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Acoustic Model Training Using Pseudo-Speaker Features
Generated by MLLR Transformations for Robust
Speaker-Independent Speech Recognition
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and Kazuya TAKEDA†, Fellow

SUMMARY A novel speech feature generation-based acoustic model
training method for robust speaker-independent speech recognition is
proposed. For decades, speaker adaptation methods have been widely
used. All of these adaptation methods need adaptation data. However,
our proposed method aims to create speaker-independent acoustic mod-
els that cover not only known but also unknown speakers. We achieve
this by adopting inverse maximum likelihood linear regression (MLLR)
transformation-based feature generation, and then we train our models us-
ing these features. First we obtain MLLR transformation matrices from
a limited number of existing speakers. Then we extract the bases of the
MLLR transformation matrices using PCA. The distribution of the weight
parameters to express the transformation matrices for the existing speak-
ers are estimated. Next, we construct pseudo-speaker transformations by
sampling the weight parameters from the distribution, and apply the trans-
formation to the normalized features of the existing speaker to generate the
features of the pseudo-speakers. Finally, using these features, we train the
acoustic models. Evaluation results show that the acoustic models trained
using our proposed method are robust for unknown speakers.
key words: speech recognition, acoustic model training, pseudo speakers,
feature generation, MLLR

1. Introduction

In this paper, an acoustic model training method is proposed
for robust, speaker-independent speech recognition using
limited speech resources. Degradation of speech recogni-
tion performance is often due to a mismatch between model
training and test conditions. There are many reasons for
such mismatches: differences between individual speak-
ers, recording equipment issues, background noise, etc. To
compensate for such mismatches, adaptation techniques are
often used [1]. Model-based adaptation methods, such as
maximum a posteriori (MAP) adaptation [2] and maximum
likelihood linear regression (MLLR) [3], transform acoustic
models (usually hidden Markov models (HMMs)) to fit the
target speaker or environment. These techniques, however,
need a certain amount of adaptation data to estimate the pa-
rameters of the models.

Speaker adaptive training (SAT) [4] has also been pro-
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posed. In SAT, training data are normalized to a vir-
tual canonical speaker, for whom the acoustic models are
trained. In the recognition stage, adaptation parameters are
estimated for the input speech and the models are adapted.
This method achieves efficient adaptation.

Adaptation techniques which only need a small amount
of target speech data, such as those using inter-speaker
variation modeling like Eigenvoice [5], have also been pro-
posed. In this framework, the super vectors of the mean
parameters of the speaker-dependent acoustic models are
used as bases, and the super vector of the new speaker-
specific acoustic models is expressed as a linear combina-
tion of these bases. Eigenvoice only needs a small amount
of target speech, because variation in speech and environ-
ment are expressed in a low-dimensional sub-space. Eigen-
MLLR, which is a combination of MLLR and eigenvoice,
was proposed in [6]. Principal component analysis (PCA)
is applied to the MLLR transformation matrices to obtain
bases, and then a new speaker’s MLLR matrix is expressed
as a linear combination of the matrices.

All of these adaptation methods, however, need adapta-
tion data. We can only use a limited amount of speech data
from the environment where the system is to be used, how-
ever, because the cost of collecting data in realistic environ-
ments is very high. We believe this assumption is realistic
during the early use of such a speech application.

In this paper, we propose a novel speech fea-
ture generation-based speaker-independent model training
method to compensate for the variation which occurs when
using limited speech data resources. We do this by reversing
the concept of adaptation. In the proposed method, we do
not remove speaker variations but add them to the averaged
speech features [7]. We assume that individual speech vari-
ation can be generated by adding individual differences to
an “average” person. Speaker recognition using the MLLR
transformation matrix [8] suggests that the linear transfor-
mation matrix can express individuality. We first obtain the
MLLR transformation matrices from the speech data of a
limited number of environmentally matched speakers and
apply PCA to it to extract bases. We then construct pseudo-
speaker transformation matrices from the statistical linear
combination of the bases. Finally, speech features are gen-
erated by applying the constructed transformation matrices
to the normalized speech features obtained from real speech
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and then used to train the speaker-independent (but environ-
ment adapted) acoustic models. Using this technique, we
can easily obtain a huge amount of speech variations from
a limited number of speakers in the target environments and
make the acoustic models effective, despite inter-speaker
variations [9].

The rest of this paper is organized as follows. Sec-
tion 2 first outlines the MLLR adaptation method and then
explains speech feature generation based on MLLR trans-
formations. Section 3 discusses the experimental results of
the proposed method and compares it with adaptation-based
methods and speaker adaptive training. Section 4 concludes
the paper and describes future work.

