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We present a systematic theory of acoustic-phonon-mediated superconductivity, which incorpo-
rates Coulomb repulsion, explaining the recent experiment in Bernal bilayer graphene under a
large displacement field. The acoustic-phonon mechanism predicts that s-wave spin-singlet and
f -wave spin-triplet pairings are degenerate and dominant. Assuming a spin-polarized valley-
unpolarized normal state, we obtain f -wave spin-triplet superconductivity with Tc ∼ 20 mK near
ne = −0.6×1012 cm−2 for hole doping, in approximate agreement with the experiment. We further
predict the existence of superconductivity for larger doping in both electron-doped and hole-doped
regimes. Our results indicate that the observed spin-triplet superconductivity in Bernal bilayer
graphene arises from acoustic phonons.

Introduction.— New experiments in ABC-stacked
rhombohedral trilayer graphene (RTG) [1, 2] reported the
existence of superconductivity and multiple symmetry-
breaking phases, reminiscent of the phenomenology in
moiré graphene systems [3–23]. Remarkably, RTG allows
for two distinct superconducting phases, corresponding
to spin-singlet and spin-triplet pairings [2]. The discov-
ery of superconductivity in non-moiré RTG is a funda-
mental breakthrough as it implies that moiré and, by
implication, strong correlations are not essential condi-
tions for superconductivity in graphene-based systems.
Shortly after the discovery of superconductivity in RTG,
an electron-acoustic-phonon pairing mechanism was pro-
posed as a likely explanation [24]. Alternative theoret-
ical explanations focusing on electron-electron interac-
tions were also proposed afterward [25–30].

RTG is not the only superconducting possibility in
the moiréless graphene-based systems. A very recent ex-
periment [31] demonstrated that superconductivity can
emerge in Bernal bilayer graphene (BBG), Fig. 1(a), af-
ter applying an in-plane magnetic field that suppresses
a competing ordered state. The highest reported super-
conducting temperature in BBG is around 30 mK, and
superconductivity persists for an in-plane magnetic field
B‖ ≈ 150 mT, implying a likely spin-triplet pairing. The
experiment in BBG revealed a number of features that
are qualitatively similar to RTG. Therefore, it is reason-
able to ask if there is a universal phonon-mediated su-
perconducting mechanism in graphene-based materials,
particularly since even the observed superconductivity
in twisted bilayer graphene appears consistent with the
acoustic phonon mechanism [32].

In this Letter, we develop a systematic theory of
acoustic-phonon-mediated BBG superconductivity incor-
porating a realistic band structure and the detrimental
effect of Coulomb repulsion. We show that acoustic-
phonon-mediated superconductivity can indeed arise in
BBG for a wide range of doping, and s-wave spin-singlet
and f -wave spin-triplet pairings are degenerate and dom-

FIG. 1. Summary of the main results. (a) Top view of BBG.
(b) Predicted Tc of spin-triplet SC and the dependence on
half gate distance (d) and dielectric constant (ε). We as-
sume a spin-polarized normal state with ∆1 = 50 meV and
ne = −0.6 × 1012 cm−2. The results are consistent with the
experimentally extracted Tc for spin-triplet SC in Ref. [31].
Enhancement of superconductivity by tuning gate screening
is a crucial manifestation of our theory, which can be tested
experimentally. (c) Calculated Tc as a function of ne and ∆1

for an unpolarized normal state.

inant. Assuming a spin-polarized normal state (because
of the applied magnetic field), we obtain f -wave spin-
triplet superconductivity with a calculated Tc ∼ 20 mK
near hole-doping ne = −0.6 × 1012 cm−2 as shown in
Fig. 1(b). We obtain the gate distance (2d) and dielec-
tric constant (ε) dependence of Tc based on our micro-
scopic phonon theory. Our results suggest that the spin-
triplet superconductivity in BBG is likely due to acoustic
phonons. We predict the existence of superconductivity
for the higher doping region not yet explored experimen-
tally as shown in Fig. 1(c).
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Single-particle model.— The BBG is made of two layers
of graphene sheets that are stacked such that the B sites
of the top layer are on the A sites of the bottom layer as
plotted in Fig. 1(a). The low-energy single-particle states
near the K and −K valleys can be described by a k · p
Hamiltonian [1] given by

