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 Symmetry plays a critical role in classifying phases of matter. This is 

exemplified by how crystalline symmetries enrich the topological classification of 
materials and enable unconventional phenomena in topologically nontrivial ones. 

After an extensive study over the past decade, the list of topological crystalline 

insulators and semimetals seems to be exhaustive and concluded. However, in the 

presence of gauge symmetry, common but not limited to artificial crystals, the 

algebraic structure of crystalline symmetries needs to be projectively 

represented, giving rise to unprecedented topological physics. Here we 

demonstrate this novel idea by exploiting a projective translation symmetry and 

constructing a variety of Möbius-twisted topological phases. Experimentally, we 

realize two Möbius insulators in acoustic crystals for the first time: a 

two-dimensional one of first-order band topology and a three-dimensional one of 

higher-order band topology. We observe unambiguously the peculiar Möbius 

edge and hinge states via real-space visualization of their localiztions, 

momentum-space spectroscopy of their 𝟒𝝅  periodicity, and phase-space 

winding of their projective translation eigenvalues. Not only does our work open 

a new avenue for artificial systems under the interplay between gauge and 

crystalline symmetries, but it also initializes a new framework for topological 

physics from projective symmetry. 
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A recurring theme in physics has been the discovery and classification of 

distinctive phases of matter. In this regard, symmetry and topology are particularly 

powerful. For instance, the discovery of topological band insulators has taken the 

research community by storm1-3. After the celebrated topological classification4,5 for 

the tenfold way of Altland-Zirnbauer symmetry classes including time-reversal, 

particle-hole, and/or chiral symmetries, the classification has been generalized to 

systems with spatial symmetries6-8. Recently, following the theory of (crystalline) 

symmetry indicators or topological quantum chemistry, high-throughput screening of 

topological materials has been performed in the Inorganic Crystal Structure Database, 

and thousands of candidates have been identified9-11. Therefore, the list and 

classification of topological crystalline phases seem to be exhaustive and concluded.  

Here we use the translation symmetry to exemplify that, however, in the presence of 

gauge symmetry12, the algebraic structure of crystalline symmetries needs to be 

projectively represented and yields novel topological band physics13-15. We first 

construct theoretically a variety of two- and three-dimensional (2D and 3D), gapped 

and gapless, topological phases that feature Möbius-twisted boundary states protected 

by the projective translation symmetry. We then realize experimentally a 2D 

first-order Möbius insulator (MI) and a 3D higher-order MI (HOMI) for the first time. 

Particularly, we provide compelling evidence for the projective Möbius topology not 

only by observing the Möbius edge/hinge states in position, momentum, and energy 

domains but also in phase domain by revealing the winding of the projective 

translation eigenvalues. Elucidating the important interplay between gauge and 

crystalline symmetries, our findings initialize a framework for topological band 

physics rooted in projective symmetry, given that gauge symmetry is common and 

abundant in both artificial crystals and interacting systems. 
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Figure 1 | 2D first-order Möbius insulator and 3D higher-order Möbius insulator 

from projective symmetry. a, Unit cell of the 2D MI (left) and its effective 

decomposition (right). b, Bulk band structures calculated with hoppings 𝑡 = 1 and 𝛾𝑥 = 𝜆𝑥 = 2  (magenta dashed lines), and 𝑡 = 𝛾𝑥 = 1  and  𝜆𝑥 = 4  (black solid 

lines). Each band is twofold degenerate. c, Edge-projected band structure in the 𝑧 

direction for the gapped case in b featuring a Möbius twist. d, Unit cell of the 3D 

HOMI (left) and its effective decomposition (right). e, Bulk band structure 

exemplified by a HOMI with hoppings 𝑡 = 𝛾𝑥 = 𝛾𝑦 = 1 and 𝜆𝑥 = 𝜆𝑦 = 4. Each 

band is fourfold degenerate. f, The hinge-projected band structure in the 𝑧 direction 

for the case in e featuring a Möbius twist. The sparser black lines are projected 

surface states. In c and f, the Möbius twist is formed by two 𝜋-crossed, 4𝜋-periodic, 

bulk-decoupled bands of opposite projective translation eigenvalues (ℓ± = ±𝑒𝑖𝑘𝑧 2⁄ ). 

The color scale indicates the phase profile of ℓ±. 

