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Abstract. It has been shown that two-dimensional arrays of rigid or fluidlike
cylinders in a fluid or a gas define, in the limit of large wavelengths, a class of
acoustic metamaterials whose effective parameters (sound velocity and density)
can be tailored up to a certain limit. This work goes a step further by considering
arrays of solid cylinders in which the elastic properties of cylinders are taken
into account. We have also treated mixtures of two different elastic cylinders.
It is shown that both effects broaden the range of acoustic parameters available
for designing metamaterials. For example, it is predicted that metamaterials with
perfect matching of impedance with air are now possible by using aerogel and
rigid cylinders equally distributed in a square lattice. As a potential application
of the proposed metamaterial, we present a gradient index lens for airborne
sound (i.e. a sonic Wood lens) whose functionality is demonstrated by multiple
scattering simulations.
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1. Introduction

Periodic distributions of sound scatterers in air or a fluid, also called sonic crystals (SC), have
been employed to demonstrate novel physical phenomena like, for example, focusing by two-
dimensional (2D) arrays of rigid cylinders in air [1], negative refraction by 3D distributions of
solid spheres in water [2] or negative dynamic bulk modulus achieved by 1D array of Helmholtz
resonators in water [3]. Moreover, the behavior of SC in the regime of large wavelengths (large
in comparison with the separation between the scatterers) is a topic of increasing interest. In
this regime, the SC behave as effective homogeneous acoustic metamaterials whose parameters
(sound velocity,c∗ and dynamical mass densityρ∗) are mainly determined by the fraction of
volume occupied by the scatterers and their refractive properties have been studied by several
groups [1], [4]–[11]. Therefore, metamaterials with a prefixed dynamical mass density and
sound velocity can be tailored within certain limitations. For example, the cluster of rigid
cylinders in air employed in the construction of the sonic lens reported in [1] effectively
behaves as an acoustic metamaterial with refractive indexn∗

≈ 1.3. More recently, acoustic
metamaterials with very small acoustic impedanceZ∗ (= ρ∗c∗) mismatch with air have been
proposed [7] to enhance the performance of the sonic lenses based on them. However, its
practical realization is still lacking.

This work introduces an analytical theory allowing the design of acoustic metamaterials
whose parameters,c∗ andρ∗, both being positive can be tailored with practically no limitation
by properly choosing the materials employed in the construction and their spatial distribution.
An important characteristic of the metamaterials here proposed is the feasibility for a practical
realization and their potential for device applications. Thus, an acoustic metamaterial will be
introduced consisting of a mixing of aerogel (Gel) and aluminium (Al) cylinders distributed in
a square array such that its acoustic impedance perfectly matches that of air and its refractive
index is adjustable with the cylinders’ radii. Among the possible interesting devices in which
this property can be used, here we will report the design of a broadband gradient index 2D
sonic lens producing sound focusing with intensity much larger than those previously reported,
which were based either on curved-shaped SC clusters [1] or on a cluster with flat surfaces
optimized by a genetic algorithm [12]. This work represents a first attempt to get acoustic
metamaterials needed to achieve cloaking for acoustic waves [13] as has been previously
proposed for electromagnetic waves [14, 15].
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This paper is organized as follows. First, in section2, we present the expansion of the
T matrix elements in the low frequency limit. These results are employed in section3, which
studies the homogenization properties of elastic cylinders embedded in a fluid or a gas. Here,
different behaviors of physical interest will be analyzed with the help ofcρ phase diagrams.
Afterward, section4 demonstrates that the possibilities of metamaterial design broadens by
mixing two different elastic materials in the lattice;Zcphase diagrams will be introduced to help
in the selection of metamaterial properties and it will be shown that the possibility of designing
novel acoustic devices increases by a large amount. As a possible application of the selected
metamaterial, section5 presents the simulation of a gradient index sonic lens for airborne sound
based on an acoustic metamaterial with perfect matching of impedance with air. The paper ends
with a summary in section6.

