general imaging scenarios. Specifically, 

time-reversal algorithms have been demonstrated with arbi-

trary detection boundaries [81], acoustic heterogeneities 

[105, 106] and acoustic absorption and dispersion [104]. It is 

therefore that we consider time-reversal algorithms as a 

separate category of inversion algorithms.  

In the case of lossless, homogeneous acoustic medium, 

time-reversal is based on two properties of Eq. 1: 

1). Finite time response: Since the optoaoucstic source is 

enclosed within the detection surface, for a sufficiently 

large time 
0

T , the pressure waves generated by the source 

will all leave the volume trapped within the surface.  

2). Invariance under time reversal: 
   
p r, t( )  fulfills the same 

wave equation as p r, t( ) .  

The time reversed pressure field is defined by 

p
tr

r,t( ) = p r,2T
0

t( ), T
0

< t < 2T
0    (27) 

Because of the two properties described above, 
   
p

tr
r, t( )  ful-

fills Eq. 1 with the initial condition 

p
tr

r,T
0

( ) = p
tr

t( ) r,T
0

( ) = 0, r V
    (28) 

And boundary values 

p
tr

r
s
,t( ) = p r

s
,2T

0
t( ) r

s
S ,T

0
< t < 2T

0      (29) 

where S is the surface over which the acoustic measurement 

is performed and V is the volume enclosed by S . The condi-

tions in Eqs. 27-29 lead to a unique solution p
tr

r
s
, t( )  which 

P k
x
,k

y
, ( )

2

k
x

2 k
y

2
+ P k

x
,k

y
, ( )

2

k
x

2 k
y

2
=

2
2k

z U k
x
,k

y
,( )

          (25) 

2� z( )
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can be calculated numerically [81]. The time-reversed pres-

sure field 
   
p

tr
r

s
, t( )  at 

  
t = 2T

0
 gives the initial pressure dis-

tribution and thus the optoacoustic source.  

Generalization of the time-reversal approach for more 

complex acoustic media requires modifying the procedure 

described above. In the case of acoustic losses, the wave 

equation is not invariant under time reversal. Specifically, 

the loss term in the original equation turns into a gain term in 

the time-reversed equation [104]. When the medium is 

acoustically heterogeneous, the assumption of a finite time 

response may not apply as waves may be trapped in the me-

dium owing to acoustic reverberations [105, 106]. Nonethe-

less, after sufficiently long time, it is still expected that the 

magnitude of the remaining fields in the enclosed volume 

becomes negligible.  

3.4. Model-based Algorithms 

The model-based approach is based on a discrete repre-

sentation of the forward acoustic problem. Namely, because 

the connection between the measured acoustic field and op-

toacoustic source is linear, its discretization may be written 

in a matrix form [107]: 

 
p = Mh

          (30) 

where p is a column vector representing the acoustic fields 

measured at a set of positions and time instants; h is a col-

umn vector representing the values of the energy density on 

the grid; and M is the model matrix. Once the discrete for-

mulation has been established, the inverse problem is re-

duced to the algebraic problem of inverting Eq. 30. One of 

the main advantages of the model-based approach is the abil-

ity to include in the inversion process any linear effect in the 

imaging system, e.g. the detection field of finite-size detec-

tors [31, 74] or acoustic heterogeneities [108-110].  

In the ideal case of point detectors and a homogeneous 

lossless acoustic medium, the model matrix may be calcu-

lated by discretizing the integral relation in Eq. 4. Since the 

integration is performed on spherical surfaces (or arcs in the 

2D case), which do not match the grid points on which the 

optoacoustic source is discretized, an accurate discretization 

of Eq. 4 requires approximating 
  
H r( )  by a finite sum of a 

priori defined interpolation functions:  

   
H r( ) h

n
f

n
r( )

n=1

N

       (31) 

where 
 
h

n
 are the values of ( )H r  on the image grid. Substi-

tuting Eq. 31 in Eq. 4, and performing the integration over 

  
f

n
r( ) , one obtains the model matrix M [31, 107, 111-113]. 

The accuracy of the model matrix has a direct effect on the 

quality of the sequential reconstruction. For example, it has 

been shown that discontinuities in the interpolation, e.g. 

when piece-wise constant interpolation is used, may lead to 

numerical errors in the reconstruction [111]. 

Once a model matrix for the ideal case is constructed, it 

may be modified to include the response of the detector. 

Since the response of ultrasound detectors is generally linear 

and time-independent, it may be described by a spatially 

dependent impulse response
   
R(t,r,r

s
) , where r is the posi-

tion of a delta-function source, and 
sr is the detector’s posi-

tion on the detection surface. 
   
