
Acoustic Multi Target Tracking using

Direction-of-Arrival Batches

Volkan Cevher, Member, IEEE, Rajbabu Velmurugan, Student Member, IEEE,

James H. McClellan, Fellow, IEEE

Abstract

In this paper, we propose a particle filter acoustic direction-of-arrival (DOA) tracker to track multiple

maneuvering targets using a state space approach. The particle filter determines its state vector using

a batch of DOA estimates. The filter likelihood treats the observations as an image, using template

models derived from the state update equation, and also incorporates the possibility of missing data

as well as spurious DOA observations. The particle filter handles multiple targets, using a partitioned

state-vector approach. The particle filter solution is compared with three other methods: the extended

Kalman filter, Laplacian filter, and another particle filter that uses the acoustic microphone outputs

directly. We discuss the advantages and disadvantages of these methods for our problem. In addition,

we also demonstrate an autonomous system for multiple target DOA tracking with automatic target

initialization and deletion. The initialization system uses a track-before-detect approach and employs

the matching pursuit idea to initialize multiple targets. Computer simulations are presented to show the

performances of the algorithms.

I. INTRODUCTION

A challenging signal processing problem arises when one demands automated tracking of the

direction-of-arrival (DOA) angles of multiple targets using an acoustic array in the presence of

noise or interferers [1]–[5]. In the literature, DOA tracking problems are usually formulated using

state-space models [6]–[8], with an observation equation that relates the state vector (i.e., target

DOA’s and possibly motion states) to the acoustic microphone outputs, and a state equation that

constrains the dynamic nature of the state vector. The performance of the tracking algorithms

V. Cevher (volkan@umiacs.umd.edu) is with the Center for Automation Research, University of Maryland, College Park, MD

20742. R. Velmurugan and J. H. McClellan ({rajbabu, jim.mcclellan}@ece.gatech.edu) are with the Center for Signal and Image

Processing, School of ECE, Georgia Institute of Technology, Atlanta, GA 30332.

Prepared through collaborative participation in the Advanced Sensors Consortium sponsored by the U. S. Army Research

Laboratory under the Collaborative Technology Alliance Program, Cooperative Agreement DAAD19-01-02-0008.

2

using state-spaces relies heavily on how accurate the models represent the observed natural

phenomena. Hence, in most cases, it is important to use nonlinear and non-Gaussian state-space

models despite their computational complexity [9].

The presence of multiple targets increases the tracking complexity because a mechanism for

data association is needed, in effect, to sort the received data for each target. In the literature, the

association problem is handled in several different ways: (i) probabilistic data association methods

estimate the states by summing over all the association hypothesis weighted by the probabilities

obtained by the likelihood [10]–[13], (ii) smoothness assumptions on the target (motion) states

allow a natural ordering of the data [14], (iii) computationally costly ML/EM methods use the

likelihood function to search for a global maximum, or (iv) nearest neighbor methods provide

easy heuristics to perform measurement updates. Most of these methods use the mean and

covariance approximation of the sufficient statistics for the state, which may be estimated with a

Kalman filter; however, for nonlinear state-spaces with general noise assumptions, Monté-Carlo

methods should be used to adequately capture the dynamic, possibly multi-modal, statistics.

In a particle filter, where the observations arrive in sequence, the state probability density

function is represented by discrete state samples (particles) distributed according to the underlying

distribution (as explained by the state-space) either directly or by proper weighting [8], [9].

Hence, the filter can approximate any statistics of the distribution arbitrarily accurately by

increasing the number of particles with proven convergence results. In the particle filtering

framework, the data association problem is undertaken implicitly by the state-space model

interaction. However, the particle filter suffers from the curse of dimensionality problem, as the

number of targets increases [15]. To increase the efficiency of the algorithm, various methods

are proposed, such as the partitioning approach [2], [16], or other Bayesian approaches [17].

In this paper, we present a particle filter algorithm to track the DOA’s of multiple maneuvering

targets, using an acoustic node that contains an array of microphones with known positions. Each

particle in the filter is created by concatenating partitions, i.e., the state vector for each target.

For example, the partition of the kth target has a state vector that consists of the DOA θk(t),

the heading direction φk(t), and the logarithm of velocity over range Qk(t) = log (vk/rk(t)) of

the kth target. The total number of targets (or partitions) K is determined by a mode hungry

Metropolis-Hastings block. Hence, given K targets, a particle has K partitions where each target,

and hence each partition, is assumed to be independent. Target motions are modeled as locally

linear, i.e., each target has a constant velocity within an estimation period of duration T .

The particle filter uses multiple DOA’s to determine the state vector, based on an image

template matching idea. We denote the collection of M DOA’s a batch, where M is the batch

size. In our problem, a DOA image is first formed when a batch of DOA observations are

3

0 T 2T 3TMτ

Time

DOA Missing data

ClutterDOA Batch

Fig. 1: Observation model uses a batch of DOA measurements. Note that the DOA measurements

are not necessarily ordered. However, the image based observation approach provides a natural

ordering when targets are being tracked by the particle filter.

t

t + Tt + τ

t + (M − 1)τ
time

DOA

hθ
mτ (x(j))hθ

mτ (x(i))

Fig. 2: Template matching idea is illustrated. The solid line represents the true DOA track. Black

dots represent the noisy DOA estimates. The dashed line and the dotted line represent the DOA

tracks for the two proposed particles i and j. These tracks are calculated using the state update

function h. Visually, the ith particle is a better match than the jth particle; hence, its likelihood

is higher.

received from a beamformer that processes the received acoustic data at M τ -second intervals

(Fig. 1). Then, image templates for target tracks are created using the state update function and

the target partition state vectors (Fig. 2). By determining the best matching template (e.g., most

probable target track), the target state-vectors are estimated. Because the observations are treated

as an image, the data association and DOA ordering problems are naturally alleviated. Moreover,

by assuming that the DOA observations are approximately normally distributed around the true

target DOA tracks, with constant DOA miss-probability and clutter density, a robust particle

filter tracker is formulated.

The particle filter importance function proposes particles for each target independently to

increase the efficiency of the algorithm. To derive the proposal function for each target, we

4

use Laplace’s method to approximate the posterior of the corresponding partition by a Gaussian

around its mode [8], [18], [19]. We calculate the partition modes using a robust Newton-Raphson

search method that imposes smoothness constraints on the target motion. We also present a slower

but more robust method for determining the partition posteriors, based on the mode hungry

Metropolis-Hastings algorithm [20]. Details of the partition posteriors are given in Sect. IV.

For the initialization of the particle filter, we describe a mode hungry Metropolis-Hastings

(MHMH) sampling algorithm. For comparison purposes, we also present an approximate Bayesian

filter based on the particle filter’s proposal function, and an extended Kalman filter (EKF) [10].

The EKF is derived using a sliding window implementation, because the Kalman filter initial data

association becomes prohibitive, while handling the complex observation model based on DOA

batches in the case of multiple targets, using the sufficient statistics. In addition, we qualitatively

compare the computational complexity of the filters: the particle filter solution outperforms the

approximate Bayesian solution with no significant increase in the computational requirements.

The paper is organized as follows. Section II explains the mechanics of the automated tracking

system for multiple target DOA tracking. Sections III, IV, and V elaborate on the individual

elements of the tracking system. The computational complexity of the algorithms is given in

Sect. VI. Alternative tracking approaches are discussed in Sect. VII. Computer simulations are

shown in Sect. VIII to demonstrate the algorithm performances.

II. TRACKER DESIGN

The tracker mechanics in this paper is constructed such that the tracker (i) compensates DOA

estimation biases due to rapid target motion [3], (ii) results in higher resolution DOA estimates

than just beamforming [2]–[4], (iii) is robust against changes in target signal characteristics, and

(iv) automatically determines the number of targets. The tracker system consists of three blocks

as illustrated in Fig. 3. Details of the individual blocks are given in the following sections. Below,

we discuss the technicalities that lead to this design.

Note that the main objective of our tracker is to report multiple target DOA’s at some period

T , after observing the acoustic data at the node microphones. Quite often, target DOA’s can

change more than a few degrees during an estimation period, e.g., due to rapid target motion.

Hence, if we were to just use conventional snapshot DOA estimation methods (e.g., MUSIC,

MVDR, etc.) for tracking the targets, the bearing estimates become biased, because the received

data is not stationary [21]. This is intuitive, because these methods estimate an average of the

target angular spread during their estimation periods [3].

In general, locally linear motion models eliminate this bias by simultaneously estimating the

bearing and the target motion parameters for the estimation period of T . Conceptually, this

5

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

�
�
�
�

���
���
���
���

����
����
����
����
����

����
����
����
����
����

��
��
��
��

��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��

���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���

�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����

������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������

�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����

Acoustic Node

θ1

θ1

θ2

θ2

θs

Beamformer Block

Beamformer output

Particle Filter Block

Target partitions:

yt,f = {yt+mτ,f (pm,f)}M−1
m=0

Partitions are deleted

when there is no

data in their gate.