Ĥ0 =
∑
k

Ψ̂†(k)ĥkΨ̂(k), (1)

where ĥ(k) =
[
ĥ+(k)⊕ ĥ−(k)

]
1̂s, ĥ±(k) is a 4 × 4 ma-

trix encoding the low-energy bands near the ±K valley,
1̂s is the identity matrix in the spin space, and Ψ̂(k) is a
16-component column vector consisting of an electron an-
nihilation operator ψτσls with valley τ , sublattice σ, layer
l, and spin s. Note that the momentum k in Eq. (1) is
relative to the K or −K point. Our theory of BBG su-
perconductivity is explicitly based on the band structure
model of Eq. (1) using realistic band parameters [1].

The low-energy bands of BBG have large probability
on the A sites of the top layer (1A) and B sites of the
bottom layer (2B). The sublattice polarization gener-
ically suppresses electron-optical-phonon coupling [34–
36], making electron-acoustic-phonon coupling the dom-
inating contribution. Similar to RTG [24, 37], the su-
perconducting states with intralayer intersublattice pair-
ings should be generically suppressed for low-energy BBG
bands because one of the sublattices in each layer has
higher energy.

We formally diagonalize the Hamiltonian in Eq. (1) as
follows:

Ĥ0 =
∑
τ=±

4∑
b=1

∑
s=↑,↓

Eτ,b(k)c†τbs(k)cτbs(k), (2)

where Eτ,b(k) encodes the energy-momentum dispersion
of the bth band and valley τK, and cτbs(k) is an elec-
tron annihilation operator of valley τK, the bth band,
spin s, and momentum k. The operators ψτσls (in mi-
croscopic basis) and cτbs (in band basis) obey ψτσls(k) =∑
b Φτb,σl(k)cτbs(k), where Φτb,σl(k) is the wavefunction

of valley τK and band b. The (spinless) time-reversal
symmetry yields further constraints: E+,b(k) = E−,b(−k)
and Φ+b,σl(k) = Φ∗−b,σl(−k).

We model the displacement field (i.e., the applied out-
of-plane electric field) by adding −∆1 and ∆1 to the top
layer and the bottom layer respectively. See Supplemen-
tal Material (SM) for discussions on the Fermi surface
and the Van Hove singularity (VHS) [38]. With a nonzero
∆1, a band gap develops at the charge neutrality point,
and the low-energy bands manifest large density of states
(DOS) in both conduction and valence bands. We fo-
cus on the regime with |∆1| > 40 meV [39] where large
DOS is developed over a wide range of carrier densities,
consequently enhancing the superconducting possibility.
In Fig. 2(a), we plot the DOS as a function of carrier

FIG. 2. Total density of states (ρ) and superconducting tran-
sition temperature (Tc) without Coulomb repulsion. ne is the
total doping density including spin and valley degeneracy. (a)
ρ as a function of ne for ∆1 = 40−80 meV. (b) Tc for acoustic-
phonon-mediated superconductivity (without Coulomb repul-
sion) as a function of ne for ∆1 = 40−80 meV. To extract Tc,
we solve Eqs. (6) and (7) with 5000 energy levels from a fine
momentum grid with a spacing ∆k = 0.0021a−1

0 . a0 = 0.246
nm is the lattice constant of graphene.

density. The above-mentioned band properties are qual-
itatively reminiscent of RTG, but the DOS is smaller in
BBG (and hence generally weaker in superconductivity).
Acoustic-phonon-mediated superconductivity.— We

study superconductivity mediated by the in-plane
longitudinal acoustic phonons [32, 36]. The BCS pairing
interaction can be derived by ignoring the frequency
dependence in the phonon propagator, and the effective
attractive interaction is given by