R(t,r,r

s
)  may be numerically 

simulated to include the geometrical effects of the detector’s 

finite aperture [68, 74] and/or experimentally measured to 

include the effect of acoustic and electric impedance mis-

matches in the detection process [69, 70]. It has been shown 

that the effect of 
   
R(t,r,r

s
) may be included by modifying 

Eq. 4 as follows: 

   

p(r
s
,t) =

4
| r

s
- r' | R t +

| r
s

- r' |
,r',r

s
*

'(| r
s

- r' | t)

| r
s

- r' |
H

r
(r') dr',

 (32) 

where *  denotes temporal convolution [74]. R(t,r,r
s
)  may 

be either measured experimentally or calculated numerically, 

depending on the detector technology. When Eq. 11 is valid, 

a hybrid method based on both measurement and simulation 

may be used [114]. Since the difference between Eqs. (32) 

and Eq. (4) is the addition of a temporal convolution opera-

tion, the model matrix corresponding to Eq. (32) may be 

obtained by performing discrete convolution on the columns 

of the model matrix calculated for the case of ideal detectors 

[74]. 

When the inverse problem is well-posed, i.e. the projec-

tion data is sufficient for performing an exact reconstruction, 

the inversion of Eq. (30) may be performed by solving the 

following least-square problem [111]: 

  
h

sol
= arg min

h
p Mh

2

,
      (33) 

where is the 
2
norm. The solution to Eq. (33) is given by 

the Moore–Penrose pseudo-inverse: 

  
h

sol
= M

†
p,

          (34) 

where 
†

M  is the pseudo-inverse and is given by 

  M
†

   
M

†
= M

T
M( )

1

M
T

, and T denotes the conjugate trans-

pose operator. The advantage of using the pseudo-inverse 

approach is that the pseudo-inverse matrix   M
†

 is deter-

mined only by the experimental setup, e.g., positions of the 

detectors, their electric and geometric responses, etc., and 

not by the measured data. Thus,   M
†

 may be calculated once 

for a given measurement configuration with inversion re-

duced to multiplying it by the measured values of p – a proc-

ess that can be realistically performed in real time. The dis-

advantage of the pseudo-inverse approach is that its calcula-

tion might involve multiplication and inversion of very large 

matrices, which may turn impractical.  
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When the model matrix is too large to be inverted di-

rectly, iterative algorithms may be used instead to solve Eq. 

(33) [107], e.g. gradient descent or conjugate gradient [31]. 

In the iterative process, matrix-matrix multiplications are 

avoided, and matrix-vector multiplications are performed 

instead. Thus, the calculation of each iteration may be per-

formed with high numerical efficiency. Generally, the con-

jugate-gradient method is a preferred method as it is charac-

terized by a fast convergence rate. Further increase in effi-

ciency may be achieved by using LSQR [111] – an imple-

mentation of the conjugate-gradient method which is excep-

tionally efficient in the case of sparse matrices. Indeed, 

model matrices in optoacoustic tomography are generally 

sparse because the acoustic signals measured at a specific 

projection angle and time instant are not affected by the en-

tire image, but rather by a small portion of it, which in the 

case of ideal detection withers into a spherical shell.  

In many cases, the inversion problem is either ill-

conditioned or ill-posed, i.e. the acquired projection data is 

insufficient to both uniquely and accurately determine the 

optoacoustic source over the prescribed grid. In other words, 

a large number of inherently different sources may all pro-

duce a dataset of acoustic signals that is very close to the 

measured data. In contrast to the other classes of inversion 

techniques discussed in this review, the model-based ap-

proach enables imposing constraints on the optoacoustic 

source to regularize the solution of the inverse problem. 

Many regularization techniques have been demonstrated for 

optoacoustic tomography, including Tikhonov regularization 

[113, 115], singular value decomposition (SVD) [115], 

multi-scale techniques [115, 116], limited-iteration LSQR 

[117], and total-variation (TV) regularization [118]. Multi-

scale-based and TV regularizations rely on nonlinear optimi-

zation techniques from the field of image processing which 

provide statistical measures to distinguish between “natural” 

images and “spurious” images such as artifacts and noise 

[119].  