[
θ1(t)
Q1(t)
φ1(t)

][
θ2(t)
Q2(t)
φ2(t)

]

y
g

t,f : partition gated data

MHMH Block

x
(i)
new, i = 1, . . . , N

Finds partitions and distributions.

Fig. 3: Tracker mechanics demonstrated. The beamformer block monitors the received acoustic

signals to adapt to their frequency characteristics for better bearing estimation. It outputs a

batch of DOA’s that form a sufficient statistics for the particle filter block. The particle filter

estimates the tracking posterior and can make various inferences (i.e., mean and mode estimates).

It acquires the new partition information from the mode hungry Metropolis Hastings (MHMH)

block. It can also delete a partition, if there is no data in the respective partition gate (explained

in the text). The MHMH block determines the new partitions and their distributions from the

residual DOA’s coming from the particle filter (i.e, the gating operation).

is equivalent to aligning the received acoustic data with the motion parameters so that the data

becomes stationary for bearing estimation purposes. But, this alignment process relies heavily on

the observation model and is computationally costly because of the high volume of the acoustic

data used for estimation. In this paper, we propose to use a beamformer block to buffer the

variability in the observed acoustic signals and to create a compressed set of invariant statistics

for our particle filter block.

Therefore, the beamformer block (Fig. 3) processes the acoustic data at shorter time intervals

of τ = T/M (e.g., M = 10), where the targets are assumed to be relatively stationary. This

reduces the number of acoustic data samples available for processing, resulting in a sequence of

noisier DOA estimates. However, these noisier DOA estimates can be smoothed in the particle

filter block, because a motion structure is imposed on the batch of DOA’s. Moreover, for the state

vector defined in the introduction, a batch of DOA’s when M > 3 is sufficient for observability

of the state [3], [7]. Since the filter is built on the compressed statistics which is also sufficient

to observe the state vector, it achieves a significant reduction in computation.

6

When the received signal characteristics change, the particle filter tracker formulation is not

affected because the beamformer block can absorb the variabilities in the acoustic signals. In

the literature, various trackers use similar state-space formulations as in this paper [2]–[4].

The trackers presented in [2], [3] directly employ the classical narrow-band observation model,

where targets exhibit constant narrow-band frequency characteristics [21], [22]. The tracker in

[4] tries to adapt to varying time-frequency characteristics of the target signals, assuming that the

varying frequencies are narrow-band. The tracker in [5] also incorporates an amplitude model for

the signals. Because their probability density equations explicitly use an observation equation,

these trackers are hardwired to their observation model. Hence, a complete re-work of the filter

equations would be required to track targets with wideband signal characteristics (e.g., [5]- [23]).

σg

σg

σg

Partition Gate

Ungated DOA’s

Fig. 4: Gating operation is illustrated. Solid line is the true DOA track. The DOA observations

are shown with dots. Given a parition gate size σg, the DOA’s are gated out if they are more

than σg away from the solid line.

The third block in Fig. 3 addresses a fundamental issue for trackers: initialization. It is an

accelerated Metropolis-Hastings algorithm modified specifically for unimodal distributions. It

takes the ungated DOA’s from the particle filter as inputs (Fig. 4), or if there are no partitions in

the particle filter at initialization, it takes the data from the beamformer block directly. It generates

a particle distribution for each potential new target one at a time. That is, it converges on the

strongest mode in the, possibly, multi-modal target posterior and sifts out the corresponding DOA

data. It then iterates to find other modes until stopping criteria are met. This block creates new

partitions for the particle filter, which can also delete its own partitions when conditions described

in Sect. V are met. Conceptually, this initialization idea is equivalent to the track-before-detect

approach used in the radar community [24], [25].

III. BEAMFORMER BLOCK

Beamforming is the name given to a wide variety of array processing algorithms that focus an

array’s signal processing capabilities in a particular direction [21]. Beamformers use the collected

acoustic data to determine target DOA’s and are called narrow-band beamformers if they use the

7

classical narrow-band array observation model [21], [22]. Beamformers are wideband if they are

designed for target signals with broadband frequency characteristics [26]; others are designed

for signals with time-varying narrow-band frequency characteristics [27], [28].

The beamformer block chooses a beamfomer for processing the acoustic data depending on

the local characteristics of the acoustic signals. That is, given the observed acoustic signal and

its time-frequency distribution, we choose an optimal beamformer to calculate target DOA’s. For

example, we can choose multiple beamformers if the received acoustic signal shows both narrow-

band and wideband characteristics. The output of the beamformer yt,f = {yt+mτ,f(p)}M−1
m=0 is a

DOA data cube containing the Pm,f -highest DOA peaks of the beamformer pattern (Fig. 1 and

Fig. 5). In general, the number of DOA peaks Pm,f at batch index m and each frequency index

f should be greater than or equal to the number of targets K so that we can also detect new

targets while tracking the existing targets. In the simulations section, we fix Pm,f = P but the

derivations below explicitly show the dependance on m and f . Note that the input of the particle

filter has the same structure regardless of the target signal characteristics.

pm,f1 = 2, pm,f2 = 1

yt,f(p0,f)

pm+1,f1 = 0, pm+1,f2 = 1

0

τ
MM − 1

Batch Index

Missing

data

spurious peak

Fig. 5: The circles and squares denote the DOA estimates at two different frequencies f1 and

f2, calculated using the acoustic data received during a period of length τ . In this example, the

maximum number of beamformer peaks P is 2. Given the observations yt,f , the objective of the

particle filter is to determine the state xk(t) which completely parameterizes the solid curve.

Finally, the choice of the parameter τ for beamforming is determined by various physical

constraints, including (i) target frequency spread, (ii) target speed, and (iii) a target’s affinity to

maneuver. For reasonable beamforming, at least two cycles of the narrow-band target signals

must be observed. This stipulates that τ > 2/Fmin, where Fmin is the minimum beamforming

frequency for the target. Moreover, to keep the worst case beamforming bias1 bounded for each

DOA by an angle threshold denoted by D, we approximately have τ < 2D
exp{Q}

, where exp{Q} is

1The bias is calculated by taking the angular average of the target track. Hence, this bias also depends on the heading direction.

The worst case bias happens when the target heading and DOA sum up to π. Moreover, it is also possible to analytically find

an expected bias by assuming uniform heading direction, using a similar analysis done in [3].

8

the target velocity over range ratio. Lastly, the target motion should satisfy the constant velocity

assumption during the output period T . For slow moving ground targets, T = 1s is a reasonable

choice. Note that at least three DOA estimates are necessary to determine the state vector. To

improve the robustness of the tracker, we use M > 5 to decrease the probability that the state

is not observable due to missing DOA’s. Hence, the parameter τ is bounded by the following

2

Fmin

< τ < min

{
2D

exp{Q} ,
T

M

}
. (1)

IV. PARTICLE FILTER

In this section, the details of the particle filter block in Fig. 3 are discussed. In Sect. VII, we

provide alternative algorithms to replace this block based on the Kalman filter and Laplace’s

method and compare their performance in terms of computational requirements.

A. State Equation

The particle filter state vector xt =
[

xT
1 (t), xT

2 (t), · · · , xT
K(t)

]T
consists of the concatena-

tion of partitions xk(t) for each target, indexed by k, where K is the number of targets at time t.2

Each partition has the corresponding target motion parameters xk(t) � [θk(t) , Qk(t) , φk(t)]T ,

as defined in the introduction. The angle parameters θk(t) and φk(t) are measured counterclock-

wise with respect to the x-axis.

The state update equation can be derived from the geometry imposed by the locally constant

velocity model. The resulting state update equation is nonlinear:

xk(t + T) = hT (xk(t)) + uk(t), (2)

where uk(t) ∼ N (0, Σu) with Σu = diag{σ2
θ,k, σ

2
Q,k, σ

2
φ,k} and

hT (xk(t)) =

⎡
⎢⎢⎢⎣

tan−1
{

sin θk(t)+T exp Qk(t) sinφk(t)
cos θk(t)+T exp Qk(t) cos φk(t)

}

Qk(t) − 1
2
log {1 + 2T exp Qk(t) cos(θk(t) − φk(t)) + T 2 exp(2Qk(t))}

φk(t)

⎤
⎥⎥⎥⎦ . (3)

The analytical derivations of (3) can be found in [3], [4], and reference [4] also discusses state

update equations based on a constant acceleration assumption.

2Explicit time dependence is not shown in the formulations. The parameter K is determined by the MHMH block (Sect. V).

9

B. Observation Equation

The observations yt,f = {yt+mτ,f(p)}M−1
m=0 consist of all the batch DOA estimates from the

beamformer block indexed by m. Hence, the acoustic data of length T is segmented into M

segments of length τ . The batch of DOA’s, yt,f , is assumed to form an approximately normally

distributed cloud around the true target DOA tracks (Fig. 1). In addition, only one DOA is present

for each target at each f or the target is missed. Multiple DOA measurements imply the presence

of clutter or other targets. We also assume that there is a constant detection probability for each

target denoted by κf , where dependence on f is allowed. If the targets are also simultaneously

identified, an additional partition dependency is added, i.e., κf
k .3

The particle filter observation model also includes a clutter model because beamformers can

produce spurious DOA peaks as output (e.g., the sidelobes in the power vs. angle patterns) [21].

