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Hydrodynamic flow in two-dimensional electron systems has so far been probed only by dc transport and

scanning gate microscopy measurements. In this work we discuss theoretically signatures of the hydrodynamic

regime in near-field optical microscopy. We analyze the dispersion of acoustic plasmon modes in two-

dimensional electron liquids using a nonlocal conductivity that takes into account the effects of (momentum-

conserving) electron-electron collisions, (momentum-relaxing) electron-phonon and electron-impurity colli-

sions, and many-body interactions beyond the celebrated random phase approximation. We derive the dispersion

and, most importantly, the damping of acoustic plasmon modes and their coupling to a near-field probe,

identifying key experimental signatures of the crossover between collisionless and hydrodynamic regimes.

DOI: 10.1103/PhysRevB.99.144307

I. INTRODUCTION

In electron systems a collective charge mode exists at

frequency above the threshold for intra-band electron-hole

excitations. This mode is called “plasmon” [1,2] and is par-

ticularly useful for technological applications in the case of

two-dimensional (2D) electron systems. In this case, indeed,

plasmons are gapless modes typically falling in the mid-

infrared [3–5] or terahertz (THz) [6–8] frequency ranges.

In recent years plasmons in 2D materials [9–11] such as

graphene have attracted a great deal of attention because of

their ability to confine light on length scales much shorter than

the free-space wavelength [8,12], their long lifetimes [5,13],

and their gate tunability [3–5,14].

Due to the long-range nature of the bare electron-electron

(e-e) interaction, plasmons in 2D materials on a dielectric

substrate have a long-wavelength “unscreened” dispersion of

the form [1,2] ω ∝ √
q, where ω is the angular frequency

and q is the in-plane wave vector. Conversely, if the long-

range part of the e-e interaction is screened by, e.g., a nearby

conducting gate, the plasmon dispersion is modified into an

acoustic one (see, e.g., Ref. [15]), ω ∝ q.

Acoustic plasmons (APs) [7,8,15–17] are particularly in-

teresting because they can achieve larger mode confinement

with respect to their unscreened counterpart. This happens

for two reasons. First, an AP is more confined in the vertical

direction due to the presence of the metallic gate [12], with

*iacopo.torre@icfo.eu

the largest part of the electromagnetic energy density being

localized between the gate and the 2D material. Second,

due to the screening of the long-range part of the Coulomb

interaction, APs are softer (because the restoring force is

reduced) and carry high values of q, for a given value of ω.

This allows the study of interesting quantum nonlocal effects

[8], which become important when the plasmon dispersion

gets close to the boundary of the intraband electron-hole con-

tinuum located at ω = v
∗
Fq, v∗

F being the quasiparticle velocity.

With the term “quasiparticle” velocity we mean the Fermi

velocity as dressed by electron-electron (e-e) interactions

[1,2,18]. The same jargon and notation will be used below

for the Drude weight D∗, the density of states at the Fermi

energy N ∗, etc. The same quantities without the “∗” symbol,

e.g., vF, D, N , etc, will denote instead the noninteracting

counterparts.

In 2D conducting materials of extremely high electronic

quality, such as graphene encapsulated in hexagonal boron

nitride [19], e-e interactions induce, in the intermediate-to-

high-temperature regime, the so-called hydrodynamic trans-

port regime. In this regime, e-e collisions are so frequent

that they can establish a local thermal quasiequilibrium. This

happens when the e-e mean-free path ℓee ≡ v
∗
Fτee (here τee is

the e-e scattering time [20–24]) is much shorter than both

the mean-free path for momentum-relaxing collisions with

phonons or impurities ℓ ≡ v
∗
Fτ and the characteristic wave-

length [25,26] 1/q of external perturbations. In the ac regime,

we should also require [25–27] the angular frequency of the

perturbation ω to be much smaller than the e-e scattering rate

1/τee. Transport signatures of hydrodynamic behavior have
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FIG. 1. Sketch of the q-ω plane showing the relevant frequency

and length scales for the problem at hand, and the plasmon dispersion

(red and orange lines) for two different values of the screening

parameter � defined in Eq. (9). Red line: � ≫ 1. Orange line:

� < 1. The blue solid line is the electron dispersion ω = vFq while

the blue dashed line is the sound dispersion ω = vFq/
√

2 (ignoring

here many-body corrections). Different regimes of linear response

are highlighted. In the hydrodynamic regime (blue shaded region) the

Navier-Stokes equation (1) is applicable. In the overdamped regime

(magenta shaded region), Eq. (1) is still applicable but plasmons are

strongly damped. In the viscoelastic regime (green shaded region)

Eq. (1) can still be applied considering a frequency-dependent com-

plex viscosity [27,34].

been found in different high-quality materials like single- and

bilayer graphene [26,28–30], GaAs/AlGaAs heterostructures

[31,32], and PdCoO2 [33].

The rate γ ≡ 1/τ of momentum nonconserving collisions

with impurities and phonons and the e-e scattering rate γee ≡
1/τee define several regimes in the q-ω plane, which are

sketched in Fig. 1.

In the hydrodynamic regime [35] and at the level

of linear-response theory, the electron liquid can be de-

scribed by the continuity equation iωn(r, ω) = ∇ · J(r, ω),

n(r, ω) being the deviation of the particle density from

its equilibrium value n̄ and J(r, ω) the particle current,

and the Navier-Stokes equation [25–27] (see Appendix B

for a full derivation emphasizing the relation with kinetic

theory)

−iωJ(r, ω) = −γ J(r, ω) + ν∗∇2J(r, ω)

−
D∗

D

[

en̄

m
E(r, ω) +

1

n̄mK∗ ∇n(r, ω)

]

. (1)

Here, E(r, ω) is the electric field, e is the elementary

charge, m ≡ h̄kF/vF is the bare effective mass, kF being the

Fermi wave vector, K∗ = [n̄∂P/∂ n̄]−1 is the compressibility

[1,2,36], P = P(n̄) being the pressure, ν∗ is the kinematic

viscosity [25–27,35], D∗ (D) is the Drude weight of the

interacting [37,38] (noninteracting) electron system.

In this work, we identify signatures of the transition be-

tween the hydrodynamic (ω ≪ γee) and collisionless (ω ≫
γee) regimes in the dispersion and, most importantly, the

damping of AP modes. In the case of single-layer graphene

(SLG) at room temperature, for example, τee ≈ 0.15 ps at

typical carrier densities [24] (n̄ = 1.0 × 1012 cm−2, say) and

the crossover is expected to occur in the THz range.

Our work is structured as follows. In Secs. II and III,

we introduce the two main ingredients of our theory: the

nonlocal longitudinal conductivity σL(q, ω)—Eq. (2)—and

the effective electron-electron interaction potential vq,ω, both

calculated in the long-wavelength limit. Then, in Sec. IV,

we find AP modes, which are described by an equation of

the form qp = qp(ω) for every real frequency ω. Here qp is

a complex wave vector qp = Re(qp) + iIm(qp), which gives

access to both dispersion and damping. Section V is dedicated

to the analysis of the coupling of these modes to a near-

field probe. Finally, Sec. VI summarizes our main findings.

Appendices A–E contain a wealth of useful technical details.

II. THE NONLOCAL CONDUCTIVITY FROM LANDAU

KINETIC THEORY

The response of a 2D electron liquid to an external scalar

potential can be calculated using Landau kinetic equation

[1,2] for a normal Fermi liquid, which governs the response

of the quasiparticle distribution function to slowly varying

electromagnetic fields [27,34]. Its use is justified when the

excitation wavelength is sufficiently long compared to the

inverse of the Fermi wave vector kF, and when the excitation

energy h̄ω is sufficiently small compared to the Fermi energy

EF, and to the energy of the lowest interband excitation Eg.