The major downside of the model-based approach is the 

relatively large computational resources it requires for high-

resolution imaging. This deficiency, which has traditionally 

limited the application of model-based techniques [61], has 

been mitigated in recent years with the aid of more sophisti-

cated algorithms and better computational resources. One of 

the most notable hardware improvements has been the appli-

cation of GPUs in model-based inversion, which was im-

plemented for the computationally demanding TV regulari-

zation [118]. Memory requirements could be reduced by the 

matrix compression method [41] or on-the-fly calculation of 

matrix elements [31]. Fast inversion algorithms include the 

numerically efficient LSQR as well as the pseudo-inverse 

technique. Finally, it has been recently shown that the model 

matrix may be approximated by a set of smaller matrices 

using a wavelet-packet-based formalism, thus enabling the 

use of computationally intensive matrix-inversion algorithms 

[120].  

4. RECONSTRUCTION CHARACTERISTICS 

In this section we discuss the effect of practical limita-

tions on the quality of reconstruction. Mathematically, the 

acoustic inverse problem is often described as the recon-

struction of an optoacoustic source from the pressure field on 

a closed surface enclosing the source. In practice, the meas-

ured data is only a partial representation of the pressure field 

on the surface. First, as always true for experimental meas-

urements, the projection data is contaminated by noise. Sec-

ond, the bandwidth and aperture of the detector are finite, 

and in many cases, the approximation of a point detector is 

invalid. Third, the acoustic data that can be experimentally 

collected is always discrete whereas the exact mathematical 

solutions assume that the pressure field is known over con-

tinuous variables. Finally, in many cases, the imaged object 

is not accessible from all angles, leading to the so-called 

limited view scenario. 

4.1. Detector’s Temporal Response 

As discussed in Section 2.2, the measured acoustic signal 

may often be represented by a temporal convolution between 

the pressure waves on the detector’s surface and the temporal 

response of the detector. Much of the ultrasound detection 

technology used today involves resonating detectors whose 

response may be modeled by a bandpass filter. The loss of 

lower frequencies in the signal may prevent the reconstruc-

tion of the low spatial frequencies of the optoacoustic source, 

thus leading to an image with negative values. Ad hoc solu-

tions such as the application of the Hilbert transform may 

lead to positive images [121], but cannot truly restore the 

lost low-frequency data. Although the low-frequency data in 

the reconstruction generally does not reveal much interesting 

structure, it plays a major role in the optical inverse problem 

of optoacoustics [122]. The loss of high frequencies in the 

signal leads to smearing in the detected signals and conse-

quentially in the reconstruction. 

In the case of full-view reconstruction, the effect of the 

detector’s temporal response on the image may be exactly 

quantified. Xu et al. showed that when the inversion operator 

for ideal acoustic detectors is performed on temporally con-

volved signals, the resulting reconstructed source would be 

the originating source spatially convolved with the following 

point spread function (PSF) [123]:  

   

PSF=-
1

4 r
h ' r( ) + h ' r( )

   (35) 

where 'h  is the derivative of the detector’s temporal re-

sponse, given in Eq. (11), and r  is the distance from the 

origin. A similar result has also been recently obtained by 

Haltmeier et al. [65]. An interesting property of Eq. (35) is 

that the PSF is isotropic. Thus, if the detected signal is 

smeared by the detector’s temporal response, the image will 

be equally smeared in all directions.  

When 
  
h(t)  is known, and its corresponding spectrum is 

non-zero over the measurement frequency band, its effect 

may be theoretically eliminated by performing deconvolu-

tion. Since the PSF of Eq. 35 is spatially independent, i.e. 

every point in the reconstruction is convolved with the same 

PSF, the image may be deconvolved with the PSF to obtain 

the original image. Alternatively, the measured acoustic sig-

nal may be deconvolved with the temporal response h(t)  

[36], or it may be included in the model [111] when model 

based inversion is used. Practically, however, deconvolution 
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may restore attenuated frequency components only when 

their value is above the noise level of the measurement [36]. 

If deconvolution is performed in order to recover frequency 

components for which the response is below the measure-

ment noise floor, the result would only be amplification of 

the noise at these frequencies.  

4.2. Detector’s Aperture 

Because of the finite size of the detector’s surface, the 

measured acoustic signal is a spatial average of the pressure 

field, as shown in Eq. 11. It is thus expected that when re-

construction is performed with the assumption of ideal detec-

tion, the result would be a spatially averaged (smeared) ver-

sion of the originating optoacoustic source. The effect of the 

detector aperture on the reconstruction was studied in Ref. 