To derive the clutter model, we assume that the spurious DOA peaks are random with uniform

spatial distribution on the angle space, and are temporally as well as spatially independent. In

this case, the probability distribution for the number of spurious peaks is best approximated

by the Poisson distribution with a spatial density [10], [29]. Moreover, the probability density

function (pdf) of the spurious peaks is the uniform distribution on [0, 2π). However, since the

number of peaks in the beamformer output can be user defined (P), and since the beamformer

power vs. angle pattern has smoothness properties, we use the following pdf for the spurious

peaks:

p(θ|θ is spurious) =
γ

2π
, (4)

where γ ≫ 1 is a constant that depends on the maximum number of beamformer peaks P , the

beamformer itself (i.e., the smoothness of the beamformer’s steered response), and the number

of targets K. Equation (4) implies that the natural space of the clutter is reduced by a factor of

γ because of the characteristics of our specific system.

We now derive the data-likelihood function using the joint probabilistic data association

arguments found in [10]. Similar arguments for active contour tracking relevant to this paper

are found in [30]. Consider the output of one batch period ym,f = yt+mτ,f(p), where p =

0, 1, . . . , Pm,f for each f and m. The DOA’s ym,f may belong to none, or some combination,

or all of the targets in the particle filter partitions. Hence, we first define a notation to represent

possible combinations between the data and the particle filter partitions to effectively derive the

observation density.

3Recognition/identification may have an impact on choice of the acoustic frequencies as discussed earlier. Hence, some targets

may have a lower detection probability at the recognized target frequencies. The partition dependence of the detection probability

takes care of this issue.

10

Define a set In that consists of n-unordered combination of all K-partitions of the particle filter

state vector: In ∈ {KCn}, where KCn is number of ways of picking n-unordered outcomes from

K possibilities. Each element of In has n numbers, and there are a total of KCn elements. For

example, when K = 3 and n = 2, then I2 = {{1, 2}, {1, 3}, {2, 3}}, each element referring to

subset of the individual partitions of the particle state vector. We refer to the individual elements

of this set using the notation In(j), where j = 1, . . . , KCn. Hence, I2(2) = {1, 3}. Then, denote

nxt(j) ∈ {xi(t)|i ∈ In(j), xi(t) ∈ xt} as a single realization from the set In. Using the same

example, 2xt(3) =
[

xT
2 (t), xT

3 (t)
]T

=
[

x̂T
1 (t), x̂T

2 (t)
]T

. Hence, the set nx̂t(j) contains the

same elements of the set nxt(j), re-indexed sequentially from 1, . . . , n.

We denote πn,j(ym,f) = p(ym,f |nxt(j)) as the probability density function of the data, where

only n-DOA’s belong to the targets defined by the partitions of nxt(j). Hence, when n = 0, all

data is due to clutter:

π0,1(ym,f) =
(γ

2π

)Pm,f

(5)

The probability density πn,j(ym,f) can be calculated by noting that (i) there are Pm,f !/(Pm,f−n)!

ordered ways of choosing DOA’s to associate with the n-subset partitions, and (ii) the remaining

(Pm,f − n)-DOA’s are explained by the clutter. Therefore,

πn,j(ym,f) =
(Pm,f − n)!

(
γ
/
2π
)Pm,f−n

Pm,f !

Pm,f∑

p1 �=p2 �=...�=pn

n∏

i=1

ψt,m,f

(
pi

∣∣∣x̂i

)
, (6)

where the function ψ is derived from the assumption that the associated target DOA’s form a

Gaussian distribution around the true target DOA tracks:

ψt,m,f

(
pi

∣∣∣xi

)
=

1√
2πσ2

θ(m, f)
exp

{
−
(
hθ

mτ (xi(t)) − yt+mτ,f (pi)
)2

2σ2
θ(m, f)

}
, (7)

where the superscript θ on the state update function h refers only to the DOA component of the

state update and σ2
θ(m, f) can be supplied by the beamformer block.

Note that the DOA distribution (7) is not a proper circular distribution for an angle space.

For angle spaces, the von Mises distribution is used as a natural distribution [31]. The von

Mises distribution has a concentration parameter with a corresponding circular variance. It can

be shown that for small σ2
θ << 1 (high concentration), the von Mises distribution tends to the

Gaussian distribution in (7) [32]. Because the von Mises distribution has numerical issues for

small DOA variances, the Gaussian approximation (7) is used in this paper. Hence, special care

must be taken in the implementation to handle angle wrapping issues.

The Gaussian in (6) ψ(·|·) are directly multiplied, because the partitions are assumed to be

11

independent. To elaborate, consider n = 2 and j = 3 from the example of I2 above:

π2,3(ym,f) ∝
Pm,f∑

p1=1

Pm,f∑

p2=1,p1 �=p2

ψt,m,f

(
p1

∣∣∣x̂1

)
ψt,m,f

(
p2

∣∣∣x̂2

)

∝
Pm,f∑

p1=1

Pm,f∑

p2=1,p1 �=p2

ψt,m,f

(
p1

∣∣∣x2

)
ψt,m,f

(
p2

∣∣∣x3

)
.

(8)

Hence, the density π2,3(ym,f) is a Gaussian mixture that peaks when the updated DOA compo-

nents of the partitions 2 and 3 (hθ
mτ (·)) are simultaneously close to the observed data. Note that

Eqn. (8) guarantees that no measurement is assigned to multiple targets simultaneously.

Given the densities πn,j, the observation density function can be constructed as a combination

of all the target association hypotheses. Hence, by adding mixtures that consist of the data

permutations and the partition combinations, we derive the observation density:

p(yt|xt) =

F∏

f=1

M−1∏

m=0

K∑

n=0

κf
n,K

KCn

KCn∑

j=1

πn,j(ym,f). (9)

In (9), the parameters κf
n,K (

∑
n κf

n,K = 1) are the elements of a detection (or confusion) matrix.

For example, when K = 2, κf
0,2 is the probability that no target DOA is in the beamformer

output, whereas κf
1,2 (κf

2,2) means that 1 (2) target DOA(’s) are present in the beamformer output

at each f . These fixed values have to be provided by the user. However, they should be changed

adaptively to improve robustness of the particle filter output. For example, when two partitions

k1 and k2 have close DOA tracks and are about to cross, it is possible that the beamformer’s

Rayleigh resolution is not enough to output two DOA’s for both targets. Then, we change the

confusion matrix to indicate the possibility that one of the targets will likely be missed.

C. Particle Filter Proposal Function

In our problem of DOA-only multiple target tracking, the proposal function poses difficult

challenges because (i) the state vector dimension is proportional to the number of targets K, hence

the number of particles to represent posterior can increase significantly as K increases (the curse

of dimensionality), (ii) in many cases, the targets maneuver, hence full posterior approximations

are required for robust tracking, and (iii) for full posterior approximations, robustly determining

the DOA-only data-likelihood is rather hard. We will address each of these challenges in this

section. Note that once the proposal function is formulated, the rest of the particle filter structure

is well-defined: weighting and resampling.

12

1) Partitioned Sampling: A partitioned sampling approach is used to reduce the curse of

dimensionality in the particle filter. The basic idea is as follows. Suppose that we (wrongfully)

factor the tracking posterior density as

p(xt|yt,xt−T) ∝ p(yt|xt)p(xt|xt−T) =

K∏

k=1

p(yt|xk(t))

K∏

k=1

p(xk(t)|xk(t − T))

=
K∏

k=1

p(yt|xk(t))p(xk(t)|xk(t − T)) ∝
K∏

k=1

qk(xk(t)|yt, xk(t − T)).

(10)

In this case, the target posterior is conveniently a product of the partition posteriors (i.e.,

individual target posteriors) qk(·|·). We can then generate samples for each partition according

to its posterior (i.e., x
(i)
k ∼ qk(xk(t)|yt, xk(t − T))) and merge them to represent xt. It can be

proved that the resulting particle distribution is the same as when we generate xt directly from

the full posterior p(xt|yt,xt−T). However, in the partitioned sampling case, the computational

complexity of the state vector generation is linear with respect to the number of targets K as

opposed to exponential when the state vector is sampled from the full posterior.

In our problem, we can approximately factor out the tracking posterior to exploit the com-

putational advantage of the partitioned sampling. Note that in our case, the target dynamics

can already be factored out because we assume the targets are moving independently.4 Unfor-

tunately, the observation density does not factor out, because the observed DOA data cannot be

immediately associated with any of the partitions. However, for a given partition, if we assume

that the data is only due to that partition and clutter (hence, the DOA data corresponding to

other partitions are treated as clutter), we can do the following approximate factorization on the

observation likelihood (9):

p(yt|xt) ≈
K∏

k=1

p(yt|xk(t)) =
K∏

k=1

F∏

f=1

M−1∏

m=0

⎧
⎨
⎩κf

0,1

(γ

2π

)Pm,f

+ κf
1,1

(γ

2π

)Pm,f−1
Pm,f∑

p=1

ψt,m,f

(
p
∣∣∣xk

)

Pm,f

⎫
⎬
⎭ .