2. Asymptotic expression for the T matrix of an elastic cylinder embedded in a fluid

In the low frequency limit (ω →0), the expansion of the T matrix (in powers of the wave-
numberk) for a fluidlike cylinder embedded in a fluid or a gas background was recently reported
by us [10]. This section is devoted to the analogous problem but for the case of a solid cylinder
(which will support shear waves in addition to compressional waves). The scattering of sound
by solid cylinders and spheres embedded in a fluid was studied in the fifties by Faran [16],
however, the expressions for the lower order elements of thek-expansion of the corresponding
T matrix have not been reported yet.

Let us consider an infinitely long elastic cylinder of radiusR0, Lamé coefficientsλa and
µa and densityρa immersed in a nonviscous fluid or gas with densityρb and speed of soundcb.
Also, let us assume that the cylinder is located at the origin of coordinates with the axis of the
cylinder being oriented along thez-axis. If some external harmonic acoustic field of frequency,
ω, and wavenumberk = ω/cb impinges the cylinder, the total pressure at any arbitrary point
(r, θ) of the 2D space in polar coordinates, will be the addition of external (Pext) and scattered
(Pscat) pressures:

P(r, θ; k) = Pext(r, θ; k) + Pscat(r, θ; k) =

∑
q

A0
q Jq(kr)eiqθ +

∑
q

Aq Hq(kr)eiqθ , (1)

where A0
q and Aq are the external and scattered coefficients, respectively.Jq(·) and Hq(·) are

theqth order Bessel function and Hankel function of first kind, respectively. The relationship
between the coefficients of the incident waveA0

q and the scattered waveAq, defines the T matrix
of the problem [17]; i.e.A= T A0.

The boundary conditions at the interface between an elastic cylinder and the fluid/gas
background are described in textbooks and also can be found, for example, in [16]. After a few
manipulations, the relationship between coefficients for the case of circular shaped cylinders is:

Aq = −
ρq J ′

q(k R0) − Jq(k R0)

ρq H ′

q(k R0) − Hq(k R0)
A0

q ≡ Tqq A0
q. (2)

This T matrix is diagonal and has the same functional form as that obtained for circular
shaped fluidlike cylinder (see equations (A.1) and (A.2) in [10]); the important difference being
the factorρq, which has now a more complex form:

ρq ≡
ρa

ρb
kc2

b

Iq

Gq
, (3)
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where

Iq ≡
iq

R0
Fq Jq(kt R0) − kl J

′

q(kl R0), (4)

Gq ≡
2iqµa

R2
0

Fq

[
Jq(kt R0) − kt R0J ′

q(kt R0)
]
− k2

l

[
λa Jq(kl R0) − 2µa J ′′

q (kl R0)
]
, (5)

Fq ≡
2iq

k2
t R2

0

[
Jq(kl R0) − kl R0J ′

q(kl R0)

Jq(kt R0) + 2J ′′
q (kt R0)

]
. (6)

At long wavelengths, the asymptotic expressions of the Bessel and Hankel functions for
k → 0 allow to obtain the lower order elements,T̂qq, of the series expansion for the T matrix
elements above. The derivation is straightforward and details are not given. The reader should
consult [10] to follow the rigorous derivation reported for the case of a fluidlike cylinder.

Thus, for the matrix elementq = 0, the following result is obtained

T̂00 ≡ lim
k→0

T00

k2
=

iπ R2
0

4

[
ρbc2

b

ρa(c2
` − c2

t )
− 1

]
. (7)

Note that this element is similar to that of a fluidlike cylinder [10] in which the sound speed is
replaced by

ca ≡

√
c2
` − c2

t =

√
λa +µa

ρa
, (8)

where the quantityλa +µa is also called the area bulk modulusBa, which is obtained from the
2D version of the elasticity equations [18]. It is interesting to remember that the bulk modulus
in a 3D system isB3D

a = λa + 2/3µa. Also, let us remark that the theory developed in [10], based
in the multiple scattering of sound, leads to a 2D version of Wood’s law [19]