 

 We start with an elementary 2D model (Fig. 1a) that features projective 

symmetries15. The model Hamiltonian is 𝐻2𝐷 = 𝑡(1 + cos𝑘𝑧)𝜎0𝜌1 + 𝑡sin𝑘𝑧𝜎0𝜌2 +(𝛾𝑥 + 𝜆𝑥cos𝑘𝑥)𝜎1𝜌3 + 𝜆𝑥sin𝑘𝑥𝜎2𝜌3 (𝑡, 𝛾𝑥, 𝜆𝑥 > 0), where 𝑡 is the hopping in the 𝑧 

direction, 𝛾𝑥 and 𝜆𝑥 are the intra- and inter-cell hoppings in the 𝑥 direction, and 𝝈 

and 𝝆 are Pauli matrices acting on the x- and z-sublattices. As depicted in Fig. 1a, the 
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positive (negative) hoppings are indicated with red (blue) lines, and each plaquette 

encloses a 𝜋-flux. While 𝐻2𝐷  does not respect the primitive translation 𝐿𝑧 =𝜎0 ( 0 1𝑒𝑖𝑘𝑧 0), the inversion 𝑃 = 𝜎1𝜌1, or the ℤ2 gauge transformation 𝐺 = 𝜎0𝜌3 

due to the 𝜋-flux threading, the projective translation  ℒ𝑧 = 𝐺𝐿𝑧 and the projective 

inversion 𝒫 = 𝐺𝑃  are symmetries of the system. Additionally, switching the 

sublattices 𝑆 = 𝜎3𝜌3 is a chiral (particle-hole) symmetry of the system. Because of [ℒ𝑧 , 𝐻2𝐷] = 0, 𝐻2𝐷 decouples into two Su-Schrieffer-Heeger (SSH) chains in the 𝑥 

direction of opposite onsite energies ±𝑚 = ±2𝑡cos(𝑘𝑧 2⁄ )  and opposite ℒ𝑧 

eigenvalues ℓ± = ±𝑒𝑖𝑘𝑧 2⁄ , as illustrated in Fig. 1a. Thus, this system has a ℤ2 

invariant ν and is a MI for 𝛾𝑥 < 𝜆𝑥 (Figs. 1b-1c). Remarkably for the MI phase, the 

two edge bands in the 𝑘𝑧 direction are detached from the bulk and linearly cross at 𝑘𝑧 = 𝜋 and 𝐸 = 0 (Fig. 1c), forming a Möbius strip in the edge Brillouin zone and 

resembling the fractional Josephson effect mediated by two Majorana bound states16. 

The degeneracy at 𝑘𝑧 = 𝜋  is Kramers-like and enforced by the projective 

translation-time symmetry ℒ𝑧𝑇, since (ℒ𝑧𝑇)2 = −1 at 𝑘𝑧 = 𝜋. Its pinning to zero 

energy is a consequence of the chiral symmetry. The two edge states of opposite 

group velocities are respectively locked with the two ℒ𝑧  eigenvalues ℓ± , as 

indicated in Fig. 1c. As a hallmark of the Möbius topology, ℓ±  exhibit a 4π 

periodicity, again resembling the fractional Josephson effect16. Notably, the bulk 

bands are twofold degenerate (Fig. 1b), reminiscent of the spin-orbit-coupled system 

with the parity-time symmetry. Our system is spinless, yet the projective algebra 𝒫2 = −1 enforces (𝒫𝑇)2 = −1 and requires a Kramers degeneracy of the bulk 

states at every momentum. Significantly, it is the projective inversion symmetry that 

effectively switches the spinless and spinful nature17. 

 

 Generically, we can extend the 2D model to construct a variety of 3D Möbius 

phases arising from ℤ2 gauge-induced projective symmetries and their algebraic 

relations. Consider a AB-stacked 3D Hamiltonian, 𝐻3𝐷 = 𝜌3ℎ2𝐷 + 𝑡sin𝑘𝑧𝜌2𝕀 +𝑡(1 + cos𝑘𝑧)𝜌1𝕀, where ℎ2𝐷 is a 2D monolayer Hamiltonian (replacing the SSH 

chain above), 𝝆 are Pauli matrices acting on the two layer sublattices, 𝑡 is the 

inter-layer hopping, and 𝕀 is the identity matrix of the x-y plane. Simply, the phase 

boundary of 𝐻3𝐷  inherits from that of ℎ2𝐷 , given that the dispersion relation 
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between the two models: 𝐸3𝐷2 = 𝐸2𝐷2 + 4𝑡2 cos2(𝑘𝑧/2). Next, we show that by 

appropriately selecting ℎ2𝐷 , 𝐻3𝐷  can enjoy gapped and gapless, first-order and 

higher-order, projective Möbius topology.  