[123] for the spherical, cylindrical, and planar geometries. It 

was found that the resulting PSFs depend on the detection 

geometry and may be spatially dependent, i.e. different 

smearing may occur at different positions in the recon-

structed source. Although the exact PSFs are not always 

known explicitly, their effect may be approximated in the 

case of small flat detectors. In Ref. [123], M. Xu et al. pro-

vide a simple rule to estimate the smearing in the reconstruc-

tion due to the detector’s aperture: Assuming that the detec-

tor’s surface is a disk with a diameter , if the scan is per-

formed linearly in a certain direction, the reconstructed 

source will be smeared in that direction with a spatially in-

variant PSF with a width of ; if the scan is performed 

over a circle with a radius 
0

r , the reconstructed source will 

be smeared tangentially with a spatially dependent PSF with 

a width ( )0
r r , where r  is the distance of the feature of 

interest from the origin. In the case of a circular scan, the 

result is based on the assumption of a small detector 
0

r . 

We note that the PSFs found here are based on the assump-

tion of an infinite detection bandwidth. As shown in Ref. 

[65], when accounting for both the detector’s aperture and 

bandwidth, the image is smeared with both the PSFs found 

here and in Section 4.1. 

The practical implications of the PSFs on the perform-

ance of optoacoustic imaging systems are far reaching, yet 

are rarely discussed in the literature. When a linear scan is 

performed, either as part of a cylindrical scan or a planar 

scan, the reconstructed source will be smeared by the size of 

the detector, which in the case of piezoelectric technology is 

often in the millimeter range. Thus, sub-millimeter resolu-

tion is difficult to achieve for linear scans with standard flat 

detectors. In contrast, the scale of the smearing effect in cir-

cular scans may be reduced significantly below the detec-

tor’s size by increasing the scanning radius with respect to 

the size of the optoacoustic source. It is therefore not surpris-

ing that flat piezoelectric transducers are used in optoacous-

tic tomography almost exclusively with circular scans, 

whereas linear scans are performed with either focused de-

tectors or miniaturized optical detectors that can achieve 

high sensitivity with small detector sizes (see Table 1).  

In Ref. [61] it was noted that over-sampling in the spatial 

domain, i.e. scanning with step sizes smaller than the detec-

tor’s size, cannot mitigate the effect of the PSF due to the 

detector’s aperture. This assertion, however, is only true 

when the inversion procedure used is based on the assump-

tion of point detectors. It has been recently shown that if the 

detector’s aperture is accounted for in model-based inver-

sion, the effect of the detector’s aperture on the reconstruc-

tion may be significantly mitigated, leading to enhanced 

resolution [74, 124]. Alternatively, post-reconstruction proc-

essing techniques such as spin deblurring may be used to 

undo the effect of the detector’s PSF [125]. Nonetheless, the 

restoration of high frequencies in the image, which were 

attenuated in the measurement owing to spatial averaging, 

may come at a price of enhancing high-frequency noise 

components in the reconstruction [31]. Though regulariza-

tion may reduce the effect of noise, it is clear that similarly 

to the case discussed in Section 4.1, resolution enhancement 

beyond the system’s “natural” values relies on low noise 

levels in the measurement. Finally, we note that the resolu-

tion enhancement reported in Ref. [74] relied on spatial over-

sampling, i.e using scan steps which are smaller than the 

detector’s size. When over-sampling is not possible, model-

ing the detector’s aperture does not on its own enable resolu-

tion enhancement.  

4.3. Sampling 

Although most mathematical formulations of the inverse 

problem assume that the pressure fields are known over the 

continuous coordinates of space and time, the measured 

acoustic data is inherently discrete. When designing an op-

toacoustic imaging system it is thus important to determine 

how time and space are discretized. In time, discretization is 

determined by the sampling rate of the acquisition of the 

acoustic signals, whereas in space discretization relates to the 

step size used in scanning. From the Nyquist sampling theo-

rem it is known that a band-limited signal may be sampled at 

a rate that is equal to twice the signal’s highest frequency 

without loss of information. Practically, the sampling rate is 

often determined by some cut-off frequency above which the 

signal’s spectral content is sufficiently small. If the sampling 

rate is lower than the one prescribed by the Nyquist criterion, 

aliasing may occur, which may lead to false interpretation of 

the signal and artifacts in the reconstruction. 

The case of discretization in time is straightforward: 

Since the signal is low-passed by the temporal response of 

the detector, the sampling rate should simply be chosen as 

twice the detector’s cut-off frequency. Determining the ade-

quate spatial sampling rate, however, is often not trivial as it 

depends on detector’s aperture and on its temporal response. 