1

B∗
=

f

Ba
+

1− f

Bb
. (9)

The asymptotic form for the elementq = 1 is

T̂11 ≡ lim
k→0

T11

k2
=

i π R2
0

4

ρa − 1

ρa + 1
, (10)

which is the same as a fluid cylinder with densityρa (see equation (28) in [10]).
Finally, for the elements withq > 1

T̂qq ≡ lim
k→0

Tqq

k2|q|
=

iπ R2q
0

4q

1

q!(q − 1)!
. (11)

In comparison with those corresponding to a fluidlike cylinder, the factor(ρa − 1)/(ρa + 1) is
lacking (see equation (A.3b) in [10]).

It is important to point out that forρa → ∞, the elements above converge to those obtained
by solving the case of a rigid cylinder (where no waves are allowed inside the cylinder).

To summarize this section, it can be concluded that an elastic cylinder can be approximately
considered (in the long wavelength limit) as a fluidlike cylinder of density equal to that of the
elastic material but with an effective speed of sound given by (8). Once the low frequency
expansion for the T matrix of a single solid cylinder is known, the homogenization of clusters
based on them can be treated as explained below.
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3. Homogenization of 2D arrays of elastic cylinders in a fluid or gas

The homogenization method previously developed to obtain the effective acoustic parameters
of clusters made of 2D distributions of fluidlike cylinders embedded in a nonviscous fluid or
gas [9]–[11] is here extended to clusters made of solid cylinders and, therefore, the full elastic
properties of cylinders are taken into account. It is shown that these clusters lead to effective
isotropic media (metamaterials) in which sound travels with a speed that can be larger or smaller
than that of the surrounding medium depending on the elastic parameters and the volume
fraction occupied by the cylinders in the lattice (i.e. its filling fraction,f ). Moreover, phase
diagrams are introduced to establish (in theρc-plane) the metamaterial properties as a function
of the elastic parameters of cylinders and its filling fraction in the corresponding SC.

It has been proved [10] that the elementŝT00 and T̂11 are enough to characterize the
homogenization of SC based on fluidlike cylinders. Also, the previous section has demonstrated
that there is a close analogy between the T matrix elements of solid and fluidlike cylinders.
Thus, theT̂00 andT̂11 elements of a solid cylinder are equal to those of a fluidlike cylinder that

has a sound speed given byca ≡

√
c2
` − c2

t , wherec` andct are, respectively the longitudinal
and transversal velocities of the actual elastic cylinder. Therefore, the effective parameters of
SC made of 2D binary solid(cylinders)–fluid(background) composites can be obtained from the
general expressions already reported for 2D fluid–fluid composites.

In what follows, we will discuss the behavior (in the homogenization limit) ofc∗, the
effective velocity of sound propagating in a SC consisting of a square distribution of solid
cylinders in water as a function off . In regards to the effective mass density,ρ∗, its behavior is
monotonic between that of the backgroundρb at f = 0 and a finalρCP (that approaches that of
the solid,ρa) at the condition of close-packing,f = fCP. This behavior is of little interest and
will not be discussed here.

Hereafter, an overlined variable denotes the corresponding quantity normalized to that of
the background; for example,ρ ≡ ρ/ρb andc ≡ c/cb.

In brief, at long wavelengths, a 2D array of elastic cylinders embedded in a fluid or a
gas defines an acoustic metamaterial in which sound travels with a speedc∗ determined by (see
section 2 and equation (33) in [10]):

1

c∗2 =

[
f

ρac
2
a

+ (1− f )

]
·
ρa(1 + f ) + (1 − f )

ρa(1 − f ) + (1 + f )
, (12)

whereca is given by equation (8) and the1 factor contains information about the material
parameters of cylinders, their positions in the 2D space and their mutual interaction (see
equation (31) in [10]). As in the case of 2D fluid–fluid composites, the value of1 is different
from 1 only for largef .