(11)

Hence, for our problem, an approximate partition posterior is the following

qk(xk(t)|yt, xk(t − T)) ∝ p(yt|xk(t))p(xk(t)|xk(t − T)), (12)

where p(yt|xk(t)) is given in (11) and p(xk(t)|xk(t − T)) = N (hT (xk(t − T)), Σu) with Σu =

4When the targets are moving closely in tandem, there is a possibility that the beamformer block may not resolve them.

Hence, they can be treated as a single target. In other cases, the independence assumption still works. However, if high resolution

observations (e.g, top down video images of the target plane) are available, it is better to also model the interactions of targets.

A good example using Monté-Carlo Markov chain methods can be found in [33].

13

diag{σ2
θ , σ

2
Q, σ2

φ}. Note that (11) will not be used as the data-likelihood of the particle filter. The

above approximate factorization of the data-likelihood is to make use of the partitioned sampling

strategy to propose particles. To calculate the particle filter weights, the full posterior uses the

observation density (9).

2) A Gaussian Approximation for Partition Posteriors: In this section, we derive a Gaussian

approximation to (12) to use as a proposal function for the particle filter. Hence, we use the

current observed data to propose the filter’s particle support, also incorporating target maneuvers

if there are any. This approximation can be done in two ways: (i) Laplace’s method or (ii) the

mode hungry Monte-Carlo method. The first method is an order of magnitude faster than the

second, but it is not as robust. The filter monitors its tracking and can decide to switch between

methods to find the partition posteriors.

By default, the filter uses Laplace’s method to approximate p(yt|xk(t)) in (12) and thereby

derive the partition proposal functions of the particle filter, denoted as gk(xk(t)|yt, xk(t − T)).

Laplace’s method is an analytical approximation of probability density functions based on a

Gaussian approximation of the density around its mode, where the inverse Hessian of the

logarithm of the density is used as a covariance approximation [19]. It can provide adequate

approximations to posteriors that are as accurate and sometimes more accurate than the ap-

proximations based on third-order expansions of the density functions [18]. The computational

advantage of this approach is rather attractive because it only requires first- and second-order

derivatives. The condition for the accurate approximation is that the posterior be a unimodal

density or be dominated by a single mode. Hence, it is appropriate for approximating the partition

posteriors of the particle filter.

Laplace’s approximation requires the calculation of the data statistics. The Laplacian approxi-

mation is described in detail in [34]. For this paper, it is implemented with the Newton-Raphson

recursion with backtracking for computational efficiency. Because of the constrained nature of the

algorithm’s modified cost function, this method is sometimes susceptible to ”shadow tracking”

and can diverge under certain conditions (refer to Fig. 6). Shadow tracking refers to the scaled

target tracks in x-y that can lead to the same DOA track as illustrated in Fig. 6. Shadow tracks

may cause the Laplacian approximation deviate from the truth because of the motion smoothness

constraints used to calculate it.

Any divergence in the Newton-Raphson mode calculation can be detected by monitoring the

number of DOA measurements that fall into the gate of the mode estimate (Fig. 4). If there are

less than a threshold number of DOA’s (typically M/2) within a σg neighborhood of the Newton-

Raphson mode’s DOA track, then the particle filter uses the MHMH method for determining

the mode. After the MHMH iterations are over, if the MHMH corrected mode fails to have the

14

0 1 2 3 4 5 6 7 8 9 10 11
−50

0

50

100

150

 θ

in

 [
°]

 time

0 5 10

−50

0

50

 φ

in

 [
°]

 time
−50 0 50 100

0

50

100
t=6s

 y

 x

Fig. 6: The particle filter is susceptible to shadow tracking, when only the Newton-Raphson

recursion is used to determine the data-likelihood function. (Top) DOA tracking results with

(solid line) and without (dotted line) MHMH correction. At t = 6s, the MHMH automatically

corrects the heading bias. (Bottom Left) True track (inside), the shadow track (middle) and the

diverged track (outside). The dotted line is without the MHMH correction. (Bottom Right) Filter

heading estimates. Note the MHMH correction at time t = 6s.

required number of DOA’s within its gate, the partition is declared dead. Details of the MHMH

method are omitted due to lack of space. The final expression for the partition proposal functions

to be used in the particle filter is given by

gk(xk(t)|yt, xk(t − T)) ∼ N (µg(k), Σg(k)) (13)

where the Gaussian density parameters are

Σg(k) =
(
Σ−1

y (k) + Σ−1
u

)−1

µg(k) = Σg(k)
(
Σ−1

y (k)xk,mode + Σ−1
u hT (xk(t − T))

)
,

(14)

where xk,mode is the mode of p(yt|xk(t)), and Σ−1
y (k) is the Hessian of p(yt|xk(t)) at xk,mode,

calculated by either one of the methods in this section.

D. Algorithm Details

Pseudo-code of the particle filter algorithm is given in Table I. The filter implementation

employs an efficient resampling strategy, named “deterministic resampling”, first outlined by

Kitagawa [35]. This resampling strategy is preferred because of (i) the efficient sorting of

the particles and (ii) the number of random number generations. The deterministic resampling

strategy also has known convergence properties [35]. Faster resampling schemes without conver-

15

gence proofs are also available [36] and these could make a difference in the filter computation,

especially when K = 1. Effects of the resampling stage can be seen at the computational analysis

done in Sect. VI.

TABLE I: Particle Filter Tracker Pseudo-Code

Given the observed data yt,f = {yt+mτ,f (p)}M−1
m=0 in [t, t + T), do

1. For i = 1, 2, . . . , N

• For k = 1, 2, . . . , K
sample x

(i)
k (t) ∼ gk(x

(i)
k (t)|yt, x

(i)
k (t − T)), given by Eqn. (13).

• Form x
(i)
t =

�
x

(i)
1 (t), x

(i)
2 (t), . . . , x

(i)
K (t)

�T

.

2. Calculate the weights

w∗(i)
t = w

(i)
t−T

p(yt|x
(i)
t)p(x

(i)
t |xt−T)�

k
gk(x

(i)
k (t)|yt, x

(i)
k (t − T))

,

where p(yt|x
(i)
t) is fully joint observation density, given by Eqn. (9).

3. Normalize the weights:

w
(i)
t =

w∗(i)
t�

i w∗
(i)
t

.

4. Make estimation: E{f(xt)} =
�N

i=1 w
(i)
t f(x

(i)
t).

5. Resample the particles:

• Heapsort the particles in a ascending order according to their weights: x
(i)
t → x̃

(i)
t .

• Generate ω ∼ U [0, 1).
• For j = 1, 2, . . . , N

a. u(j) = j−ω

N
,

b. Find i, satisfying
�i−1

l=1 w̃
(i)
t < u(j) ≤

�i

l=1 w̃
(i)
t ,

c. Set x
(j)
t = x̃

(i)
t .

6. Associate the DOA estimates with partitions using a nearest neighbor approach.

• Calculate the DOA track for each partition of x, x =
�N

i=1 w
(i)
t x

(i)
t , using the state update equation.

• Associate the nearest DOA estimates within a threshold angle distance, with each partition.
• Report all the unassociated DOA estimates to the MHMH block.

7. Delete partitions with the number of associated DOA estimates less than a threshold number (e.g., M/2).
8. Randomly merge the new partitions coming from the MHMH block, if there are any.

Finally, the partitions are managed by the specific interaction between the particle filter and the

MHMH block. New partitions are introduced into the particle filter, using the distribution supplied

by the MHMH block. First, the particle filter block deletes the DOA’s from the observed data that

belong to the partitions that it is currently tracking (gating) after estimation (Fig. 4). Gating here

is a simple distance tresholding operation and does not incur significant computation. Then, the

remaining DOA’s are used by the MHMH block to determine any new partition distributions. For

the particle filter to stop tracking a given target, a deletion operation is necessary. The particle

filter can delete partitions at either the proposal stage or after estimation. Lastly, note that our

16

implementation of the particle filter does not make partition associations such as partition split

or merge. We leave these decisions to a higher level fusion algorithm in the sensor network.

V. THE MHMH BLOCK

The objective of the MHMH block5 is to find any new targets in the observed data and

determine their probability density distributions. The MHMH block uses the matching pursuit

idea by Mallat [37] by consecutively applying the MHMH algorithm on the ungated DOA’s until

stopping conditions described below are satisfied. Each iteration of the MHMH block results in

a new target state vector distribution, whereas the total number of MHMH block iterations gives

the number of new targets.

The MHMH block employs the mode hungry Metropolis-Hastings sampling algorithm to

determine the distribution for the target that has the highest mode in the multi-target observation

density. The MHMH sampling algorithm [20] is an accelerated version of the Metropolis-

Hastings algorithm [38]–[41] that generates samples around the modes of a target density. The

pseudocode for the MHMH sampling algorithm is given in Table II (reproduced from [20]).