Generally, the effect of the detector’s finite aperture is a spa-

tial low-pass operation on the measured acoustic signals, 

where the spatial coordinates are those of the detection sur-

face (e.g. Fig. 2). Assuming a flat square detector, the corre-

sponding low-pass operation is characterized by a sinc func-

tion, which decays slowly at high frequencies. Therefore, in 

order to minimize aliasing, the scan step should ideally be 

several times smaller than the detector’s length. It has been 

previously noted that a practical step size is between 2 and 5 

times smaller than the detector’s length [61]. In many cases, 

however, in order to improve acquisition speed, detector 

arrays are used for which the scan step is equal to the detec-

tor’s length [8, 37].  
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In Ref. [120] it was shown that the spatial frequency con-

tent of the measured acoustic signals depends on their tem-

poral frequency content. For example, applying a temporal 

low-pass filter on the acoustic signals removes also the high 

spatial frequencies in the signals and might enable scan steps 

larger than the detector’s length without risk of aliasing. This 

relation between the temporal and spatial low-pass opera-

tions of the acoustic signals is not surprizing when consider-

ing that the PSF in Eq. 35 is isotropic and smears the recon-

struction also in the smearing directions of the spatial low-

pass operation. For example, let us consider the case of lin-

ear scanning with a flat detector with a width of , as de-

scribed in Section 4.2. Additionally, let us assume that the 

acoustic signals are significantly low-passed in time, result-

ing in an isotropic PSF (Eq. 35) that smears the image over a 

scale of 10 . Clearly, in such a case, the smearing effect due 

to the detector’s aperture would be negligible and would not 

change considerably unless the detector’s size is increased to 

an approximate size of 10  or above. In other words, the 

result of temporal filtering in this case would be the loss of 

all spatial frequencies in the acoustic data above the fre-

quency
 
10( )

1

. The implication of this spatial low-pass fil-

tering is that in this case the scan step may be increased 

above the detector’s size without risk of aliasing.  

When the acoustic signals are spatially under-sampled, 

streak artifacts often appear in the image [115, 116]. Nu-

merical simulations have shown that these artifacts are most 

apparent when back-projection algorithms are used, whereas 

model-based inversion is less affected by streak artifacts 

[111, 113]. Within the model-based framework, it was found 

that the best suppression of streak artifacts may be obtained 

when the regularization algorithm is based on the com-

pressed sensing approach which penalizes features in the 

reconstruction which are not typical to “natural” images 

[115, 116]. 

4.4. Limited-view Tomography 

While it is preferable that the acoustic detection be per-

formed over a closed surface, it is often not feasible because 

of practical constraints associated with the experimental 

setup and the particular imaging application. Such con-

straints often arise in imaging systems designed for specific 

organs, e.g. the breast [26] or skin [10], rather than in whole-

body imaging scenarios [30]. When designing such systems 

it is important to realize how the tomographic coverage af-

fects the reconstruction. From the discussion in Section 2.3 it 

is clear that the full-tomographic coverage offered by closed 

surfaces is not essential as infinite planar detection surfaces 

enable exact and stable reconstructions (see Section 2.3).  

In Ref. [126], Xu et al. formulated rules to determine for 

arbitrary surfaces the regions in space for which a full-

tomographic view is effectively obtained. In these so-called 

detection regions, an accurate reconstruction may be ob-

tained for all features in the optoacoustic source. A point is 

said to be in the detection region if any line that passes 

through it intersects with the detection surface. In other 

words, each point in the detection region must be covered by 

the detection surface over a solid angle of at least 2  ste-

radian in the 3D case, and over an angle of  radians in the 

2D case. Closed surfaces, which offer a full 4  steradian 

view, are thus, at least theoretically, superfluous. 

Limited-view tomography relates to imaging scenarios in 

which part of the imaged object lies outside the detection 

 

Fig. (5). The case of limited-view detection depicted in 2D. The so-

called detection region, described in Section 4.4, is marked in gray. 

In this region, the optoacoustic source may be exactly recon-

structed. Outside the detection region, the only features which can 

be exactly reconstructed are those whose spatial frequencies are in 

the direction of the detection surface. In the case of sharp bounda-

ries, this requirement is equivalent to having the normal to the 

boundary intersecting with the detection surface. Therefore, in this 

example, the part of the source’s boundary denoted by “1” may not 

be accurately reconstructed, whereas the part denoted by “2” may. 

 

Fig. (6). A 2D illustration of the effect of the limited-view scenario 

on the characteristics of the reconstruction under the far-field ap-

proximation. (a) The originating optoacoustic source and the corre-

sponding limited angular coverage of the detection curve (or sur-

face in 3D). (b) The image obtained by filtering out all spatial fre-

quencies that correspond to angles outside the detection coverage. 