 

 Figure 1d sketches a model in which the 2D monolayer realizes the quadrupole 

model18,19, i.e., ℎ2𝐷 = (𝛾𝑥 + 𝜆𝑥cos𝑘𝑥)𝜏0𝜎1 + 𝜆𝑥sin𝑘𝑥𝜏0𝜎2 + (𝛾𝑦 + 𝜆𝑦cos𝑘𝑦)𝜏1𝜎3 +𝜆𝑦sin𝑘𝑦𝜏2𝜎3 (𝛾𝑥, 𝛾𝑦 , 𝜆𝑥, 𝜆𝑦 > 0), where 𝝈 and 𝝉 are Pauli matrices acting on the x- 

and y-sublattices. The symmetries and their algebraic structures of this 3D model are 

the same as the 2D MI model. The 3D model has two ℤ2 invariants ν̃𝑥 and ν̃𝑦 (see 

Supplementary Information), and for (ν̃𝑥, ν̃𝑦) = (1, 1), i.e., 𝛾𝑥/𝜆𝑥<1 and 𝛾𝑦/𝜆𝑦<1, 

it realizes a HOMI with protected hinge states. This can be intuitively understood by 

the fact that in the same parameter regime there exists one protected zero mode per 

corner per monolayer18,19. In this case, the x-z and y-z surface states are fully gapped, 

as shown by the sparser black lines in Fig. 1f, yet the hinge states in the 𝑘𝑧 direction 

are Möbius-twisted, as shown by the two crossing lines in Fig. 1f. Because of the 

projective translation symmetry [ℒ𝑧 , 𝐻3𝐷] = 0, 𝐻3𝐷 decouples into two quadrupole 

models of opposite ℒ𝑧 eigenvalues ℓ± = ±𝑒𝑖𝑘𝑧 2⁄  in their topological phases (Fig. 

1d). The pair of quadrupole corner states evolves into the π-crossed, 4π-periodic, 

particle-hole-symmetric hinge states, as enforced by the projective translation-time 

symmetry ℒ𝑧𝑇 and the chiral symmetry. Note that our 3D HOMI, which features a 

Möbius twist in its hinge states, is markedly different from the recently proposed 

higher-order axion insulator20, which harbors Möbius surface states and chiral hinge 

states. 
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Figure 2 | 3D first-order Möbius insulator and Möbius Dirac semimetal from 

projective symmetry. a,b, Bulk band structures at 𝑘𝑧 = 𝜋 exemplified for a 3D MI 

and a 3D MDS. Each band is twofold degenerate. c,d, The corresponding band 

structures projected into the 𝑘𝑦-𝑘𝑧 surface, featuring Möbius-twisted surface states. 

In c the Möbius twist has a zero-energy line degeneracy at 𝑘𝑧 = 𝜋 traversing the 

surface Brillouin zone. In d the Möbius twist has a similar line degeneracy but only 

between the two projected Dirac points. 

 

 Figure 2 sketches another 3D model in which the monolayer is a 2D extension of 

the 1D SSH chain. In its phase diagram there are topological insulator and Dirac 

semimetal phases (see Supplementary Information). Accordingly, the 3D model 

realizes first-order MI and Möbius Dirac semimetal phases (see Supplementary 

Information). Figs. 2a-2b display clearly their bulk band gap and Dirac points, 

respectively. In 3D, unlike a nonsymmorphic symmetry that is only invariant at a 

special 0- or π -momentum plane, here the projective translation symmetry is 

respected everywhere in the momentum space. Consequently, the surface bands are 

enforced to exhibit a Möbius line-twist instead of a point-twist, as featured in Figs. 

2c-2d. 
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Our Möbius models can be implemented with cavity-tube structures in acoustic 

systems. Physically, the cavity resonators emulate atomic orbitals, the narrow tubes 

introduce hoppings between them21-23, and the tube positions can control the hopping 

signs21 to achieve the 𝜋-flux, as visualized in our acoustic crystals (Figs. 3a and 4a). 

With their structure details in Supplementary Information, we have designed a 2D 

acoustic MI (𝑡 = 𝛾𝑦 ≈ 68 Hz, 𝜆𝑦 ≈ 261 Hz, and onsite energy ≈ 5689 Hz) and a 

3D acoustic HOMI (𝑡 ≈ 50 Hz, 𝛾𝑥 = 𝛾𝑦 ≈ 11 Hz, 𝜆𝑥 = 𝜆𝑦 ≈ 157 Hz, and onsite 

energy ≈ 5769 Hz). Both experimental samples are fabricated by 3D printing with a 

photosensitive resin material, and the fabrication error is of ∼ 0.1 mm. Next, we 

experimentally confirm their projective Möbius band topology, not only from the 

twisted dispersions of edge/hinge states but also from the phase winding of their 

projective translation eigenvalues.  