For our system, we use a random walk for the candidate generating function q(·) in Table II

with the walk noise variances set to σθ = 0.5◦, σQ = 0.01s−1, and σφ = 4◦. Cross sampling

is applied every Ljump = 2 iterations on subpartitions of size Ml, which is typically half the

number of MHMH particles NMHMH. For our problem, the sampling algorithm is iterated a total

of 150 iterations. Finally, the target density π(·) is obtained by setting K = 1 on the observation

density (9):

π(xi) ∝
F∏

f=1

M−1∏

m=0

⎧
⎨
⎩κf

0,1

(γ

2π

)Pm,f

+ κf
1,1

(γ

2π

)Pm,f−1
Pm,f∑

p=1

ψt,m,f

(
p
∣∣∣xi

)

Pm,f

⎫
⎬
⎭ . (15)

The pseudocode of the MHMH block is given in Table III. The algorithm creates a set of

particles to input the MHMH sampling algorithm. This initial set consists of some of the residual

DOA’s and a grid of Q-φ values. After the MHMH sampling is over, the mode of these particles

is monitored by two conditions. The first condition checks if there are sufficient DOA’s in the

mode’s DOA gate. This ensures that the mode is relatively accurate when used by the particle

filter. The second condition makes sure that mode belongs to a physical target as opposed to

some alignment of the clutter. If these conditions are not satisfied, the MHMH block exits and

no new partition is introduced. Otherwise, we resample N particles with replacement from the

5The MHMH block is not to be confused with the MHMH correction of the proposal stage.

17

TABLE II: MHMH Sampling Algorithm

1. At iteration l, decide if cross-jumping is needed for x (l), i.e., every Ljump = 2 iterations.
2. If not, then for each particle x i, i = 1, 2, . . . , NMHMH, use the Metropolis-Hastings scheme:

• generate a candidate y i using q(xi, yi),
• calculate the acceptance ratio

α(xi, yi) = min

�
1,

π(yi)q(yi, xi)

π(xi)q(xi, yi)

�
,

• sample u ∼ U(0, 1),

• if u ≤ α(xi, yi), set x
(l+1)
i = yi, else, x

(l+1)
i = x

(l)
i .

3. Use the Mode-Hungry scheme:

• determine a subpartition of size M l < NMHMH, (e.g.,Ml = NMHMH/2),
• order the current particles according to their probabilities in descending order: x i → x∗

j , where x∗ is the
ordered particle set,

• generate candidates y∗(1) for x∗(1) = {x∗

j |j : j = 1, 2, . . . , NMHMH − Ml}, using q(·, ·),

• calculate the acceptance ratio α(x∗(1), y∗(1)), and set x
(l+1)
j to x∗

j (1) or y∗

j (1), accordingly for
j = 1, 2, . . . , NMHMH − Ml,

• distribute Ml candidates y∗(2) from x∗(1) uniformly,

• set x
(l+1)
j to y∗(2) for j = NMHMH − Ml + 1, . . . , NMHMH.

MHMH output and declare a new partition in the particle filter. The DOA’s belonging to the

new mode are gated out, and the procedure is repeated.

TABLE III: MHMH Block Pseudo-Code

1. Let yg

t,f be the residual set of DOA observations from the particle filter. If there are no partitions in the particle filter,
then y

g

t,f = yt,f . Define Nθ as the number DOA’s in y
g

t,f .
2. Set Knew = 0. Create a uniform grid for Q and φ. Choose NQ starting values for Q based on the physical motion

constraints, and choose Nφ heading directions, uniformly spaced in (−π, π].
3. while Nθ > 5,

• {θi}
Nθ
i=1 = {yg

t+mτ,f (p)}4
m=0.

• Replicate the Q-φ grid Nθ times and combine it with each θi. Generate the initial set of particles:

{x(j)}
NθNQNφ

j=1 .
• Use MHMH (Table II) to identify one mode (corresponding to one of the targets) of the distribution.
• If the DOA gate of the highest probability particle has less than 5 DOA’s, break.
• If Q value of the highest probability particle is greater than Q th = 0, break.
• Resample N particles with replacement from the MHMH output. K new = Knew + 1. Report the resampled set

to the particle filter.
• Delete the DOA’s within 3◦ of the mode DOA track (gating) to obtain the residual y

g

t,f .

18

VI. COMPUTATIONAL COMPLEXITY

This section describes the computational requirements of the particle filter and MHMH blocks

described in Sect. IV and Sect. V, respectively. The preprocessing beamforming block has several

established efficient implementation methods based on Q-R matrix decomposition [21] and is

not considered here. This section uses the notations in Table IV to derive the implementation

complexities.

TABLE IV: Notations for Computational Complexity Analysis
Notation Description Typical values

N Number of particles 100
Ns State vector size 3
K Number of targets 3
M Number of batch samples for DOA estimation 10 (> 5)

P Number of DOA peaks in the beamformer pattern 3 (≥ K)

F Narrow-band beamformers at different center frequencies 1
Niter Number of iterations in Newton search 15

A. Computational Analysis of the Particle Filter Block

The choice of our proposal function drives the complexity and execution time of the tracking

algorithm. As expected complexity increases with the number of targets and the number of

particles used. The analytical complexity analysis and simulation results suggest that the overall

complexity of the algorithm is of O(NPKM). This is also apparent from the linear increase

in the total computational time in Fig.7. The computational time with respect to the number

of targets is approximately quadratic. Moreover, the complexity of the particle proposal stage

(Step 1 in Table I) and the weight evaluation stage (Steps 2 and 3 in Table I) are comparable.

For small number of particles, up to N = 500, the execution time of the Newton’s iteration

stage is considerably more compared to other stages. Note that this stage does not depend on

the number of particles used, but depends on the number of targets. The number of iterations

in the Newton search is typically between 10 and 20 because of the adaptive step-size and the

stopping conditions.

B. Computational Analysis of the MHMH Block

The computational requirements of the MHMH block are shown in Table VI. The main

complexity of the MHMH algorithm consists of generating the particles and identifing the data

mode. The MHMH complexity analysis is similar to that of the particle filter block and is based

on the algorithms in Tables II and III. The algorithm complexity is directly proportional to the

19

TABLE V: Computational Complexity Analysis - Particle Filter Block
Description (Equation) Number of Operations Complexity

Adds Mult. Trans. Other

Propose particles

(Table I - Step 1)

State xt update 6NK 12NK 8NK − O(NK)
xt|xt−T,yt (3)

Evaluate mode xmode 12NM 6NM 4NM 3NM O(NM)

Newton’s iteration K2N2
s M K2M 10K KPMa O(MK2)

G, H

Evaluate µg and Σg NK2N2
s 2NK2N2

s − − O(NK2)
(14)

Sample particles NK2N2
s NK2N2

s − NKNb
s O(NK2)

Update particle weights

(Table I - Steps 2,3)

Evaluate state likelihood, NK2N2
s NK2N2

s 2NKNs NKNa
s O(NK2)

proposal (13)

Evaluate data-likelihood 3NKPM 10NKM NKPM NKPMa O(NKPM)
(11)

Evaluate weights 3N 2N N − O(N)

State estimation NKNs NKNs − − O(NK)
(Table I - Step 4)

Resampling 2N − − 2Nc O(N)
(Table I - Step 5)

Overall O(NPKM)

a Modulo operations, b Random number generation, c Compare operations.

burn-in iterations, denoted by L, that the algorithm is run for convergence. Typically, the number

of burn-in iterations is in the range 150 to 400, proportional to the number NMHMH of particles

in the initial set. During each iteration, significant time is spent in evaluating the target density

π(·), shown in (15). As can be seen from Table VI, this depends on both on P and M .

TABLE VI: Computational Complexity Analysis - MHMH Block
Description (Equation) Number of Operations Complexity

Adds Mult. Trans. Other

Generate candidate yi LNNs LNN2
s − LNb O(LN)

(Table II Step 2)

Calculate acceptance ratio

(Table II - Step 2)

Evaluate π(·) 3LNPM 10LNM LNPM LNPMa O(LNPM)
Other LN − LN 2LNc O(LN)

Mode-Hungry scheme (Table III) − − − − O(LN log Nd)

a Modulo operations, b Random number generation, c Compare operations, d Sort operations.

20

100 200 300 400 500 600 700 800 900 1000

10
−3

10
−2

10
−1

10
0

Number of particles (N)

C
o
m

p
u
ta

ti
o
n
 t
im

e
 [
s
]

Total time

State update

Newton Iteration

Data likelihood

Resampling

(a) One target

100 200 300 400 500 600 700 800 900 1000

10
−3

10
−2

10
−1

10
0

Number of particles (N)

C
o
m

p
u
ta

ti
o
n
 t
im

e
 [
s
]

(b) Three targets

Fig. 7: Execution times for various particle filter stages.

VII. OTHER TRACKER SOLUTIONS

This section discusses alternative DOA tracking algorithms to replace the particle filter in

Fig. 3, namely the extended Kalman filter and the Laplacian filter. These algorithms incur less

computational cost than the particle filter. Laplacian filter solution can even be implemented in a

parallel fashion. However, the extended Kalman solution is difficult to extend to multiple targets.

In addition, the Laplacian filter performance is sensitive to its initialization.