As detailed in Appendices A–C, the linearized kinetic

equation can be solved by using a simple ansatz [27]. After

lengthy but straightforward algebra, we find the following

expression for the longitudinal nonlocal conductivity [39],

which controls the current response to an electric field parallel

to q:

σL(q, ω) =
iD∗/π

ω + iγ + ω+iγ+iγee

2
D∗

D

vF

v
∗
F

[

√

1 −
(

v
∗
Fq

ω+iγ+iγee

)2 − 1
]

− 1
2
D∗

D

K
K∗

v
2
Fq2

ω

. (2)
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Here, D = πe2n̄/m (K = N /n̄2) is the Drude weight (com-

pressibility) of the noninteracting system, N = Nf m/(2π h̄2)

being the density of states at the Fermi energy and Nf the

number of fermion flavors (e.g., Nf = 4 for graphene). In the

Landau theory of Fermi liquids [1,2], K/K∗ = (v∗
F/vF )(1 +

F s
0 ) and D∗/D = (v∗

F/vF )(1 + F s
1 ), where F s

0(1) is the spin-

symmetric dimensionless Landau parameter in the s (p) angu-

lar momentum channel [1,2,40]. The many-body corrections

v
∗
F/vF, K∗/K , and D∗/D can be calculated from approximate

theories [8,18,36,37] and are fundamental for a quantita-

tive interpretation of experimental data since, for example,

v
∗
F/vF ≈ 1.3 [18], K∗/K ≈ 0.8 [8], and D∗/D ≈ 1.5 [37] in

SLG at densities on the order of 1012 cm−2.

In deriving Eq. (2) we made the following assumptions.

(i) The momentum-conserving and the momentum-relaxing

collisions are described by one parameter each, i.e., differ-

ences between the relaxation times of the different angular

components of the distribution function [41,42] and the differ-

ence between τee and the viscosity time τv [24] are neglected.

(ii) Only the zeroth- and first-order, spin symmetric, Landau

parameters F s
0(1) are considered. Higher-angular-momentum

Landau parameters F s
l with l � 2 are typically smaller, unless

the system is highly correlated. We used these assumptions

to derive the simplest yet highly-nontrivial model for the

nonlocal longitudinal conductivity. However, the technique

we used in our derivation, based on analytical inversion of

tridiagonal matrices [43], easily allows the introduction of

different scattering rates for the different harmonics of the

distribution function [41,42] as well as higher-order Landau

parameters.

Equation (2) is the first important result of this work

because, despite its simplicity, it (i) embodies a wealth of

physical effects, including many-body effects beyond the

random phase approximation (RPA), (ii) allows us to span

the whole frequency range, from the hydrodynamic to the

collisionless regime, and (iii) is valid with no assumptions

on the relative values of the parameters, other than the ones

mentioned previously for the applicability of Landau kinetic

equation. In what follows, we will anyway assume that γee ≫
γ because the hydrodynamic regime is relevant only in this

case.

We now look at four special limits of Eq. (2). (i) We first

set q = 0, i.e., we consider the local conductivity. In this case,

Eq. (2) reduces to a Drude-like formula with a renormalized

Drude weight D∗ and a damping rate γ induced solely by

momentum-nonconserving collisions. The e-e collision rate

γee appears at order q2. Note that e-e interactions fully dis-

appear from σL(0, ω) in a Galilean invariant electron system

where D∗ = D because in this case [1,2] v
∗
F/vF = 1/(1 + F s

1 ).

(ii) Second, expanding to second order in |v∗
Fq/(ω + iγ +

iγee)| the square root in the denominator of Eq. (2) and taking

the limit ω ≪ γee, we obtain the hydrodynamic nonlocal

conductivity [24]

σ h
L (q, ω) =

iD∗/π

ω + iγ + q2
(

iν∗ − D∗

n̄mDK∗ω

) , (3)

where ν∗ ≡ D∗
v

∗
FvF/[4D(γee + γ )]. Ignoring many-body

renormalizations, our result for ν∗ reduces to the “classical”

formula for the viscosity of an electron gas [27,44], while

for Galileian invariant systems it reduces to the expression

given in Ref. [34] with F s
2 = 0. The quantity σ h

L (q, ω) can be

obtained directly by using Eq. (1) coupled to the continuity

equation. (iii) Third, if both many-body renormalizations and

e-e collisions are neglected we recover the response function

used in Ref. [45] to discuss the effect of diffusion (i.e.,

electron-impurity collisions) on 2D unscreened plasmons. (iv)

Finally, if the scattering rates γ and γee are both sent to

zero, the long-wavelength (q ≪ kF) limit of the collisionless

conductivity of a 2D electron system [46] with parameters

renormalized by e-e interactions is recovered.