ĤBCS = −g0

∑
σ,σ′,l,s,s′

∫
d2rψ†+σlsψ

†
−σ′ls′ψ−σ′ls′ψ+σls,

(3)

where g0 is the coupling constant of the acoustic-phonon-
mediated attraction. The interaction in Eq. (3) is in-
tralayer because it is inherited from in-plane longitu-
dinal acoustic phonons. The coupling constant g0 =
D2/(ρmv

2
s), where D is the deformation potential, ρm

is the mass density of monolayer graphene, and vs is the
sound velocity. Using D = 30 eV [40], ρm = 7.6 × 10−8

g/cm2 [41, 42], and vs = 2×106 cm/s, we obtain g0 ≈ 474
meV·nm2 [24, 36]. Notice that the magnitude of D is not
precisely known, and it might be off by a factor of 2
[32, 42].

The validity of BCS approximation relies on the re-
tardation effect, i.e., phonons are slower than electrons.
However, this might not be true for systems strongly af-
fected by a nearby VHS where the Fermi velocity may be
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suppressed. To check this, we estimate average the Fermi
velocity, v̄F = 2

√
|ne|/(~

√
πρ), where ne is the carrier

density and ρ is the total DOS (incorporating spin and
valley). For generic doping densities, we find that v̄F is
larger than the sound velocity vs, suggesting the validity
of the Migdal theorem and BCS approximation in BBG.
See SM for v̄F as a function of ne [38].

We now discuss the pairing symmetry in the low-
energy BBG bands. Only the intervalley Cooper pairs are
considered here because Eτ,b(k) 6= Eτ,b(−k) generically
suppresses the intravalley superconductivity [43, 44]. Fol-
lowing the classification scheme in literature [24, 32, 36,
45], the intervalley pairing symmetry (i.e., s-, p-, d-, and
f - wave) can be determined from C3z (threefold rota-
tion about the hexagon center) and spin SU(2) symmetry.
Similar to RTG [24], we find that the intralayer intersub-
lattice pairings are strongly suppressed in the low-energy
bands as one of the sublattices in each layer is at high
energy. Therefore, we focus only on the intralayer intra-
sublattice pairings, i.e., s-wave spin-singlet and f -wave
spin-triplet pairings, in the rest of this work.

To simplify the calculations, we adopt the single-band
approximation to where the Fermi energy EF lies. This
approximation is valid because of the energy separation
to remote bands. As we discussed previously, only the in-
tervalley intrasublattice pairings are taken into account.
The projected BCS pairing (to the bth band) is given by

Ĥ ′BCS =
−1

A
∑

g
(b)
k,k′c

†
+bs(k)c†−bs′(−k)c−bs′(−k′)c+bs(k′),

(4)

g
(b)
k,k′ =g0

∑
σ,l

|Φ+b;lσ(k)|2
∣∣Φ+b;lσ(k′)

∣∣2 , (5)

where
∑
≡
∑
s,s′
∑

k,k′ in Eq. (4), A is the area of the

system, and g
(b)
k.k′ is the momentum-dependent coupling

constant in the bth band. Because the acoustic-phonon-
mediated attraction respects an enlarged SU(2)×SU(2)
symmetry [i.e., independent spin rotational SU(2) sym-
metry within each valley], the s-wave spin-singlet and
the f -wave spin-triplet pairings are exactly degenerate.
The degeneracy can be broken by either the subleading
pairing glues (e.g., optical phonons which enhances the s-
wave spin-singlet pairing) or by symmetry breaking per-
turbations (e.g., an applied Zeeman field which favors the
f -wave spin-triplet pairing).

Within the mean-field approximation, one can derive
the linearized gap equation as follows (see derivations in
SM [38]):

∆s′s(k) =
∑
k′

χk,k′∆s′s(k
′), (6)

χk,k′ =
g

(b)
k,k′

A

tanh
[
E+b(k′)−EF

2kBT

]
2E+b(k′)− 2EF

, (7)

where kB is the Boltzmann constant, EF is the Fermi en-
ergy, and the superconducting order parameter is defined
by

∆s′s(k
′) =

1

A
∑
b

∑
k′

g
(b)
k,k′

〈
c−bs′(−k′)c+bs(k′)

〉
. (8)

The transition temperature Tc is determined by the high-
est T such that χk,k′ yields an eigenvalue 1.