2. Acoustic Model Training Based on Feature Gen-
eration Using MLLR Transformations for Pseudo-
Speakers

Our proposed method consists of the following steps:

• estimation of the MLLR transformation matrices of
speaker utterances recorded in the target environments;
• extraction of the bases of the MLLR transformation

matrices;
• estimation of the basis weight distributions;
• construction of the pseudo-speaker’s transformation

matrix, and speech-feature generation by applying
the transformation matrix to the speaker-normalized
speech data;
• acoustic model training with the generated features.

The flow of the proposed method is summarized in
Fig. 1. Here, we assume that we can use a certain amount
of training data in the target environments, but the data do
not include the test speakers. This assumption is reasonable
because we are only able to collect a small amount of data in
the environment where the application will actually be used
when a new application has just been developed.

2.1 Normalization of Training Speech

In MLLR, the mean vectors of the Gaussian distributions
in the HMMs, μ = (μ1, . . . , μn)T, are adapted to a specific
speaker by transformation:

μ̂ = Aμ + b, (1)

where n is the dimension of a feature vector, A is a n × n
matrix, and b is an n-dimensional vector. This equation can
be rewritten as follows:

μ̂ =Wξ, (2)

where ξ = (1, μ1, . . . , μn)T. W = [b A] is an n × (n + 1)
matrix and can be estimated by the ML criterion using the
EM algorithm with the auxiliary function [10]:

Q(W, W̄) = K − 1
2

M∑

m=1

T∑

t=1

γm(t)[Km + log |Σm|

+(xt −Wξm)′Σ−1
m (xt −Wξm)], (3)

Fig. 1 Flow of the proposed feature generation-based acoustic model
training.

where γm(t) is the posterior probability of mixture compo-
nent m at time t, K is a constant dependent only on the transi-
tion probabilities, and Km is the normalization constant asso-
ciated with Gaussian mixture component m, when given the
adaptation data for a certain speaker (and/or environment)
χ = {x1, . . . , xT }.

We can consider the transformation matrix W as the
expression of a speaker in an environment. We can then use
the transformation inversely to transform a speaker-specific
feature vector to the “average” speaker’s feature vector most
“suitable” for the speaker-independent models:

ō = A−1o − A−1b =W(−1)ζ, (4)

where o and ō express an n-dimensional input feature vector
and a normalized one, W(−1) =

[
−(A−1b) A−1

]
∈ Rn×(n+1) is
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a transformation matrix, and ζ =
[

1 oT
]T ∈ R(n+1)×1 is an

extended feature vector including a bias.
We obtain transformation matrix W(−1)

i , (i = 1, · · · ,R)
for speaker i of R speakers in the training data.

2.2 Basis Extraction Using PCA

We assume that transformation matrix W(−1) consists of
a linear combination of bases. One could use all the
W(−1)

i , (i = 1, · · · ,R) as bases. However, speech produc-
tion is constrained by physical limitations such as vocal tract
length. Such constraints should be reflected in the range of
individual differences in the transformation matrix.

Thus, we apply PCA to the n × (n + 1)-dimensional
R super vectors Vi(i = 1, · · · ,R), which are the concate-
nations of the columns in W(−1)

i s, and obtain M eigen vec-
tors V(m)

E (m = 1, · · · ,M) with the largest M eigenvalues as
bases. This means that the transformation expressing indi-
vidual differences is constrained as a linear combination of
the basis super vectors, and that basis extraction is a blind
estimation of the axes expressing speaker variation.

2.3 Estimation of Distribution of Weight Parameters

Using the bases extracted in the previous section, we
express the individuality of a certain speaker V j =

a( j)T(V(1)
E , · · · ,V(M)

E ), where a( j) = (a( j)
1 , · · · , a( j)

M )T. We esti-
mate the distribution of a( j).

Each training speaker’s super vector, Vi, derived from
the transformation matrix W(−1)

i is approximated by a lin-
ear combination of Ṽi = a(i)T(V(1)

E , · · · ,V(M)
E ). The weight

vector a(i) is obtained by the square error minimization crite-
rion. With a(i)s for some training speakers, and an assump-
tion of a type of distribution of a( j), we can estimate the
distribution parameters. We assume that a( j) is distributed
as an M-dimensional Gaussian.