 

 

 

Figure 3 | Acoustic realization of a 2D Möbius insulator and edge states. a, 

Experimental sample. The magenta circle and star label the positions of the sound 

source in the bulk and edge measurements. Inset: the unit-cell geometry of our 

acoustic crystal, where the air cavities (white) and narrow tubes (color) mimic the 

orbitals and hoppings in the tight-binding model, respectively. The lattice constants 

are 𝑎 = 𝑐 = 75 mm. b, Experimentally measured (color scale) and theoretically 

predicted (black line) bulk spectra. c, Left: frequency-resolved pressure amplitude 
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scanned along the dashed line in a, where the two white dashed lines indicate the 

frequency window predicted for the edge states. Right: the data extracted at 5720 Hz 

(magenta spheres) plotted in log scale. d, Intensity profiles measured at two selected 

frequencies respectively for the bulk and edge states. e, Measured (color scale) and 

predicted (black line) edge spectra. f, Measured phase information of ℓ± (color dots) 

encoding the measured edge bands, compared with the theoretical results (color lines).  

 

Figure 3a shows our experimental sample for the 2D acoustic MI. It consists of 22 × 22 acoustic resonators in the x and y directions. On each resonator, two small 

holes were perforated for inserting sound source or probe, and they were sealed when 

not in use. To measure the bulk band structure, we placed a point-like broadband 

source in the middle of the sample (magenta circle) and scanned the acoustic response 

over the sample. Figure 3b presents the Fourier spectrum (color scale) performed for 

the experimental sound signals in time-space domain. It shows a good agreement with 

the theoretical prediction (black line). To visualize the edge states, the sound source 

was relocated to the middle of the top edge (magenta star in Fig. 3a). Figure 3c shows 

the pressure profile scanned along a row of cavities away from the top edge (dashed 

line in Fig. 3a). It shows that the sound field is strongly confined to the top edge 

inside the measured bulk gap and exponentially decays away from the top edge as 

exemplified at 5720 Hz. The edge states can be further visualized via the spatially 

resovled acoustic response to local excitations21,22, as exemplified at 6000 Hz and 

5720 Hz for the bulk and edge states (Fig. 3d), respectively, by using a smaller sample 

of 10 × 24 resonators in total.  

 

Figure 3e shows the Fourier spectrum (color scale) performed for the pressure 

field measured along the top edge. The linear band crossing at 𝑘𝑧 = 𝜋/𝑐 provides a 

direct visualization of the Möbius twist and 4π periodicity in momentum space. The 

experimental result agrees well with the theoretical prediction (black lines), except for 

a slight blue shift in frequency (~22 Hz). The band broadening in the experimental 

data is mainly caused by finite-size effect and unavoidable acoustic dissipation. 

Intriguingly, because the two edge states of opposite projective translation 

eigenvalues ℓ± have opposite group velocities, they can be distinguished in the left 

and right regions of the top edge. Moreover, the phase information of ℓ± can be 
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extracted from the phase difference of two neighboring sublattices in a single unit cell 

(see Supplementary Information). Figure 3f shows our experimentally measured phase 

evolution of ℓ± in the two edge states. Note that the frequencies of color dots 

correspond to the amplitude peaks in the Fourier spectrum for those given momenta in 

Fig. 3f. Clearly, it reproduces well the theoretical result (color lines) despite the 

aforementioned slight blue shift. 

 

   
 

Figure 4 | Acoustic realziation of a 3D higher-order Möbius insulator and hinge 

states. a, Experimental sample, where the inset sketches the unit-cell geometry of our 

3D acoustic crystal. The lattice constants are 𝑎 = 𝑏 = 72.6 mm and 𝑐 = 43.6 mm. 

b, Measured phase information of ℓ± (color dots) encoding the measured hinge 

bands, compared with the theoretical results (color lines). The black lines are 

projected bulk and surface states. c-e, Intensity profiles measured at three selected 

frequencies respectively for the bulk, surface, and hinge states. 