We numerically solve Eqs. (6) and (7) for ∆1 = 40−80
meV and extract Tc as a function of doping in Fig. 2(b).
In Fig. 2(b), the highest Tc is around 2.5 K near VHS, and
Tc remains finite in a wide range of doping. Similar to
RTG [24, 46], the prevalence of superconductivity arises
from the energy dependence of χk,k′ [Eq. (7)], which
allows contributions from states away from EF . Due
to the SU(2)×SU(2) symmetry of the acoustic-phonon-
mediated attraction, the s-wave spin-singlet and f -wave
spin-triplet are exactly degenerate. Our results indicate
that the electron-acoustic-phonon mechanism is the likely
explanation for superconductivity in BBG, similar to the
previous results for RTG [24], although our calculated Tc
in Fig. 2(b) is relatively high (of course, lowering the
coupling g0 by using a smaller value of the deformation
potential constant would suppress Tc exponentially).
Suppression from Coulomb repulsion.— So far, we use

the BCS interaction in Eq. (3) to estimate Tc. Coulomb
repulsion can reduce the effective attraction and suppress
superconductivity. To investigate if superconductivity
survives in the presence of Coulomb repulsion, we qual-
itatively derive the effective pairing interaction incorpo-
rating the so-called µ∗ effect [47] in the following.

In two-dimensional materials, Coulomb interaction is
screened by the dielectric environment and nearby metal-
lic gates. We assume, consistent with experiments, that
BBG is capped by an insulator and is in the middle of
two metallic gates, and then the screened Coulomb in-
teraction is given by [36]:

VC(q) =
2πe2

ε

tanh(|q|d)

|q|
. (9)

In addition, the intraband screening by the carriers them-
selves might be significant due to the large DOS in BBG.
To incorporate the intraband screening, we adopt the
Thomas-Fermi approximation given by

VTF(q; EF ) =
VC(q)

1 + VC(q)ρ(EF )
, (10)

where ρ(EF ) is the total DOS at Fermi energy. The
Thomas-Fermi approximation is the static limit of
the random phase approximation, obtained by resum-
ming over bubble diagrams. When VC(q)ρ(EF ) � 1,
VTF(q; EF ) ≈ 1/ρ(EF ), which is independent of ε and d.

Besides screening, the renormalization from the high
energy states can also reduce the Coulomb repulsion in
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FIG. 3. Diagrammatic representation of self-consistent ladder
equation for the µ∗ effect. The single wiggly lines denote the
bare interaction U0; the double wiggly lines denote the renor-
malized interaction UR; the solid lines with arrows denote the
electron propagators. Note that k, k′, and p are in valley K
while −k, −k′, and −p are in valley −K.

the BCS channel, and we treat this by solving the lad-
der self-consistent equation [48] shown in Fig. 3. If we
ignore the momentum dependence of VTF(q; EF ) and use
U0(EF ) ≡ VTF(kF ; EF ), the renormalized interaction is
given by

UR(EF ) =
U0(EF )

1 + U0(EF )Γ(EF ;ωc; Λ)
, (11)

where Γ(EF ;ωc; Λ) is a function encoding the renormal-
ization from the energies satisfying ωc < |Eτb(k)−EF | <
Λ, ωc = 2vskF , and Λ is the energy cutoff. Equation (11)
denotes the effective Coulomb repulsion within an energy
range [EF − ωc, EF + ωc]. See SM for a derivation of Γ
[38].