III. THE SCREENED ELECTRON-ELECTRON

INTERACTION

The dispersion of plasmons in a material depends also on

the interaction potential vq,ω between charges in the material

itself. This quantity relates the Fourier transform of n(q, ω)

to the Fourier transform of the induced (i.e., Hartree) scalar

potential Vind(q, ω), i.e., Vind(q, ω) = vq,ωn(q, ω). In 2D ma-

terials the interaction potential is strongly affected by the

presence of nearby dielectrics or conductors. The interaction

potential for generic layered structures can be easily calcu-

lated [7,47]. For example, for a graphene sheet encapsulated

between hBN slabs of different thickness and in the presence

of a metallic gate, such a potential has been calculated in

Ref. [7]. For low frequencies (i.e., low compared to all, e.g.,

phonon, features in the dielectric functions of the nearby

dielectrics) and long wavelengths (i.e., for q much smaller

than the inverse of the dielectric thickness), vq,ω can be safely

replaced by its limit vq,ω ≈ limq,ω→0 vq,ω ≡ e2/C, C being

the capacitance per unit area of the structure. The reasoning

behind this approximation is as follows. The interaction po-

tential between two electrons in a 2D system is

vq = e2G(q, 0, 0), (4)

where G(q, z, z′) is the electrostatic Green function satisfying

q2ǫ‖(z)G(q, z, z′) − ∂z[ǫ⊥(z)∂zG(q, z, z′)] = 4πδ(z − z′),

(5)

where z = 0 is the plane where electrons roam, and ǫ‖ (ǫ⊥) is

the in-plane (out-of plane) dielectric constant of the dielectric

environment. This equation must be supplemented by the

boundary conditions at the metallic gate, i.e.,

qG(q, z = −d+, z′)

ǫ⊥(z = −d+)∂zG(q, z = −d+, z′)
= Z. (6)

Here, Z is the dimensionless impedance of the metallic gate

(Z = 0 for a perfect conductor). In presence of screening by

nearby conductors, the electrostatic Green function converges

to a finite limit in the long-wavelength limit. It is therefore

meaningful to define a capacitance per unit area

C ≡ lim
q→0

1

G(q, 0, 0)
. (7)

If we consider a structure made of a perfectly conducting gate

parallel to the 2D electron system and separated along the ẑ

144307-3
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FIG. 2. (a) Screening parameter � as a function of elec-

tronic density n and spacer thickness d for a single-layer

graphene/hBN/metal heterostructure like the one used in Ref. [8].

Results in this figure have been obtained by setting ǭzz = 3.5 and

Z = 0. Contour lines have been drawn for � = 0.25 (blue), 0.5 (or-

ange), and 0.25 (green). (b) Same as in (a) but for bilayer graphene.

direction by a dielectric spacer of thickness d and dielectric

tensor ǭ, the capacitance per unit area is C = ǭzz/(4πd ),

where ǭzz denotes the tensor component along the ẑ direction.

For all realistic experimental geometries [7,8] using, e.g.,

graphene encapsulated in hBN, the plasmon wavelength is

much longer than the thickness of the whole device and,

therefore, the replacement vq,ω → e2/C, i.e. the so-called

local capacitance approximation (LCA), is fully justified in

the THz regime where the hydrodynamic-ballistic crossover

takes place. All results reported in Figs. 3 and 4 refer to SLG

encapsulated in hBN.