Figure1 plots the three possible behaviors expected forc∗ as a function off . When the
cylinders are made of lead (Pb),c∗ is always lower than one; a behavior similar to that found
for rigid cylinders [1, 4, 9], and it is due to the huge acoustic impedance of Pb relative to that
of water. However, for the Al case,c∗ is always higher than one due to the low ratio of acoustic
impedancesZa/Zb. Finally, the case of iron (Fe) cylinders is an intermediate case;c∗ is lower
than one for lowf and higher than 1 forf large enough. The elastic parameters of the materials
employed in the calculations here are listed in table1.
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Figure 1. Speed of sound in a 2D acoustic metamaterial consisting of a square
configuration of solid cylinders in water. The calculated effective sound speed,
c∗, relative to that of water,cb is plotted as a function of the filling fraction,f .
Three different behaviors are possible whenf increases: (i) a continuous
decreasing of velocity as in the case of Pb, (ii) a continuous increasing of velocity
as in the case of Al and (iii) an initial decreasing that with increasingf becomes
a velocity larger than the background as for Fe cylinders. The horizontal dashed
line is a guide for the eye that defines the condition,c∗

= cb.

As explained above, a variety of behaviors is expected forc∗ depending on the material
composition of cylinders and their filling fraction in the SC. This phenomenon motivates the
introduction of some kind of phase diagrams for 2D elastic–fluid composites. It turns out that
the conditionc∗ > 1 leads to the following relation (assuming1 = 1) between the cylinder’s
fluidlike speed of sound,ca, its densityρ̄a and f

c2
a >

1

ρa

·
(1− f ) + (1 + f )ρa

(3− f ) − (1− f )ρa

. (13)

The color lines in figure2 represent the separation between the two possible ‘phases’ of the
metamaterial according to the value ofc∗ (higher or lower than 1). They are plotted for four
different f in the ρaca-plane. It is shown that these lines are always above the regionca = 1,
which means thatc∗ cannot obtain a value higher than one ifca is lower than that of the
surrounding medium.

Note that all the lines become vertical in the limit

ρa →
3− f

1− f
. (14)

Thus,c∗ < 1 whenca> 3 andρa> (3− f )/(1− f ) . In more general terms, it can be said that
lines associated to a givenf separate the region in which the metamaterial behaves withc∗ > 1
(upper-left region) from the one in whichc∗ < 1 (lower-right region).

The black dots in figure2, represent the elastic properties of several materials commonly
used in building SC. According to their positions in theρaca-plane, it is concluded that: (i) SC
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Figure 2. cρ phase diagram of acoustic metamaterials based on SC made of
a square configuration of one single component full of elastic cylinders. For
the given fraction of volume occupied by the cylinders in the lattice (f ), the
corresponding color line separates the region where the metamaterial has a speed
of sound relative to that of the background (c∗) lower than one (upper-left region)
or higher than one (bottom-right region). The symbols plot the parameters of
several solid materials. It can be concluded that, for example, the propagation of
sound in metamaterials based on Pb or Gel cylinders will always take place at
a speed lower than that of the background, while those using Al or Poly will be
larger than in the background. However, for the case of Fe, both behaviors could
be possible, as the behavior depends on the filling fraction of the corresponding
lattice. The horizontal (vertical) dashed line is a guide for the eye and defines the
conditionca = 1 (ρa = 3).

made of Pb or Gel will always result in metamaterials withc∗ < 1, (ii) if the cylinders in the SC
are made of Al or polyethylene (Poly), their associated metamaterials will always havec∗ > 1
and (iii) for cylinders made of Fe, the behavior ofc∗ depends onf , as was already shown in
figure1.