We first concentrate on an unpolarized normal state
(i.e., absence of flavor polarization) and plot the associ-
ated effective pairing g∗ = g0 − UR as a function of dop-
ing for ∆1 = 40 − 80 meV in Fig. 4(a). Remarkably, g∗

remains positive for a wide range of carrier density, sug-
gesting that superconductivity persists in the presence of
Coulomb repulsion. Replacing g0 by g∗ in Eq. (5) and
solving Eqs. (6) and (7), we confirm that superconduc-
tivity indeed survives the Coulomb repulsion, but Tc is
noticeably reduced because the effective Coulomb repul-
sion suppresses the phonon-mediated attraction causing
the pairing. The resulting Tc is insensitive to ε and d, in-
dicating a strong screening situation. In Fig. 1(c), Tc as a
function of ne and ∆1 is summarized, providing a detailed
map for the search of superconductivity. The highest Tc
is around 0.3 K (1.2 K) in the hole (electron) doping. The
actual Tc would be lower since our mean-field BCS the-
ory in general overestimates Tc in two dimensions. Close
to VHS (at which g∗ is peaked), the non-adiabatic vertex
corrections [49, 50], which we ignore, can also modify Tc.

For spin-polarized valley-unpolarized normal states,
ρ(EF ) is half of the value in an unpolarized state, so the
intraband screening is weaker, resulting in a larger reduc-
tion of effective attraction. Therefore, we generically pre-
dict that the superconductivity arising in a spin-polarized
normal state should have a smaller Tc as compared to the
superconductivity in an unpolarized normal state. Note
that only f -wave spin-triplet superconductivity is allowed
as the spin-singlet pairing is completely suppressed in a

FIG. 4. Effective attraction (g∗) in (a) an unpolarized metal
and (b) a spin-polarized metal. Only attractive g∗ is shown.
We use the half gate distance d = 40 nm and dielectric con-
stant ε = 10 here. Note that the scales in ne are different by a
factor of 2 between (a) and (b) due to spin polarization in (b).
The peaks in each curve correspond to VHS. g∗ is generically
smaller in the spin-polarized case due to ρ(EF ) being half of
that in the unpolarized case.

spin-polarized normal state. In Fig. 4(b), we plot the
effective pairing g∗ in the presence of Coulomb repul-
sion as a function of doping for ∆1 = 40− 80 meV, and
demonstrate that g∗ remains positive in the vicinity of
VHS. Within the mean-field approximation, we find that
superconductivity exists near VHS in hole doping, and
the highest Tc (∼ 20 mK) depends on ε and d as shown
in Fig. 1(b). In the electron-doped regime, we also find
superconductivity with the highest Tc ∼ 0.5 K close to
VHS, and Tc is insensitive to ε and d, suggesting strong
screening of Coulomb potential.

Discussion.— The recent BBG experiment [31] re-
ported the existence of spin-triplet superconductivity
near ne = 0.57 × 1012 cm−2 in the presence of a fi-
nite in-plane magnetic field, while no superconducting
phase is found in the absence of a magnetic field for
|ne| < 0.8 × 1012 cm−2 in the hole doping. The experi-
ment also found multiple symmetry-breaking phases. We
argue below that our proposed electron-acoustic-phonon
mechanism can explain the BBG superconductivity phe-
nomenology [31].

In the experiment [31], a low-temperature competing
ordered state (with an insulator-like nonlinear resistiv-
ity) exists at ne = −0.59 × 1012 cm−2 in the absence
of a magnetic field. A sufficiently large magnetic field
suppresses the insulator-like state and creates a partially
“isospin” polarized metal with a finite spin polarization.
Based on our theory, f -wave spin-triplet superconductiv-
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ity from a spin-polarized valley-polarized metal happens
only near VHS. For ∆1 = 50 meV and a spin-polarized
metal, VHS is at ne = −0.6×1012 cm−2 (half of the ne in
an unpolarized metal) which is in good agreement with
the experimentally found ne = −0.57× 1012 cm−2 where
superconductivity is observed [31]. Assuming that the
metallic state near VHS is nearly spin-polarized by the
in-plane magnetic field, we obtain the highest Tc ∼ 20
mK which is in quantitative agreement with the experi-
mentally extracted Tc ≈ 26 mK. Our explanation is that
the superconductivity is preempted by the insulator-like
state near VHS, and superconductivity becomes the dom-
inant instability after the competing insulating state is
eliminated by an in-plane magnetic field. In Fig. 1(b),
we predict Tc as a function of the half gate distance d for
a few representative values of dielectric constant ε, which
should be tested experimentally.