A. Extended Kalman Filter

The EKF solution is an M-scan multihypothesis tracking (MHT) filter. As opposed to standard

Kalman filter based approaches, the observation equation (9) requires M snapshots of data to

perform state estimates. Hence, the usage of MHT here differs from traditional approaches.6

Compared to the particle filter approach that updates the state every T seconds, the MHT

approach estimates states every τ seconds, based on the sliding M-DOA snapshots. This is

similar to a sliding window approach [10], but assumes that the number of targets is fixed and

known since it is estimated by the MHMH block.

In the EKF approach explicit measurement-to-target associations have to be made. We use the

JPDA approach to generate a set of hypotheses, relating measurements-to-targets, during each

snapshot [10]–[13], [42]. Similar hypotheses are generated for each of the M DOA’s, starting

from time t. The best hypothesis at each snapshot is chosen, based on the probabilities obtained

from the JPDA. These M-best hypotheses are then used in associating the measurements-to-

targets at each snapshot. If a measurement-to-target association for a specific target cannot be

6In traditional MHT, using the M -scan associations from one snapshot t + (m − 1)τ are carried over to the next snapshot

t + mτ . However, associations here during each snapshot t + mτ depend only on the predicted measurement, based on state

xt, and do not depend on associations at t + (m − 1)τ

21

found, it is assigned a probability of zero. For each target, a modified innovation term is obtained

as

νk(t) = {βm(t) ⊗
(
yt+mτ (pk) − hθ

mτ x̂k(t|t − τ)
)
}M−1

m=0 , (16)

where yt+mτ (pk) is the measurement associated with the target k at time instant t + mτ and

βm(t) is the probability corresponding to the hypothesis at the mth snapshot obtained using the

JPDA. The EKF covariance update is

Pk(t|t) = Pcc (Pk(t|t − τ)) + (1 − Pcc)
(
Pk(t|t − τ) − Kk(t)Mk(t)K

T
k (t)
)

+ P̃, (17)

where P̃ = Kk(t)νk(t)ν
T
k (t)KT

k (t), Kk(t) is the Kalman gain, Pcc is the probability that the asso-

ciations are correct, Pk(t|t−τ) is the state prediction covariance, and Mk(t) is the measurement

covariance obtained as in the standard EKF [10].

B. Laplacian Filter

Laplacian filter is a Bayesian filter that uses the product of the partition proposal functions

(13), as the tracking posterior. Hence, the posterior of the Laplacian filter is a combination of

multi-target Gaussian approximations:

p(xt|yt,xt−T) =

K∏

k=1

qk(xk(t)|yt, xk(t − T)). (18)

This approximation asymptotically has an O(M−2) estimation error [18] for a single target.

However, it is difficult to analyze the asymptotic effects on the multi target posterior.

The Laplacian filter handles multiple targets using the partition approach. Each target posterior

is assumed independent. Hence, the filter can be parallelized for faster implementation. In

addition, because the Laplacian filter uses the Newton-Raphson recursion to calculate the data-

likelihood, its complexity is similar to the particle filter for N < 200. However, the particle

filter cannot be implemented in a parallel structure due to the presence of the cross terms in

the data-likelihood. In comparison to the EKF, we need M estimates from the EKF compared

to one estimate from the particle filter or Laplacian filter every T seconds. Furthermore, using

M JPDA steps to make explicit target-data associations during each estimate of the EKF also

increases its complexity. Considering this, the Laplacian filter complexity is less than that of the

EKF implementation.

VIII. SIMULATIONS

Table VII summarizes the simulation parameters used in this section. We first give a multi-

target multi-frequency tracking example. The automated system performance is demonstrated

22

next. Finally, we compare the tracking performance of the algorithms presented in the paper.

TABLE VII: Simulation Parameters
Number of particles, N 200 Beamformer batch period, τ 0.1s
θ state noise σθ,k 1 ◦ Clutter space parameter, γ 600

Q state noise σQ,k 0.05s−1 Probability of target miss, κf
0,K 0.1

φ state noise σφ,k 10 ◦ Number of batch samples, M 10
Measurement noise σθ 1 ◦ Number of DOA peaks, P 4 (≥ K)

Tracker sampling period, T 1s Number of beamforming frequencies, F 1

A. Multi-Frequency Tracking

Figure 8 shows a challenging three targets scenario, where the targets cross in the bearing

space as they are maneuvering. For this simulation, two independent layers of DOA estimates

are used each with the correct mean and a variance of (3◦)2. The particle filter does a good

job of keeping the target association as well as determining the maneuvers, which are most

prominent in the heading plot. In Fig. 8, the dashed line is the ground truth, whereas the solid

line is the particle filter estimates. The dots and diamonds represent the two independent noisy

DOA measurement sets.

There is a small bias in the filter DOA estimates between t = 4s and t = 6s where the targets

are crossing. This bias is, in part, also due to the target maneuvers, which start at t = 4s. The

filter maintains the track coherence in this difficult case by using the independent frequency

observations (when only one of them is present, we observed that the filter can confuse the

targets). Although its estimates deteriorate in the region where targets are crossing as well as

maneuvering, it locks back on the targets after the transient region.

0 1 2 3 4 5 6 7 8 9 10

0

50

100

 θ

in

 [
°]

 time in [sec]

0 5 10

−50

0

50

100

150

 φ

in

 [
°]

 time in [sec]
0 50 100

−20

0

20

40

60

 y

 x

1

2

3

1

2

3

1

2

3

Fig. 8: DOAs, represented by diamonds and dots, are generated by independent noise and are

input to the filter unsorted. Below, we also show the track and heading estimates.

23

B. System Simulation

This subsection simulates the automatic system, described by the block diagram in Fig. 3.

Two targets are being tracked by the system, where one target appears in the beamformer output

between t = 5s and t = 32s, and the other one between t = 11s and t = 37s (Fig. 9). The

targets are successfully initialized by the MHMH block and then deleted by the particle filter.

The track coherence is also maintained around t = 20s, because the particle filter also keeps the

target motion parameters. In this case, there were no false target initializations by the MHMH

block. The short bearing tracks between times t = 40s and t = 45s were also embedded into

the data set to demonstrate the ability to initiate and kill tracks.

0 5 10 15 20 25 30 35 40 45

−150

−100

−50

0

50

100

150

 θ

in

 [
°]

 time

(a) System Input

0 5 10 15 20 25 30 35 40 45

−150

−100

−50

0

50

100

150

 θ

in

 [
°]

 time

(b) System Result

Fig. 9: Two targets are successfully initialized and tracked by the automated system. The system

can successfully detect short target tracks as well.

In Fig. 10, we provide a simulation to demonstrate the performance of our detection scheme.

In this simulation, we randomly picked a target track for a duration of 1 second. We generated the

corresponding bearing track for M = 10 with varying bearing errors. We then added a spurious

track with M = 10 by generating random bearing estimates that are uniformly distributed in

[0, 2π). We repeated this for a Monte-Carlo run of size 100. During each simulation, we also

randomly replaced any bearings in the input data with random clutter with probability Pc to

simulate missing bearings. To determine the probability of missed detections in our initialization

algorithm, we counted the number of times our initialization algorithm failed to detect the target

and then divided that by the size of the Monte-Carlo run. For DOA error variances less than

2◦, the detection scheme is quite successful, i.e., the probability of miss is less than 0.1. As the

DOA noise increases above the gate size, the detection performance loses its monotonicity.

C. Comparisons of DOA Trackers

In Figs. 11, 12, and 13, Monte-Carlo simulations compare the estimates obtained using the

particle filter, the EKF, and the Laplacian filter. The state estimation performances of these filters

24

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.1

0.2

0.3

0.4

0.5

P
c
 = 10%

P
c
 = 20%

P
c
 = 30%

P
c
 = 40%

DOA variance in [◦]

P
ro

b
ab

il
it

y
o
f

m
is

s

(a)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
−150

−100

−50

0

50

100

150

200

DOA measurement

Estimated track

Actual track

θ
in

[
◦
]

time [sec]
(b)

Fig. 10: (a) Probability of missed detections in the MHMH block with varying noise variance

in the measurement data. A partition gate size of σg = 3 ◦ is used. (b) A sample realization with

σθ = 2◦ from the Monte-Carlo run that calculates the probability of miss in part (a).

are comparable. The Laplacian filter tends to have less variance than the particle filter in general,

because the actual posterior is wider than the Gaussian approximation. Hence, we can consider

the Laplacian filter as a mode tracker. The estimates of the particle filter can be further improved

by also adding cross partition sampling as suggested in [2] or auxiliary sampling [43].

The filters’ tracking performance in most cases are similar, when initialized correctly around

the true target state. However, the extended Kalman filter is more sensitive to errors in ini-

tialization compared to the other two filters. The EKF may have difficulty tracking the DOA’s

correctly, when initialized with the mean of the particle set generated by the MHMH block. The

EKF can completely lose the DOA tracks, if the initial estimates are not accurate, whereas the

other two filters can still absorb the discrepancies. There is also a notable decrease in the EKF

performance, when targets maneuver. The particle filter is the most robust to target maneuvers

compared to the other two methods due to the diversity provided by the particles.