As noted in Ref. [126], limited-view detection leads to smearing of 

boundaries whose normal vectors are in directions not covered by 

the detection surface. Clearly objects which have no defined 

boundaries are also distorted and smeared in the direction not cov-

ered by the detection surface. As the figure shows, the smearing 

effect is very similar for objects of different sizes. (c) The filtered 

image after setting the negative values in the image to zero. The 

~50% reduction in the amplitude of the objects with respect to the 

originating image is due to the filtering out of half the spatial fre-

quencies.  



332    Current Medical Imaging Reviews, 2013, Vol. 9, No. 4 Rosenthal et al. 

region, as illustrated in (Fig. 5). For regions outside the de-

tection region, some features may be lost in the reconstructed 

source [94], [126]. Specifically, it has been noted that 

boundaries whose normals do not intersect the detection sur-

face will be blurred in the reconstruction process. Thus, for 

the example shown in (Fig. 5), boundary 1 will be blurred, 

whereas boundary 2 will be reconstructed well. Quantitative 

formulation of the blurring effect may be obtained by apply-

ing the wavelet-packet framework used in Ref. [120]. Al-

though the wavelet-packet framework normally requires ex-

tensive numerical analysis, at least under the far-field ap-

proximation a simple description of the blurring effect may 

be obtained. In this case, the optoacoustic source may be 

divided into narrow bands in the spatial-frequency domain, 

where each band is detected only at locations on the detec-

tion surface which correspond to the direction of the fre-

quency band. Thus, if some angles are missing in the cover-

age of the detection surface, approximately the same angles 

will be missing in the spatial-frequency spectrum of the re-

constructed source. This property is more general than the 

one stated in Ref. [126] as it affects objects of all scales, and 

is not limited to only sharp boundaries, as shown in (Fig. 6). 

Finally, we note that the wavelet-packet analysis does not 

require that the far-field approximation apply for the whole 

object, but rather to only small regions, as expressed by the 

so-called local Radon transform in Ref. [120]. Naturally, 

owing to the uncertainty principle, the size of these regions 

limits the resolution in which the spatial-frequencies in the 

object and their corresponding detection angles may be iden-

tified.  

Finally, we note that the definition of limited view is 

rather heuristic and is mostly useful in realistic imaging sce-

narios in which the detection surfaces are finite. Cylindrical 

and planar detection surfaces (Fig. 2b and 2c, respectively) 

technically correspond to our definition of limited-view to-

mography although they indeed possess stable inversion 

formulae. For instance, in the cylindrical detection geometry, 

all lines parallel to the z axis never intersect the detection 

surface, whereas for planar detection, the same is true for all 

the lines parallel to the detection plane. However, since all 

the vectors parallel to these detection surfaces cover a solid 

angle of 0, their effect may be neglected. Alternatively, one 

may adopt concepts from projective geometry, in which par-

allel lines are said to meet at infinity. Practically, however, 

cylindrical and planar detection surfaces are always finite, 

and thus do not have a detection region as defined in Ref. 
[126]. 

4.5. Focused Detectors 

As can be appreciated by our review so far, most of the 

development of reconstruction techniques in optoacoustic 

tomography has focused on ideal detectors, whether infini-

tesimal or infinite. Model-based techniques notwithstanding, 

finite-aperture flat detectors are usually treated as a degener-

ate form of point detectors for which the point-detector ap-

proximation may still be applied in reconstruction, albeit at 

the price of some loss of image resolution (Section 4.2). Fo-

cused detectors represent a different class of detectors whose 

properties vary significantly from those of ideal detectors. 

As a result, most of the techniques presented in Section 3 are 

inapplicable to focused detectors. Focused detectors possess 

two properties which make them attractive for optoacoustic 

imaging: the ability to confine the detection field to a small 

region in space, and the ability to combine wideband opera-

tion with the large detection surfaces necessary for achieving 

high sensitivity. The combination of these two properties has 

made focused detectors a favorable option over flat detectors 

when linear scans are performed. 