The absence of superconductivity without a magnetic
field for |ne| < 0.8× 1012 cm−2 in the hole doped regime
is also consistent with our theory. Again, the interplay
between acoustic-phonon attraction and Coulomb repul-
sion results in observable superconductivity only in the
vicinity of VHS. For an unpolarized metal, the positions
of VHS [peaks in Fig. 2(a)] for |∆1| > 40 meV are outside
the parameter range in the experiments. We predict the
existence of superconductivity for larger doping as shown
in Fig. 1(c). Note that superconductivity might be super-
seded by interaction-induced symmetry-breaking phases,
which we do not consider in our theory. We also predict
observable superconductivity in the electron-doped side
for both an unpolarized metal and for a spin-polarized
half metal.

Since electron-acoustic-phonon coupling is essential,
one should expect a linear-in-T resistivity for T > Tonset

and a T 4 resistivity for T < Tonset [42, 51]. Based on
Ref. [51], we estimate that Tonset is around 10-20K, which
is beyond the highest temperature measured in the BBG
experiment [31]. We anticipate that a linear-in-T resistiv-
ity manifests for T > 20K near the same doping density
where superconductivity is observed.

Finally, we comment on the universal theory for su-
perconductivity in graphene-based materials. Since the
superconductivity phenomenology in RTG [24] and in
BBG, as well as in twisted bilayer graphene [32], can
be explained by acoustic phonons, it is likely, based
on simply Occam’s razor, that an electron-acoustic-
phonon mechanism accounts for superconductivity in all
graphene-based materials. We note that interaction ef-
fects are still important as they can induce symmetry-
breaking correlated phases, suppressing and preempting
superconductivity. Moreover, subleading pairing mecha-
nisms either from optical phonons or from other origins
(e.g., isospin fluctuations) may enhance Tc, lifting the
degeneracy between s-wave spin-singlet and f -wave spin-
triplet pairings. Our work presents the first qualitative
and semi-quantitative theory for BBG superconductivity

in reasonable agreement with experiment, and we specu-
late that acoustic phonons are responsible for supercon-
ductivity in graphene-based materials in general.
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SUPPLEMENTAL MATERIAL

In this supplemental material, we provide some technical details for the main results in the main text.

SINGLE-PARTICLE HAMILTONIAN AND BAND STRUCTURE

We adopt the k · p Hamiltonian from Ref. [1]. The ĥτ (k) in the main text is given by

ĥτ (k) =


−∆1 v0Π†(k) −v4Π†(k) −v3Π(k)

v0Π(k) ∆′ −∆1 t1 −v4Π†(k)

−v4Π(k) t1 ∆′ + ∆1 v0Π†(k)

−v3Π†(k) −v4Π(k) v0Π(k) ∆1

 , (S1)

where Π(k) = τkxa0 + ikya0, a0 is the lattice constant of graphene and ∆1 encodes the electric potential difference
from the displacement field. The other parameters are given by v0 = 2.261 eV, v3 = 0.245 eV, v4 = 0.12 eV,
t1 = 0.361 eV, and ∆′ = 0.015 eV. The basis of the matrix is (1A,1B,2A,2B).

The low-energy bands of BBG have large probability on the A sites of the top layer (1A) and B sites of the bottom
layer (2B). This property arises from the interlayer nearest-neighbor tunnelings which tend to form dimerized bonds
between 1B and 2A sites. To gain an intuitive understanding, one can use a 2 × 2 Dirac Hamiltonian per spin per
valley to describe the low-energy theory of BBG.

In this work, we focus on ∆1 = 40− 80 meV, corresponding to the experimentally relevant regime. As illustrated
in Fig. S1, BBG manifests multiple transitions in the band structure. For |∆1| > 0.038 meV, there exists a region
where annular Fermi surfaces are realized in the electron doping. The band structure with |∆1| = 38 meV realizes
a higher order VHS in electron doping. The same features also happen in hole doping with a smaller critical value
|∆1| = 10 meV.