The possibility of having metamaterials with matching of impedance with the embedded
background is being looking at in many fields because of its potential application in novel
devices. For example, in the field of optics a thin-film metamaterial with such a property
has been recently discovered [20]. Also, it is known that anti-reflective nanostructures have
been naturally developed to enhance the photon collection efficiency of the visual system
in animals [21]. If such an anti-reflective effect occurs in acoustics, the transmittance at the
interface between the metamaterial and background will be equal to one, although sound
propagates with different speed in each medium. This property is of paramount importance
in order to make useful acoustic devices like, for example, high-efficient ultrasonics transducers
or powerful sonic lenses that collect all the impinging sound.

Figure 3 plots the corresponding phase diagram forZ̄∗. The color lines represent the
condition of matching of impedances,Z̄∗

= 1, for several values off . The conditionZ̄∗
= 1

is very restrictive and is very difficult to achieve for common elastic materials in bulk, only the
silica Gel (a material difficult to handle) almost satisfies this condition. The acoustic impedances
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Figure 3. cρ phase diagram of acoustic metamaterials based on SC made of a
square configuration of one single component elastic cylinders. For the given
filling fraction, f , the corresponding color line separates the region where the
metamaterial has an acoustic impedance relative to that of the background (Z̄∗)
larger than one (upper-right region) or smaller than one (bottom-left region).

Table 1. Parameters of the elastic materials studied in this work. The density,ρa,
and the fluidlike velocity,ca (see (8)), are normalized to those of water. However,
the parameters for the silica Gel (last column) are normalized to air.

Poly Al Fe Pb Gel

ρa 0.95 2.70 7.86 11.40 3.00
ca 1.74 3.69 3.31 1.28 0.30

of some bulk materials are reported in table1 and are plotted as black dots in figure3. Note that
figure3 shows that the condition̄Z∗

= 1 could be achieved by 2D SC only if the solid cylinders
are made of materials having the same property (i.e.Za ≈ 1). However, in the following section,
it is demonstrated that this drawback can be overcome by using metamaterials based on a two
component SC.

4. Zc phase diagrams for metamaterials based on 2D mixtures of two different solid
cylinders embedded in a fluid

Let us consider mixtures of two different elastic cylinders of radiiR1 andR2, respectively, that
are arranged in a square configuration of sidea (see inset in figure4). The respective filling
fractions aref1 = π R2

1/(2a2) and f2 = π R2
2/(2a2). If their fluidlike parameters (see section2)

areρ1, Ba1 andρ2, Ba2, the resulting metamaterial has parameters determined from:

ζ ∗
= ζ1 f1 + ζ2 f2, (15a)

η∗
= η1 f1 +η2 f2, (15b)
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Figure 4. Zc phase diagram of acoustic metamaterials based on SC made
of square arrangements of two types of solid cylinder in a background. A
square lattice configuration like that displayed in the inset generates an isotropic
metamaterial. The range of available relative acoustic impedances,Z∗ and sound
speed,c∗ in the given background are defined by the area enclosed by lines
with equal colors. The calculations corresponding to combinations of two metals
have employed water as the background. Instead, the mixture of Gel and rigid
cylinders are embedded in air. Note that the mixtures of Gel and rigid cylinders
lead to metamaterials that perfectly match the air impedance. The horizontal
(vertical) thin line is a guide for the eye and defines the conditionZ̄∗

= 1(c∗
=

n∗
= 1).

whereζi ≡ (1− Bb/Bai ) andηi ≡ (ρi − ρb)/(ρi +ρb), for i = 1, 2. Moreover,ζ ∗
≡ (1− Bb/B∗)

andη∗
≡ (ρ∗

− ρb)/(ρ
∗ +ρb). From these expressions:

1

B∗
=

1− f

Bb
+

f1

Ba1
+

f2

Ba2
, (16a)