Optoacoustic systems in which the detection surface is 

cylindrical (Fig. 2.2) are almost exclusively based on cylin-

drically focused detectors [2, 7, 8]. These detectors may be 

characterized by either a point or a line in the dimension 

corresponding to the circular scan and are focused in the 

dimension corresponding to the linear scan (see discussion in 

Section 2.2). The resulting focal region is thus approximately 

planar. Reconstruction in this case may be performed sepa-

rately for each plane, i.e. each circular scan may be used to 

find an approximation for the in-plane optoacoustic source, 

based on Eq. 9. Since reconstructing a single slice of the 

optoacoustic source requires fewer projections than the entire 

3D volume, cylindrically focused detectors enable fast data 

acquisition for selective-plane imaging [8]. The main disad-

vantage of this approach is that the thickness of the imaged 

plane is not constant, but is rather determined by the acoustic 

wavelengths or feature sizes exhibited by the optoacoustic 

source, as described by Eq. (12). Thus, for large objects, 

little or no focusing is achieved. A practical solution to the 

problem is high-passing the detected signals, thus limiting 

the reconstruction to acoustic frequencies for which the de-

tector is focused to a sufficiently thin slice. However, as 

noted in Section 4.1, loss of low frequency-information in 

the reconstruction may hinder subsequent attempts for quan-

tification.  

When the detection surface is planar, i.e. a linear scan is 

performed in both dimensions (Fig. 2.3), high-resolution 

imaging with large-area detectors requires that the detectors 

be spherically focused [3]. If one ignored diffraction, and 

assumed ideal focusing characteristic, i.e. detection of only 

those sources lying on a line, the resulting inversion problem 

would be trivial, namely the integral in Eq. (4) would be 

replaced by the value of the optoacoustic image at a point on 

the detection line whose distance is directly related to the 

detection instant via the time-of-flight principle. Reconstruc-

tion would thus mean simply projecting the measured signal 

over the detection line. In this way, by linearly scanning the 

detector, the entire optoacoustic source may be reconstructed 

line-by-line. This procedure is extremely simple as each 

measurement is separately used to reconstruct a separate part 

of the source. In practice, however, ideal focusing along a 

line is impossible owing to the laws of diffraction, as de-

scribed by Eq. (12) and (13). Thus, early implementations of 

this algorithm were limited to the focal zone of the detector, 

i.e. a cylindrical volume with the diameter and length given 

by Eq. (12) and (13), respectively. Although exact recon-

struction formulae for focused detectors do not exist, heuris-

tic approaches, such as the virtual detector (VD), enable ex-

panding the volume which can be reconstructed beyond the 

focal-zone limit [127]. Nonetheless, the VD approach gener-

ally requires that low-frequency information be filtered out 

to achieve high-resolution in the reconstruction. Further im-

provement in reconstruction quality has been recently 

achieved by using a model-based approach in which the sur-
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face of cylindrically [128] and spherically [129] focused 

detector was included in the model. Since the model equally 

applies to all temporal frequencies in the detected signals, it 

generally enables a better reconstruction of large features in 

the imaged object.  

5. CONCLUSION 

The term optoacoustic imaging represents a diverse bio-

medical imaging methodology capable of producing multis-

cale images via various contrast mechanisms. Much of the 

diversity of optoacoustic imaging stems from its hybridity, 

as different patterns of optical excitation and acoustic detec-

tion lead to distinct imaging scenarios. When imaging tissue 

at depths below the optical mean free path, optical focusing 

may be used to achieve high resolution, similarly to purely 

optical microscopy techniques. Therefore, in applications 

such as optical-resolution microscopy [6], the optical design 

has the most decisive effect on the system’s performance 

metrics. When imaging at depths significantly larger than the 

optical mean free path, the role of acoustic detection in-

creases and becomes essential to attaining high reconstruc-

tion quality. It is in this regime, where light is fully, or al-

most fully, diffusive, that optoacoustic imaging may provide 

imaging resolutions vastly superior to purely optical tech-

niques. Specifically, the illumination leads to the creation of 

acoustic sources in a large volume in the tissue, whose am-

plitudes are proportional to the amount of energy locally 

absorbed, while the spatial resolution of the reconstruction is 

solely determined by the acoustic, rather than the optical, 

characteristics of the imaging experiment. In optoacoustic 

tomography, a tomographic measurement of the subsequent 

acoustic waves provides sufficient information to retrieve a 

map of energy distribution in the tissue by means of acoustic 

inversion algorithms. As the deposited energy is proportional 

to the optical absorption coefficient, tomographic inversion 

thus yields an image with optical contrast and acoustic reso-

lution.  

In this paper we reviewed the plurality of detection 

schemes (Section 2) and corresponding inversion algorithms 

used in optoacoustic tomography (Section 3) and discussed 

their characteristics. Specific attention was given to practical 

aspects of the techniques used in the field. Theoretically, in 

the case of a homogeneous acoustic medium, the optoacous-

tic source may be exactly recovered when the pressure waves 

it emits are detected over a surface enclosing the source. 