FIG. S1. Density of states and evolution of Fermi surfaces. We construct DOS with a 10000 × 10000 momentum grid with
momentum cutoff Λ ∼ 0.15a−1

0 , where a0 is the lattice constant of graphene. The shapes of Fermi surfaces and the corresponding
carrier densities are labeled in both the electron-doped and hole-doped regimes.

FERMI VELOCITY

One issue in the BCS approximation for BBG is that the Fermi velocity (vF ) might not be much larger than the
acoustic phonon velocity (vs), implying that retardation might not take place. To analyze this, we estimate the
average Fermi velocity v̄F as a function of doping and density of states in the following.

ρ = g
kF

2π~v̄F
= g

√
4π|ne|/g
2π~v̄F

→ v̄F =

√
g
√
π

√
|ne|
ρ~

→ v̄F =

√
g
√
π

√
|ne| × (10−12cm2)

ρ× (eV.nm2)

1

6.582
108cm/s, (S2)
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where g = 4 is the degeneracy factor. Note that ρ is the total density of states. Therefore,

v̄F =

√
|ne| × (10−12cm2)

ρ× (eV.nm2)
× 1.71434× 107cm/s. (S3)

In Fig. S2, v̄F > vs for generic doping densities, backing up that the assumption of retardation. The exceptions are
(1) ne close to VHS (not resolved in our numerics) and (2) low carrier density in the electron doping. Interestingly,
our results suggest that retardation remains valid for ne slightly away from VHS.

FIG. S2. The average Fermi velocity (v̄F ) as a function of doping for ∆1 = 40− 80 meV.

DERIVATION OF GAP EQUATIONS

In this section, we focus only on the bth band and then drop the band index. With the mean field approximation,
Ĥ0 + Ĥ ′BCS becomes:

ĤMFT =
∑
s,s′

∑
k

C†ss′(k)ĥBdG,s′s(k)Css′(k) +A
∑
s,s′

∑
k,k′

∆∗s′s(k)
[
(g)
−1
]
k,k′

∆s′s(k
′), (S4)

where

CTss′(k) =[c+bs(k); c†−bs′(−k)], (S5)

ĥBdG,s′s =

[
E+(k)− EF ∆s′s(k)

∆∗s′s(k) −E−(−k) + EF

]
, (S6)

∆s′s(k
′) =

1

A
∑
k′

gk,k′
〈
c−bs′(−k′)c+bs(k′)

〉
. (S7)

In the imaginary-time path integral, we integrate out the fermions and derive the effective action given by

Seff =−
∑
ωn,k

ln
[
(−iωn + E+(k)− EF ) (−iωn − E−(−k) + EF )− |∆(k)|2

]
+Aβ

∑
k,k′

∆∗(k)
(
g−1

)
k,k′ ∆(k′), (S8)

where we have suppressed the spin indices and band index for simplicity. Near the transition temperature, we assume
the ∆(k) is infinitesimal and expand the logarithm. As a result, we obtain the Landau free energy density as follows:

F =
Seff

βA
≈ const +

1

βA
∑
ωn,k

|∆(k)|2

(−iωn + E+(k)− EF ) (−iωn − E−(−k) + EF )
+
∑
k,k′

∆∗(k)
(
g−1

)
k,k′ ∆(k′) +O(|∆(k)|4)

(S9)

=const− 1

A
∑
k

1− 2f(E+(k)− EF )

2 [E+(k)− EF ]
|∆(k)|2 +

∑
k,k′

∆∗(k)
(
g−1

)
k,k′ ∆(k′) +O(|∆(k)|4), (S10)
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where f(x) is the Fermi distribution function. We have used the spinless time-reversal symmetry yielding E+(k) =
E−(−k). The linearized gap equation can be obtained by differentiating ∆∗(k) on F ,

δF
δ∆∗(k)