2.4 Speech Feature Generation by MLLR Transforma-
tions for Pseudo-Speakers

Once we obtain the distribution of a( j), we randomly pick
N samples, a′(n), (n = 1, · · ·N), from the distribution. Us-
ing a′(n), we construct N inverse transformations, W′(−1)

n =[
−
(
A′−1

n b′n
)

A′−1
n

]
, by linear combination of the bases

weighted by a′(n). Then we obtain the transformation W′
n =

[b′n A′n]
Each constructed transformation W′

n corresponds to
speaker characteristics of a pseudo-speaker n. We reverse
the SAT technique [4] by applying the transformation to the
normalized speech features to obtain a variety of speakers.
We first apply the normalization matrix for training speaker
i, W(−1)

i , to the speech features of speaker i and then apply
the constructed transformation, W′

n, to them to generate the
speech features of pseudo-speaker n:

õn,i = A′nōi + b′n (5)

= W′
nζ̄ i, (6)

ōi = A−1
i oi − A−1

i bi (7)

= W(−1)
i ζ i, (8)

(i = 1, · · · ,R)

where õn,i is a generated feature of speaker n from the

utterance by training speaker i, and ζ i =
[

1 oT
i

]T
and

ζ̄ i =
[

1 ōT
i

]T
are extended feature vectors of training speech

uttered by speaker i before and after normalization, re-
spectively. Note that speaker n, who is not included in
the training data, is a constructed pseudo-speaker. Apply-
ing this procedure using the training speech of speakers
i = 1, · · · ,R and pseudo-speakers n = 1, · · · ,N, we can
obtain a large amount of training data for the acoustic mod-
els. This pseudo-speaker data is obtained from the distribu-
tion of the original training speakers. If there are enough
training speakers to estimate the “correct” acoustic models,
the results should be better than results using our method.
However, we assume that we cannot realistically generate
enough data to train acoustic models using real speakers,
and thus we try to “interpolate” or “extra-polate” the param-
eters of training speakers.

2.5 Training Acoustic Models Using Generated Speech

Finally, we use the feature vectors generated by the tech-
nique described in the previous section to train the acoustic
models. The pseudo-speakers’ utterances have the speech
features of constructed utterances, and are not the actual
utterances of many human speakers’ in the target environ-
ments. As a result, the acoustic models are expected to be
robust at recognizing the utternaces of unknown speakers.

3. Experiments

3.1 Experimental Conditions

We collected field speech data using the MusicNavi2 [11]
spoken dialog-based music retrieval system. This system
obtains user utterances from the Internet using loss-less
speech compaction. Many anonymous users use this system.
Figure 2 shows an example of the dialog obtained through
the system. The underlined utterances are those of the user.
The average signal-to-noise ratio (SNR) was 20.4 dB. Most
of the users used the system in their homes. The utterances
were spontaneous, but they spoke them in a relatively care-
ful manner.

For recognition, we used a word-loop grammar with
a vocabulary including all the words in the test utterances.
There were no unknown words. We randomly selected
50 males and 50 females as training speakers. Utterances
spoken by each training speaker were used as the training
data. Training set 1 was 10 utterances from each subject
(100 × 10 = 1000 utterances), and training set 2 was 30
utterances from each subject (100× 30 = 3, 000 utterances).
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Fig. 2 An exapmle of a dialog recorded by MusicNavi2 system. Under-
lined are the user utterances used in the experiments.

Table 1 Experimental setup.

# Training speakers 100 (50 males and 50 females)
# Training utterances Set 1: 1000

(10 per person, total 1597.6 [s])
Set 2: 3000
(30 per person, total 4876.6 [s])

# Test speakers 250 (160 males and 90 females)
Exclusive with training sets

Amount of test data 12500 (50 uttr. per person)
Analysis Pre-emphasis (coefficient = 0.97)

24 dimensional mel-filterbank
Features 12 MFCC (with CMN)

+ 12 ΔMFCC + 12 ΔΔMFCC
+Δpower + ΔΔpower
(Δ and ΔΔ derived from 5 frames)

Speech recognizer Julius-4.1 [12]
Acoustic model Gender-independent triphone HMM

structure 3000 states, 16 mixtures per state
Language model Word loop grammar

Dictionary Words for MusicNavi2
(approx. 8000 words)

We first made MLLR matrices for real training speak-
ers by applying global MLLR adaptation to 10 (Set 1) and
30 (Set 2) utterances by each speaker (that is to say, we used
all the training data in set 1 and set 2). The seed models for
speaker adaptation were trained using the Corpus of Spon-
taneous Japanese (CSJ) [13]. We used 967 lectures (a total
of 228 hours) from the CSJ. The MLLR matrices obtained
were used for both normalization of the real speakers’ utter-
ances and for basis extraction.