Numerous inversion methods, both analytical and numerical, 

have been developed for this ideal picture of optoacoustic 

tomography. Practically, the measured acoustic data is inher-

ently limited and corresponds to only an approximate repre-

sentation of the pressure waves. The consequence of this 

limitation is an inevitable degradation in reconstruction qual-

ity. The effects non-ideal detection patterns have on the re-

construction are largely known and are discussed in Section 

4. Considerable progress has been made in mitigating these 

effects by means of improved hardware that better emulates 

the ideal detection scenario as well as new inversion algo-

rithms that take the non-ideal detection patterns into account. 

Effects of non-ideal wave propagation due to acoustic het-

erogeneity, losses, and dispersion, are more challenging to 

overcome as they cannot be solved by means of better hard-

ware, and their modeling generally requires some additional 

a priori information on the imaged object.  

In order to simplify the discussion on the numerous in-

version techniques which have been developed for optoa-

coustic tomography, we divided them into 4 categories: 

time-domain (back-projection) algorithms, frequency-

domain algorithms, time-reversal algorithms, and model-

based algorithms. The first two categories largely involve 

closed-form solutions to the inversion problem. Arguably, 

the reconstruction approach most favored in experimental 

works is the back-projection approach as it is very easy to 

implement and is generally acceptable for most practical 

imaging scenarios, even when not exact. Specifically, in op-

toacoustic systems which rely on piezoelectric detectors, the 

distance of the detector from the imaged object is often suf-

ficiently large so that the far-field approximation has some 

validity, and thus also Eq. 15. Fourier-domain techniques are 

mostly used for planar detection surfaces owing to their high 

numerical efficiency in that case. For spherical and cylindri-

cal surfaces, this approach is commonly avoided due to its 

high mathematical and numerical complexity and the avail-

ability of the universal back-projection formula (Eq. 16), 

which applies to these cases. Nonetheless, the simple struc-

ture of the Fourier-domain formula recently developed in 

Ref. [99] for the spherical case could potentially offer an 

attractive alternative to the back-projection approach.  

The last two categories of inversion algorithms are 

largely numerical, and as such offer a more versatile solution 

to the inverse problem. Time-reversal techniques are based 

on back-tracking the propagation of the acoustic waves. 

Mathematically, the time axis is reversed in the differential 

equation describing the system, and the measured pressure 

distribution is used as the initial value. The solution is thus 

found by simply solving the new differential equation to 

recover the initial pressure distribution. Because the equation 

may be solved for any closed surface, this approach is appli-

cable to arbitrary closed detection surfaces. Additionally, any 

effects that can be accurately included in the differential 

equation, e.g. frequency-dependent acoustic losses or disper-

sion, may be accounted for in the inversion process. This is 

currently an impossible feat for analytical approaches, which 

rely on an ideal description of the wave equation.  

Model-based algorithms represent the most general cate-

gory of algorithms of those reviewed in this paper. Funda-

mentally, the model-based approach requires only that the 

tomographic problem be linear, i.e. that a linear relation exist 

between the optoacoustic source and the measured pressure 

fields. This relation is discretized and represented by a ma-

trix equation, which is subsequently inverted. The advantage 

of this approach is that any linear effect in the system may be 

considered, whether it relates to the pressure wave propaga-

tion or to the acoustic detection. Thus, finite detection aper-

tures may be taken into account in the inversion process, or 

more generally, any spatio-temporal detection response as 

long as it can be modeled or measured. In contrast, time-

reversal algorithms can account for physical effects in the 

wave propagation, but not for effects in the acoustic detec-

tion. The major downside of model-based algorithms is the 

extremely large matrix sizes which are required for high-

resolution imaging: ranging from several gigabytes in the 2D 
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case to hundreds of gigabytes or more in the 3D case. Han-

dling and processing such large data is one of the big chal-

lenges this category of algorithms is faced with. Nonetheless, 

the continual growth in computation power and computer 

memory alongside with the development of numerically effi-

cient algorithms has already made model-based inversion a 

viable option for the 2D case, and an acceptable option for 

3D reconstructions when high throughput is not required. 

The ability of model-based algorithms to account for all lin-

ear effects in the imaging systems as well as the ability to 

apply sophisticated regularization algorithms has been 

shown to increase imaging performance beyond the one 

achieved by classical time- and Fourier-domain techniques. 

As computational capacities continue to increase, one should 

expect to see the model-based approach applied more often 

in quantified experimental imaging studies, especially in 

non-ideal imaging scenarios where analytical inverse formu-

lations significantly deviate from reality.  
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