We also compare the particle filter and the Laplacian filter presented in this paper with the

particle filter that uses the received acoustic signals directly (denoted as DPF) [4] in Fig. 14. For

the comparison, we use the classical narrow-band observation model to generate the acoustic

data as described in [4]. For the simulation, we use a constant frequency target at 150Hz, 8

microphone circular array with .45 wavelength separation, and a sampling frequency of 1000Hz.

For the synthetic target track, a process noise is added with variances σθ = .5◦, σQ = 0.05, and

σφ = 8◦. The process noise explains the abrupt changes in the heading estimates in Fig. 14 at

each time period. Also, the acoustic SNR at the array is approximately 7dB in the simulation.

To use the filters presented in this paper, we applied a simple MVDR beamformer on the

acoustic data at the center frequency and calculated DOA estimates. The filters in comparison use

the same noise variances for the state update equation. The DPF runs three orders of magnitude

25

slower than the particle filter presented here and performs better because the observation model

is perfectly matched by the data. The particle filter has a larger variance partly because of the

clutter handling mechanism that creates a noise floor for the pdf (for a single target, the PDF

is a raised Gaussian). Not surprisingly, the Laplacian filter show a similar estimation variance

as the DPF in bearing estimation because it tracks the mode of the target track with a narrower

posterior approximation.

IX. CONCLUSIONS

In this paper, we present an automated framework for multiple target DOA tracking based

on a batch measurement model. The DOA batches are treated as images to naturally handle

the data association and ordering issues. The presence of multiple targets is handled using

a partition approach. The observation likelihoods are calculated jointly and are assigned by

using the templates created by the state vectors and the state update equation. We present three

filters for the DOA tracking problem: the particle filter, the Laplacian filter, and the extended

Kalman filter. These filters offer computationally attractive alternative to filters based on acoustic

sensor outputs directly. The filters are compared in terms of computational cost, sensitivity to

initialization, and robustness. For the initialization of the automated DOA tracking system, we

also discuss a sampling algorithm based on the matching pursuit idea, using the mode hungry

Metropolis-Hastings method.

REFERENCES

[1] C.K. Sword, M. Simaan, and E.W. Kamen, “Multiple target angle tracking using sensor array output,” IEEE Trans. Aerosp.

Electron. Syst., vol. 26, pp. 367–372, Mar. 1990.

[2] M. Orton and W. Fitzgerald, “A Bayesian approach to tracking multiple targets using sensor arrays and particle filters,”

IEEE Trans. on Signal Processing, vol. 50, no. 2, pp. 216–223, February 2002.

[3] Y. Zhou, P.C. Yip, and H. Leung, “Tracking the direction-of-arrival of multiple moving targets by passive arrays: Algorithm,”

IEEE Trans. on Signal Processing, vol. 47, no. 10, pp. 2655–2666, October 1999.

[4] V. Cevher and J. H. McClellan, “General direction-of-arrival tracking with acoustic nodes,” IEEE Trans. on Signal

Processing, vol. 53, no. 1, pp. 1–12, January 2005.

[5] J. R. Larocque, J. P. Reilly, and W. Ng, “Particle filters for tracking an unknown number of sources,” IEEE Trans. on

Signal Processing, vol. 50, no. 12, pp. 2926–2937, Dec. 2002.

[6] T. Kailath, A.H. Sayed, and B. Hassibi, Linear Estimation, Prentice Hall, 2000.

[7] W.L. Brogan, Modern Control Theory, Prentice Hall, 1991.

[8] A. Doucet, N. Freitas, and N. Gordon, Eds., Sequential Monte Carlo Methods in Practice, Springer-Verlag, 2001.

[9] J.S. Liu and R. Chen, “Sequential Monte Carlo methods for dynamic systems,” Journal of the American Statistical

Association, vol. 93, pp. 1032–1044, September 1998.

[10] Y. Bar-Shalom and T. Fortmann, Tracking and Data Association, Academic-Press, 1988.

26

0 2 4 6 8 10 12 14 16 18
−50

0

50

100
θ

in
[
◦
]

time [sec]
(a) Particle filter

0 2 4 6 8 10 12 14 16 18
−50

0

50

100

θ
in

[
◦
]

time [sec]
(b) EKF

0 2 4 6 8 10 12 14 16 18
−50

0

50

100

θ
in

[
◦
]

time [sec]
(c) Laplacian filter

0 2 4 6 8 10 12 14 16 18
−3.5

−3

−2.5

−2

−1.5

−1

−0.5

lo
g

(v
/r

)

time [sec]
(d) Particle filter

0 2 4 6 8 10 12 14 16 18
−3.5

−3

−2.5

−2

−1.5

−1

−0.5

lo
g

(v
/r

)

time [sec]
(e) EKF

0 2 4 6 8 10 12 14 16 18
−3.5

−3

−2.5

−2

−1.5

−1

−0.5

lo
g

(v
/r

)

time [sec]
(f) Laplacian filter

0 2 4 6 8 10 12 14 16 18
−100

−50

0

50

100

150

φ
in

[
◦
]

time [sec]
(g) Particle filter

0 2 4 6 8 10 12 14 16 18
−100

−50

0

50

100

150

φ
in

[
◦
]

time [sec]
(h) EKF

0 2 4 6 8 10 12 14 16 18
−100

−50

0

50

100

150

φ
in

[
◦
]

time [sec]
(i) Laplacian filter

−200 −100 0 100 200 300 400
−300

−200

−100

0

100

200

300

400

x

y

(j) Particle filter

−50 0 50 100 150 200 250 300
−300

−200

−100

0

100

200

300

x

y

(k) EKF

−50 0 50 100 150 200 250 300
−100

−50

0

50

100

150

200

250

300

x

y

(l) Laplacian filter

Fig. 11: Monte-Carlo run results for each filter using 100 independent noise realizations using

Matlab’s boxplot command. The ground truth is shown with the dashed lines. The last row shows

the track estimates and their mean. In this example, the Laplacian performs quite well and hence

there were no MHMH iterations done in the proposal stage of the particle filter. This is due to

the smooth movement of the targets.

27

0 2 4 6 8 10 12 14 16 18
−150

−100

−50

0

50

100

150
θ

in
[
◦
]

time [sec]
(a) Particle filter

0 2 4 6 8 10 12 14 16 18
−150

−100

−50

0

50

100

150

θ
in

[
◦
]

time [sec]
(b) EKF

0 2 4 6 8 10 12 14 16 18
−150

−100

−50

0

50

100

150

θ
in

[
◦
]

time [sec]
(c) Laplacian filter

0 2 4 6 8 10 12 14 16 18
−3

−2.5

−2

−1.5

−1

−0.5

0

lo
g

(v
/r

)

time [sec]
(d) Particle filter

0 2 4 6 8 10 12 14 16 18
−3

−2.5

−2

−1.5

−1

−0.5

0

lo
g

(v
/r

)

time [sec]
(e) EKF

0 2 4 6 8 10 12 14 16 18
−3

−2.5

−2

−1.5

−1

−0.5

0

lo
g

(v
/r

)

time [sec]
(f) Laplacian filter

0 2 4 6 8 10 12 14 16 18
−200

−150

−100

−50

0

50

φ
in

[
◦
]

time [sec]
(g) Particle filter

0 2 4 6 8 10 12 14 16 18
−200

−150

−100

−50

0

50

φ
in

[
◦
]

time [sec]
(h) EKF

0 2 4 6 8 10 12 14 16 18
−200

−150

−100

−50

0

50

φ
in

[
◦
]

time [sec]
(i) Laplacian filter

−200 −150 −100 −50 0 50 100 150
−400

−300

−200

−100

0

100

200

x

y

(j) Particle filter

−100 −50 0 50 100 150 200
−150

−100

−50

0

50

100

150

x

y

(k) EKF

−150 −100 −50 0 50 100 150
−250

−200

−150

−100

−50

0

50

100

150

x

y

(l) Laplacian filter

Fig. 12: Monte-Carlo run results for each filter using 100 independent noise realizations for a

target that maneuvers rapidly. The last row shows track estimates and their mean. In this example,

the MHMH iterations in the Laplacian calculation were necessary to pull the Laplacian towards

the true track because of the abrupt maneuvers at t = 11s and t = 12s. Note that the filter track

estimates shadow the true track due to the constant velocity assumption.