 

Figure 4a shows our experimental sample for the 3D acoustic HOMI. It consists 

of 6 × 6 × 26 resonators in the x, y, and z directions, respectively. A point-like 

sound source was positioned in the middle of a hinge along the 𝑧 direction, which 

excited the hinge states propagating along the ±𝑧 directions simultaneously. Overall, 
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the hinge measurements here were similar to the edge measurements in the 2D case. 

Figure 4b presents the measured hinge spectrum and the extracted phase information 

of ℓ± for the two hinge bands. Matching well with the theoretical results, they 

together provide clear evidence for two 𝜋-crossed, 4𝜋-periodic hinge bands. The 

higher-order band topology can be further visualized via the spatially resovled 

acoustic response to local excitations21,22. In Figs. 4c-4e we show the acoustic 

intensity fields by sweeping over the sample surfaces for three representative 

frequencies that are associated to the bulk state (5480 Hz), gapped surface state (5584 

Hz), and gapless hinge state (5764 Hz). Note that the gapped surface states appear 

only at the side surfaces. Compared with Figs. 4c and 4d, Figure 4e shows a strongly 

hinge-localized sound field, directly demonstrating the presence of higher-order hinge 

states. 

 

 The Möbius twisted boundary states were predicted in fractional Josephson 

effect16,24, KHgX (X = As, Sb, Bi)25, Kondo insulators (CeXSn with X = Ni, Rh, Ir)26, 

and axion insulators (MnBi2nTe3n+1)
20. However, they have been elusive in experiment 

to date27-29. For the first time, we provide compelling experimental evidence for the 

Möbius edge and hinge states in position, momentum, energy, and phase domains. 

The phase winding is a unique result from the projective translation symmetry. In 

future, one can fabricate and measure the 3D MI and MDS proposed in Fig. 2, in 

which the flat Möbius line-twist is another hallmark of the projective translation 

symmetry. It would also be exciting to explore further the projective inversion 

symmetry that can switch a spinless system to a spinful one, and vice versa17. Having 

exemplified the interplay between the ℤ2 gauge and translation symmetries, our 

findings urge to establish a complete projective topological classification based on the 

extraordinarily rich interplay between all variety of gauge and crystalline symmetries, 

particularly in various artificial systems30-37 in which gauge symmetries are abundant. 
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Methods 

 

Numerical simulations. 
Acoustic cavity-tube structures were used to mimic our tight-binding model. All 

full-wave acoustic simulations were performed by using a commercial solver package 

(COMSOL Multiphysics). The photosensitive resin material used for fabricating 

samples was modeled as acoustically rigid in the airborne sound environment, given 

the extremely mismatched acoustic impedance between the resin and air. The air 

density 1.29 kg/m3 and the sound speed 344.8 m/s were used to solve the 

eigen-problems (Fig. S5), where the bulk spectra were obtained by imposing the 

Bloch boundary condition in all directions, and the boundary spectra were simulated 

by using ribbon structures with the Bloch boundary condition in the edge or hinge 

direction and the rigid boundary condition in other directions. A detailed fitting 

process of the hoppings and onsite energies can be referred to Supplementary 

Information. 

 

Experimental measurements. 
Our experiments were performed for airborne sound at audible frequency. To excite 

the bulk states, a broadband point-like sound source was located in the middle of the 

sample, and a 1/4 inch microphone (B&K Type 4187) was used to scan the pressure 

inside the cavities one by one, together with another identical microphone fixed (at 

the source cavity) for phase reference. Both the input and output signals were 

recorded and frequency-resolved with a multi-analyzer system (B&K Type 3560B). 

The bulk dispersion in Fig. 3b was obtained by performing 2D Fourier transformation 

of the measured pressure field. The edge spectrum in Fig. 3e was obtained by 

performing 1D Fourier transform of the measured pressure response along the edge, 

where the sound source was relocated in the middle of the sample’s top edge. The 

frequencies of the edge bands (Fig. 3f) were extracted from the peaks of the Fourier 

spectrum at given momenta while their phases ℓ± were detailed in Supplementary 

Information, and likewise for the 3D HOMI system in Fig. 4b. In order to make better 

comparison with the experimental data, tiny frequency shifts of 22 Hz and 15 Hz were 

introduced to the theoretical results in Fig. 3e and Fig. 4b, respectively. To measure 

the site-resolved local response (Fig. 3d and Figs. 4c-4e), we placed the source and 
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probe in the same cavity resonator and scanned the acoustic response site by site. 

Notably, we performed surface measurements to obtain the (projected) information of 

hinge, surface, and bulk states simultaneously (Figs. 4c-4e). 
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