We used test utterances from 250 speakers (160 males
and 90 females). Fifty utterances from each speaker were
used as test data. The feature vector consisted of a 12-
dimensional MFCC, their first and second derivatives, and
the first and second derivatives of the power. The MFCCs
were extracted using pre-emphasis with a coefficient of
0.97 followed by 24 dimensional mel-filterbank analysis.
CMN was applied. Experimental setup conditions, includ-
ing these, are summarized in Table 1. The CSJ models
and proposed models received ML-training from flat-start
models using an EM algorithm. The experimental setup
shown in Table 1 was used for the original CSJ models, for
the models trained using the proposed method, and for the
MAP-adapted models described below.

Table 2 Relationship between cumulative proportions and number of
bases.

Cumulative contribution ratio [%] 80 90 95
# of Bases Training set 1 59 75 86

Training set 2 56 73 84

For comparison, we performed MAP adaptation, which
involves adaptation for the environment, and SAT, using all
the training utterances.

3.2 Evaluation Results

3.2.1 Basis Extraction

We set the cumulative proportions to 80%, 90%, and 95%
to extract the bases. The relationship between the cumula-
tive contribution ratios and the number of bases is shown in
Table 2. With a cumulative proportion of 80%, we need ap-
proximately half of the bases that are extracted from training
speakers’ utteraces.

3.2.2 Recognition Results

Using our proposed method, we generated 1,000 pseudo-
speakers from the bases described in Table 2, using 600
real training speaker utterances randomly selected for each
pseudo-speaker from the training data. These utterances
were converted for each pseudo-speaker using the transfor-
mation method described above. The 600 randomly se-
lected utterances were different for each pseudo-speaker.
The weight distribution was estimated from 1,000 (set 1)
or 3,000 (set 2) utterances, and the randomly selected ut-
terances for a pseudo-speaker were transformed by a matrix
constructed using the weight sampled from the distribution.
Thus, we were able to obtain 600,000 training utterances,
and we then used them to train the acoustic models†. For
comparison, we also adapted the acoustic models trained
using CSJ with the real training data described in Table 1.
The average recognition rates and the standard deviations
are shown in Table 3. The test speakers were all different
from the training speakers, so the recognition rates in Ta-
ble 3 can be seen as the recognition rates by environmentally
adapted, speaker-independent acoustic models without any
speaker adaptation. We also show the results using models
trained using CSJ (CSJ) and MAP-adapted models (MAP).

The table shows that the larger the number of bases,

†A transformation for a pseudo-speaker obtained using our
proposed method is not certain to express the same characteris-
tics as a real human voice. Thus, too many pseudo-speakers may
have an adverse effect on the statistics in the acoustic modeling.
We decided the number of generated utterances from preliminary
experiments. For a similar reason, the bases of the transformation
should be extracted from some minimum number of real human
voices. We preliminarily tested the bases extracted from 20 or 50
real training speakers, but the results were significantly inferior to
the MAP models. We have to tackle the problem of creating more
pseudo-speakers from fewer real speakers in the future.
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Fig. 3 Recognition rates for each speaker when using cumulative contribution ratio of 95%. Mn and
Fn express male speaker number n and female speaker number n, respectively. MAP 1000 and Proposed
1000 are results using training set 1, and MAP 3000 and Proposed 3000 are results using training set 2.

Table 3 Recognition rates [%] and standard deviations of acoustic mod-
els trained using pseudo-speaker utterances, those adapted by MAP, and
those trained using only CSJ. Note that the CSJ models did not use any
training data and thus the recognition results for training sets 1 and 2 were
identical.

Methods† Proposed MAP CSJ
Cumu. contrib. ratio 80% 90% 95%

Training Recog. rate 64.1 65.5 66.5 67.9 60.8
set 1 Std. dev. 17.3 17.2 16.9 19.6 20.7

Training Recog. rate 70.5 70.7 70.8 69.2 60.8
set 2 Std. dev. 16.4 16.4 16.7 19.5 20.7

the better the recognition rates, especially regarding train-
ing set 1, which consisted of 10 utterances by 100 speakers.
The recognition rate for training set 1 using the proposed
method is comparable to the rate using MAP adaptation. Us-
ing training set 2, the proposed method outperforms MAP
adaptation.