28

0 2 4 6 8 10 12 14 16 18
−150

−100

−50

0

50

100

150

θ
in

[
◦
]

time [sec]
(a) Particle filter

0 2 4 6 8 10 12 14 16 18
−150

−100

−50

0

50

100

150

θ
in

[
◦
]

time [sec]
(b) EKF

0 2 4 6 8 10 12 14 16 18
−150

−100

−50

0

50

100

150

θ
in

[
◦
]

time [sec]
(c) Laplacian filter

0 2 4 6 8 10 12 14 16 18
−3

−2.5

−2

−1.5

−1

−0.5

0

lo
g

(v
/r

)

time [sec]
(d) Particle filter

0 2 4 6 8 10 12 14 16 18
−3

−2.5

−2

−1.5

−1

−0.5

0

lo
g

(v
/r

)

time [sec]
(e) EKF

0 2 4 6 8 10 12 14 16 18
−3

−2.5

−2

−1.5

−1

−0.5

0

lo
g

(v
/r

)

time [sec]
(f) Laplacian filter

0 2 4 6 8 10 12 14 16 18
−200

−150

−100

−50

0

50

φ
in

[
◦
]

time [sec]
(g) Particle filter

0 2 4 6 8 10 12 14 16 18
−200

−150

−100

−50

0

50

φ
in

[
◦
]

time [sec]
(h) EKF

0 2 4 6 8 10 12 14 16 18
−200

−150

−100

−50

0

50

φ
in

[
◦
]

time [sec]
(i) Laplacian filter

−150 −100 −50 0 50 100 150 200 250 300
−300

−250

−200

−150

−100

−50

0

50

100

150

x

y

(j) Particle filter

−100 −50 0 50 100 150 200
−150

−100

−50

0

50

100

150

x

y

(k) EKF

−100 −50 0 50 100 150 200
−200

−150

−100

−50

0

50

100

150

x

y

(l) Laplacian filter

Fig. 13: Same example in Fig. 12 without the MHMH correction. In this case, the Laplacian

filter cannot handle the maneuver. The particle filter can still track the target due to its particle

diversity. However, the estimates of the particle filter are now worse than the estimates with the

MHMH correction at the proposal stage.

29

0 2 4 6 8 10 12 14 16 18
0

50

100

150

θ
in

[
◦
]

time [sec]
(a) DPF

0 2 4 6 8 10 12 14 16 18
0

50

100

150

θ
in

[
◦
]

time [sec]
(b) Particle filter

0 2 4 6 8 10 12 14 16 18
0

50

100

150

θ
in

[
◦
]

time [sec]
(c) Laplacian filter

0 2 4 6 8 10 12 14 16 18
0

50

100

150

θ
in

[
◦
]

time [sec]
(d) EKF

0 2 4 6 8 10 12 14 16 18
0

50

100

150

200

250

φ
in

[
◦
]

time [sec]
(e) DPF

0 2 4 6 8 10 12 14 16 18
0

50

100

150

200

250

φ
in

[
◦
]

time [sec]
(f) Particle filter

0 2 4 6 8 10 12 14 16 18
0

50

100

150

200

250

φ
in

[
◦
]

time [sec]
(g) Laplacian filter

0 2 4 6 8 10 12 14 16 18
0

50

100

150

200

250

φ
in

[
◦
]

time [sec]
(h) EKF

Fig. 14: Monte-Carlo comparison of the DOA filters with the DPF filter presented in [4].

[11] Y. Bar-Shalom, “Tracking methods in a multitarget environment,” IEEE Trans. Automatic Control, vol. AC-23, pp. 618–626,

Aug. 1978.

[12] K.C. Chang and Y. Bar-Shalom, “Joint probabilistic data association for multitarget tracking with possibly unresolved

measurements,” IEEE Trans. Automatic Control, vol. AC-29, pp. 585–594, July 1978.

[13] L. Ng and Y. Bar-Shalom, “Multisensor multitarget time delay vector estimation,” IEEE Trans. ASSP, vol. ASSP-34, pp.

669–677, Aug. 1986.

[14] R. Karlsson and F. Gustafsson, “Monte Carlo data association for multiple target tracking,” in IEE Target Tracking:

Algorithms and Applications, Netherlands, 16-17 Oct. 2001.

[15] D. Crisan and A. Doucet, “A survey of convergence results on particle filtering methods for practitioners,” IEEE Trans.

on Signal Processing, vol. 50, no. 3, pp. 736–746, March 2002.

[16] J. MacCormick and M. Isard, “Partitioned sampling, articulated objects, and interface-quality hand tracking,” in Proceedings

of the Europen Conference on Computer Vision, 2000.

[17] M. Isard and J. MacCormick, “BraMBLe: A Bayesian multiple-blob tracker,” in 8th International Conference on Computer

Vision, 2001.

[18] L. Tierney and J. B. Kadane, “Accurate approximations for posterior moments and marginal densities,” Journal of the

American Statistical Association, , no. 81, pp. 82–86, 1986.

[19] A. Gelman, J. B. Carlin, H. S. Stern, and D. B. Rubin, Bayesian Data Analysis, Chapman Hall/CRC, 2004.

[20] V. Cevher and J. H. McClellan, “Fast initialization of particle filters using a modified Metropolis-Hastings algorithm:

Mode-Hungry approach,” in ICASSP 2004, Montreal, CA, 17–22 May 2004.

[21] D.H. Johnson and D.E. Dudgeon, Array Signal Processing: Concepts and Techniques, Prentice Hall, 1993.

[22] P. Stoica and A. Nehorai, “Music, maximum likelihood, and Cramér-Rao bound,” IEEE Trans. on ASSP, vol. 37, no. 5,

pp. 720–741, May 1989.

[23] W. Ng, J. P. Reilly, T. Kirubarajan, and R.-R. Larocque, “Wideband array signal processing using mcmc methods,” IEEE

30

Trans. on Signal Processing, vol. 53, no. 2, pp. 411–426, Feb. 2005.

[24] Y. Boers and J. N. Driessen, “Multitarget particle filter track before detect application,” IEE Proc. Radar, Sonar, and

Navigation, vol. 151, no. 6, pp. 351–357, Dec. 2004.

[25] M. G. Rutten, B. Ristic, and N. J. Gordon, “A comparison of particle filters for recursive track-before-detect,” in 8th

International Conf. on Info. Fus., July 2005, vol. 1, pp. 169–175.

[26] H. Wang and M. Kaveh, “On the performance of signal-subspace processing-part II: Coherent wide-band systems,” IEEE

Trans. on Acoustics, Speech, and Signal Processing, vol. ASSP-35, pp. 1583–1591, Nov. 1987.

[27] A.B. Gershman and M.G. Amin, “Wideband direction-of-arrival estimation of multiple chirp signals using spatial time-

frequency distributions,” in Proceedings of the Tenth IEEE Workshop on Statistical Signal and Array Processing, 29 Oct.-1

Nov. 2000, pp. 467–471.

[28] A.B. Gershman, M. Pesavento, and M.G. Amin, “Estimating the parameters of multiple weideband chirp signals in sensor

arrays,” IEEE Signal Processing Letters, vol. 7, no. 6, pp. 152–155, June 2000.

[29] A. Papoulis and S.U. Pillai, Probability, random variables and stochastic processes, McGraw Hill, 2002.

[30] J. MacCormick and A. Blake, “A probabilistic exclusion principle for tracking multiple objects,” in 7th International

Conference on Computer Vision, 1999, pp. 572–578.

[31] M. Evans, N. Hastings, and B. Peacock, Statistical Distributions, 3rd ed., Wiley, 2000.

[32] T. Edgoose, L. Allison, and D. L. Dowe, “An MML classification of protein sequences that knows about angles and

sequences,” in Pacific Symp. Biocomputing 98, Jan. 1998, pp. 585–596.

[33] Z. Khan, T. Balch, and F. Dellaert, “An MCMC-based particle filter for tracking multiple interacting targets,” Tech. Rep.

GIT-GVU-03-35, College of Computing, Georgia Institute of Technology, Oct. 2003.

[34] V. Cevher and J. H. McClellan, “An acoustic multiple target tracker,” in IEEE SSP 2005, Bordeaux, FR, 17–20 July 2005.

[35] G. Kitagawa, “Monte-Carlo filter and smoother for non-Gaussian nonlinear state space models,” Journal of Comp. and

Graph. Stat., vol. 5, no. 1, pp. 1–25, Mar 1996.

[36] M Bolić, P. M. Djurić, and S. Hong, “New resampling algorithms for particle filters,” in ICASSP, 2003.

[37] S. Mallat and S. Zhang, “Matching pursuits with time-frequency dictionaries,” IEEE Trans. on Signal Processing, vol. 41,

no. 12, pp. 3397–3415, Dec. 1993.

[38] N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth, A.H. Teller, and E. Teller, “Equations of state calculations by fast

computing machines,” Journal of Chemical Physics, vol. 21, pp. 1087–1092, 1953.

[39] W.K. Hastings, “Monte Carlo sampling methods using Markov chains and their applications,” Biometrika, vol. 57, pp.

97–109, 1970.

[40] S. Chib and E. Greenberg, “Understanding the Metropolis-Hastings algorithm,” The American Statistician, vol. 49, no. 4,

pp. 327–335, 1995.

[41] L. Tierney, “Markov chains for exploring posterior distributions,” The Annals of Statistics, vol. 22, no. 4, pp. 1701–1728,

1994.

[42] Samuel S.Blackman, Multiple-Target Tracking with Radar Application, Artech House, 1986.

[43] M.K. Pitt and N. Shephard, “Filtering via simulation: Auxiliary particle filters,” Journal of the American Statistical

Association, vol. 94, pp. 590–599, 1999.