= 0 = − 1

A
1− 2f(E+(k)− EF )

2 [E+(k)− EF ]
∆(k) +

∑
k′

(
g−1

)
k,k′ ∆(k′). (S11)

Note that the momentum indices can be viewed as matrix indices. After some algebraic manipulation, we obtain

∆(k) =
∑
k′

χk,k′∆(k′), (S12)

χk,k′ =
gk,k′

A
1− 2f(E+(k′)− EF )

2
[
E+(k′)− EF

] =
gk,k′

A
tanh

[
(E+(k′)− EF )/(2kBT )

]
2(E+(k′)− EF )

, (S13)

where T is the temperature. χk,k′ can be viewed as a matrix with the discrete momentum k and k′ being the matrix
indices. The transition temperature is obtained when χk,k′ yields a maximal egienvalue 1.

PARAMETERS IN NUMERICAL CALCULATIONS

To choose the appropriate grid spacing and energy cutoff, we need to make sure that the momentum grid spacing
is small enough to capture the intricate details in the Fermi surface near Van Hove singularity, and we have to make
sure that the cutoff is large enough. We have tested a few different momentum grid spacing and energy cutoff in our
calculations. Specifically, we tested momentum grid spacings ∆k ≈ 2× 10−3a−1

0 , 1× 10−3a−1
0 , and 5× 10−4a−1

0 with
5000, 10000, and 20000 low-energy levels, respectively. The Tc versus ne plots are almost identical, suggesting that
the results are converged, so we decide to use 2×10−3a−1

0 and 5000 energy levels. We also tested the cutoff for energy
levels and found that the results remain the same with more levels included.

COULOMB POTENTIAL

The Coulomb potential in the main text corresponds to

VC(q) =
2πe2

ε|q|
tanh(|q|d) = 2π × (1.44eV.nm)× a0

|q|a0
× tanh

(
|q|a0 ×

d

a0

)
=

2.23

ε

tanh
(
|q|a0 × d

a0

)
|q|a0

eV.nm2,

(S14)

where d is half gate distance and a0 is the lattice constant of graphene. The Tc results are mostly insensitive to d and
ε except for the hole-doped spin-triplet superconductivity emerging from a spin polarized metal.

DERIVATION OF Γ

The self-consistent ladder Dyson equation in Fig. 3 of main text corresponds to an algebraic equation as follows

−Ṽ ′(k′ − k) = −V (k′ − k) +
1

βA
∑

ωc<|ωn|<Λ

∑
p,|Ẽ+(p)|<Λ

V (p− k)
1

ω2
n + Ẽ2

+(p)
Ṽ (k′ − p), (S15)

where Ẽ+(p) = E+(p) − EF , Ṽ is the renormalized interaction, and V is the bare interaction. To simplify the
calculations, we drop the momentum dependence and use U0(EF ) ≡ VTF(kF ; EF ) with kF estimated by

√
4π|ne|/g

where g = 4 is the degeneracy factor. Solving Eq. (S15), we obtain

UR(EF ) =
U0(EF )

1 + U0(EF )Γ(EF ;ωc; Λ)
, (S16)

where

Γ(EF ;ωc; Λ) =
1

βA
∑

ωc<|ωn|<Λ

∑
p,|Ẽp|<Λ

1

ω2
n + Ẽ2

p

. (S17)
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To evaluate Γ(EF ;ωc; Λ), we assume the zero temperature limit (i.e., β →∞) and derive

Γ(EF ;ωc; Λ) =
2

A
∑

p,|Ẽp|<Λ

∫ Λ

ωc

dω

2π

1

ω2 + Ẽ2
p

=
1

A
∑

p,|Ẽp|<Λ

1

π|Ẽp|

[
− tan−1

(
|Ẽp|
Λ

)
+ tan−1

(
|Ẽp|
ωc

)]
. (S18)

The above expression can be efficiently evaluated numerically, and Γ(EF ;ωc; Λ) is insensitive to finite size effect. We
choose Λ = 100 meV in all the calculations.
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