Note that the standard deviations of the recognition
rates using the proposed method are smaller than those with
MAP, suggesting that the acoustic models trained using our
proposed method were robust for handling speaker varia-
tions. To see the tendency of the difference in performance
between MAP and the proposed method, we examine the
results of sample test speakers. Figure 3 shows the recog-
nition rates for each test speaker randomly sampled from
all the test speakers. We found that even recognition rates
for speakers with good results using MAP degraded slightly,
while recognition rates for most speakers with low recogni-
tion rates with MAP were improved. To confirm this ob-
served tendency, we describe the result of all the test speak-
ers in another way. Cumulative test speaker frequencies and
recognition rates are shown in Fig. 4. The number of speak-
ers with low recognition rates is significantly smaller using
the proposed method than with MAP. This suggests that
speaker construction using our method produces a wider

range of speaker variations. For this reason, the proposed
training feature generation method works robustly for un-
known speakers, especially those with originally low recog-
nition rates. Inversely, our method did not perform well with
speakers who originally had high recognition rates. This
may be the effect of pseudo-speakers which were very dif-
ferent from real human voices, with the result that the dis-
tributions in HMM states were broader than they needed to
be. We can think of some possible reasons. A linear trans-
formation for a pseudo human should be applied to a subset
of real training data. That is to say, a constraint between n
and i in Eqs. (5) and (6) should be applied. Furthermore, a
linear transformation by itself may not be sufficient to ex-
press the characteristics of a human voice. Investigation of
these issues are the subject of future work.

3.3 Comparison with SAT

The method proposed in this paper was inspired by SAT,
in which all training speech is normalized by transforma-
tions such as inverse MLLR before being used for training.
Models are then adapted to a specific speaker. Our method,
however, generates speaker variation to train the acoustic
models.

†It should be noted that we should have compared these results
with an experiment in which we trained acoustic models using the
original training data (that is, training using only set 1 or set 2), but
we could not do this under the same conditions because of a lack
of training data. We conducted preliminary experiments with a
small size of acoustic models and discovered that even using train-
ing set 2 and HMMs with 500 states, our proposed method (75.5%
recognition rate) outperformed HMMs trained using original data
(71.1%), because of over-training. When using HMMs with 300
states, result using original data (72.2%) were comparable to re-
sults using our method (74.0%). (The test data in this footnote is a
subset of that in Table 1)
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Training set 1

Training set 2

Fig. 4 Cumulative speaker frequency and recognition rates. CPn ex-
presses the cumulative contribution ratio of n in the proposed method. The
nearer to the X-axis the line is, the better the recognition performance.

Fig. 5 Comparison of proposed method and SAT. Proposed method was
performed using training data set 2. CPn expresses the cumulative propor-
tion of n in the proposed method. The difference in n in CPn did not have
a big effect on recognition performance, thus all the lines for the proposed
methods with different CPn values overlap in the figure.

The crucial difference between SAT and our method is
that SAT needs adaptation data for a specific speaker, but
our method does not.

We compared the performance of SAT and our method.
In the SAT framework, to make normalized acoustic models
we adapted CSJ models described in Sect. 3.1 to the 3000
training utterances (training set 2) normalied by CMLLR,
and we assume that the normalization parameters of the
transformation matrix are estimated from 1, 3, 5, 10, and
30 input utterances in the test phase. Here, we transform
the input features for normalization, not the models, which
is theoretically identical to the model transformation using
CMLLR [10]. The recognition results are shown in Fig. 5.
In this figure, we used training set 2 for the proposed method
and the results are identical to those using training set 2 in
Table 3. SAT performs better with more than ten adaptation
utterances, but our method performs well without adaptation
data.

4. Conclusion

In this paper, we proposed a feature generation-based acous-
tic model training method. Linear transformations of fea-
tures corresponding to pseudo-speakers were constructed
by the linear combination of principal components of in-
verse MLLR transformation matrices for a limited num-
ber of training speakers. These transformations were ap-
plied to the normalized speech features of training speak-
ers. Pseudo-speakers were expected to represent the speak-
ers which were not included in the training data. Our method
outperforms adaptation-based methods when the amount of
training data in the test environments is limited, especially
for speakers with low speech recognition rates.

In the future, we will use more real speech data to gen-
erate a huge amount of feature vectors in order to produce an
accurate and robust acoustic model. Currently, we only use
PCA to constrain freedom of combination, but we need to
investigate an appropriate constraint for speech generation.
In a sub-space with an appropriate constraint, we can gener-
ate a huge number of more accurate unknown speaker utter-
ances, which can then be used to train a universal model.

Our model covers a broad variety of speakers, and thus
we expect it to be a good seed model for further speaker
adaptation research. We are now investigating the appropri-
ateness of our models for speaker adaptation [9].
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