ρ∗
=

1 + f1η1 + f2η2

1− f1η1 − f2η2
ρb, (16b)

c∗
=

√
B∗

ρ∗
, (16c)

where f is the total volume fraction occupied by both cylinders,f = f1 + f2.
The question now is, could these metamaterials accomplish the criterion of impedance

matching with the surrounding background? To answer this question, let us look at figure4
where the effective impedancēZ∗ is plotted againstc∗ for several SC made of pairs of selected
materials. The calculations involving two types of metal cylinders (PbFe, PbAl and FeAl) are
embedded in water while the SC made of Gel and rigid cylinders are in air. Results have been
obtained under the approach1 = 1. On such a ‘Zc diagram’, each point on a curve obtained
for a certain valuef , which has associated a correspondingf1 and f2, represents a possible
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Figure 5. Reflectance of three different ten-layer slabs of cylinders distributed
in a square lattice of lattice perioda embedded in air and oriented along the
0M direction. The slabs are made of rigid cylinders (top panel), Gel cylinders
(middle panel) and a mixture of both (lower panel). Note how the mixture has a
negligible reflectance for low frequencies.

metamaterial. The various curves obtained by changingf1 and f2 define an area enclosed
by the parametric linesZ∗( f1, f2) andc∗( f1, f2). Since the larger cylinders considered have
radii Ri = a/2, the four corners of a selected area correspond to values( f1 = 0, f2 = π/8),
( f1 = π/8, f2 = π/8), ( f1 = π/8, f2 = 0) and( f1 = 0, f2 = 0). The last one is always centered
at the point (1, 1) in the phase diagram. Note that only the combination of Gel and rigid cylinders
in air leads to a metamaterial that passes through the lineZ̄∗

= 1. In other words, only this
composite system is able to create a metamaterial with perfect matching of impedance with
the background, which is air. Moreover, note that this remarkable property is accomplished in
a broad range of filling fractions( f1, f2), which opens the possibility of having metamaterials
transparent to airborne sound but with different refractive index.

The reflectance of a ten-layer slab made of a mixture of Gel cylinders (f1 = 0.015) and
rigid cylinders (f2 = 0.141) put in a square lattice is shown in the lower panel of figure5 as an
example. The slab is oriented along the diagonal direction of the square lattice (i.e. along the
0M direction); layer planes with the same type of cylinders alternate with a separation ofa/

√
2.

Note how the reflectance is almost zero or negligible in a broad range of frequencies below the
first bandgap. This structure is one of many possible ones that accomplish the conditionZ̄∗

= 1
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in figure 4. As a comparison, the cases of slabs with the same number of layers but with one
single type of cylinders, rigid or aerogel, have also been plotted. Note that for the mixture,
the zero-reflectance condition is accomplished for a broad range of wavelengths; i.e., for
λ> 4a [ωa/(2πcb)60.25], which is the cutoff for the validity of the homogenization [9].

The phenomenon described above is of paramount importance because it can be used, for
example, to design anti-reflective acoustic coatings, which would be similar to those recently
developed for optics [20] and to build highly effective sonic lenses. Particularly, the next section
shows that gradient-index sonic lenses are possible thanks to the predicted acoustic transparency
(zero-reflectance) of some compound metamaterials.

5. Application: a gradient-index sonic lens

Acoustical refractive devices for airborne sound similar to those existing for optical lightwaves
are not possible because solid materials are not transparent to sound waves. Also, since the
sound speed of solids is larger than in air, a converging lens would have a concave rather than a
lenticular shape. However, when dealing with arrays of hard scatterers embedded in air (which
act as a low reflective medium at large enough wavelengths) the incident sound wave and the
scattered waves are superimposed in such a way that the sound propagates at a reduced speed.
Thus, Meyer and Neumann [22] were aware of these two effects and constructed a converging
lens by using disks as scatterers. More recently, Cerveraet al [1] reported a full demonstration
of the focusing effect by using circular-shaped cylinders as scatterers.

The zero-reflectance property of aerogel–rigid mixed lattices described before can be used,
for example, in the construction of highly effective lenticular-shaped sonic lenses by employing
the procedure in [1]. However, thanks to the fact that the acoustic refractive index of the SC can
be tailored without losing the zero-reflectance property, here we present the design of a gradient-
index sonic lens whose functionality is based on the same effect already applied in optics
[23, 24]. This novel acoustic device fully exploits the powerful properties of metamaterials
based on arrays of aerogel and rigid cylinders analyzed in the previous section.

Probably the most interesting type of gradient index lens is one for which the variation
in refractive index exhibits cylindrical symmetry about the lens axis, i.e.n varies only as a
function of the perpendicular distance to the lens axis. For the simplest case, where the ends of
the cylinder are planes perpendicular to the axis, the lens is referred to as a Wood lens, after the
original inventor. As in the more general case of optics, we propose here a sonic Wood lens with
a parabolic variation of the acoustic refractive index (see left panel in figure6), thus

n∗(y`) = n∗

0 − (n∗

0 − 1)y2
`/(h/2)2, (17)

wheren0 is the refractive index on the lens axis,h is the total length on the perpendicular
direction to the lens axis (i.e.y-axis), andy` defines the positions along they-axis of the
cylinders.

The designed lens is nine layers thick and consists of twenty rows of cylinders (h/2 = 10a)
in the vertical direction with decreasing values of their radii,Ri . Maximum values correspond
to the axial row (y` = 0), whereR1 = 0.2a (rigid), R2 = 0.3a (Gel) andn∗

0 = 1.31. Minimum
values are achieved in the upper and lower rows (y` = ±10a), whereRi = 0 andn∗

= 1. The
radius of a given type of cylinders at any given rowy` is determined by solving equations (15)
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Figure 6. Right panel: sound focusing by a gradient index sonic lens made
of a nine layer slab of Gel and rigid cylinders embedded in air and equally
distributed in a square lattice (black dots). The pressure map in decibels (20×

log|P(x, y)|) is plotted around the lens. The sound impinges on the slab oriented
along the0X direction. Left panel: the variation of the acoustic refractive
indexn(y). The parabolic variation shown is achieved by decreasing the diameter
of cylinders from the central row aty` = 0 to the last upper/lower rows
(y` = ±10a). The working wavelength isλ = 4a.

under the conditionZ∗
= 1, which gives the following set of coupled linear equations:

ζ1 f1 + ζ2 f2 = 1− n∗(y`), (18a)

η1 f1 +η2 f2 = −
1− n∗(y`)

1 +n∗(y`)
, (18b)

from which R1 andR2 are obtained.
The focusing effect of the proposed broadband lens is shown in the right panel of figure6

for the case of a wavelengthλ = 4a. The simulation has been performed by the multiple
scattering method developed in [5, 25], where no viscosity effects are taken into account. This
lens outperforms a broadband lenticular-shaped lens based on rigid cylinders [1, 5]. Thus, the
ten-layer proposed lens obtains a maximum intensity of 8.8 dB at the focal point while the
lenticular-shaped lens achieves only 6.6 dB by using a 19-layer thick lens.

6. Summary

We have shown that a great variety of acoustic metamaterials can be designed by using SC
consisting of 2D arrangements of solid cylinders in a fluid or gas. Particularly, we reported the
analytical expressions that depend on the elastic parameters of the cylinders and have proved to
be very helpful in the design process. Also, for the case of two component cylinders, we have
introducedZc phase diagrams that have allowed to find metamaterials with perfect matching
of impedance with air. As an application, we have reported a sonic Wood lens in which a
parabolic variation of the refractive index is achieved by changing the cylinders’ radii in the
direction perpendicular to the lens axis. Its focusing property has been demonstrated by multiple
scattering simulations and it outperforms the functionality of other lenses previously reported. In
summary, our work shows that isotropic acoustic metamaterials with a broad range of possible
parameters are now possible by simple means. However, the possibility of having anisotropic
acoustic metamaterials for cloaking devices in acoustics [13] is still open and will be the topic of
our future work. To conclude, let us also remember that a 2D acoustic system can be mapped into
a electromagnetic counterpart, whereP, Ev, ρ andB correspond toHz, EE, ε andµ, respectively.
Therefore, analogous results should be expected by working with 2D photonic crystals.
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