IV. ACOUSTIC PLASMONS VELOCITY AND DAMPING

Mathematically, plasmons are zeros of the longitudinal

dielectric function [1,2] ǫL(q, ω) of the 2D electron system,

ǫL(q, ω) = 1 + iq2
vq,ωσL(q, ω)/(e2ω). Using the LCA the

latter becomes

ǫL(q, ω) = 1 − �−1 (−i)πq2
v

2
FσL(q, ω)

2ωD
, (8)

where

� =
C

e2N
, (9)

is a dimensionless parameter that characterizes how much

the e-e interaction is screened by the nearby dielectric

100 101

f [THz]

0.0

0.5

1.0

1.5

(a)

(b)

ω
/
(v

F
R

e[
q p

])

Λ = 0.25

Λ = 0.5

Λ = 2

100 101

f [THz]

0

1

2

3

4

v F
Im

[q
p
]/

γ

Λ = 0.25

Λ = 0.5

Λ = 2

FIG. 3. AP phase velocity normalized to the Fermi velocity

(a) and AP damping, normalized to the extrinsic damping γ , (b) as

functions of the frequency f = ω/(2π ), for different values of the

screening parameter: � = 0.25 (blue), 0.5 (orange), and 2 (green).

Results in this figure have been obtained by setting γ = 1012 s−1,

γee = 1013 s−1, and neglecting, for the sake of simplicity, many-

body renormalizations by setting v
∗
F/vF = K∗/K = D∗/D = 1. For

each value of �, the solid line denotes the result of the solution

of ǫL(q, ω) = 0, while the dashed (dash-dotted) line represents the

asymptotic collisionless (hydrodynamic) result. The vertical black

lines mark the frequency 2π f = γee around which the crossover

occurs.

environment. This is the most important parameter of our

theory since its value determines whether or not the crossover

between the collisionless and hydrodynamic regimes is clearly

discernible or not. In Fig. 2, we show its value as a function

of density and gate distance for an heterostructure made of

graphene separated from a metal gate by an hBN slab of

thickness d . It is evident that SLG allows to reach larger

values of � with respect to bilayer graphene thanks to its

smaller effective mass, especially at low densities.

The plasmon equation ǫL(q, ω) = 0 with ǫL(q, ω) as in

Eq. (8) can be solved for the plasmon wave vector qp. We

find qp(ω) = (ω/Sω )
√

1 + 2iŴω/ω, where Sω and Ŵω are

real functions of the frequency representing the velocity and

the damping of the mode respectively. These two functions

can be calculated analytically (see Appendix D) and the

result is shown in Fig. 3. We are now interested in the

asymptotic behavior of Sω and Ŵω for ω ≫ γee (collision-

less limit) and ω ≪ γee (hydrodynamic limit). In the former,

144307-4
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we find

Sc =
vF(�−1 + K

K∗ )
√

√

√

√

(4Dv
∗
F − 2D∗

vF )(�−1 + K
K∗ ) − D∗

v
∗
F

2D∗
v

∗
F

[

1 +

√

1 −
16v

∗
FD(v∗

FD − vFD
∗)(�−1 + K

K∗ )2

[(4Dv
∗
F − 2D∗

vF )(�−1 + K
K∗ ) − D∗

v
∗
F]2

]

, (10)

Ŵc =
γ

(2Dv
∗
F − D∗

vF )S2
h − 2(Dv

∗
F − D∗

vF )S2
c

v
3
FD

∗ + γee

S2
c − S2

h

v
2
F

(4Dv
∗
F − 2D∗

vF )(�−1 + K
K∗ ) − D∗

v
∗
F

2DvF

√

1 −
16v

∗
FD(v∗

FD − vFD
∗)(�−1 + K

K∗ )2

[(4Dv
∗
F − 2D∗

vF )(�−1 + K
K∗ ) − D∗

v
∗
F]2

, (11)

while in the latter, we find

Sh = vF

√

D∗(�−1 + K
K∗

)

2D
, (12)

Ŵh =
γ

2
+

D∗
vFv

∗
Fω

2

8D(γ + γee)S2
h

. (13)

Equation (10)–(13) are the second important result of this

work. In particular, Eqs. (12) and (13) can be obtained by

directly solving Eq. (8) with the conductivity given in Eq. (3)

and ignoring terms of order higher than one in ω/γee.

From these results one can easily understand why achiev-

ing high values of the screening parameter � is of pivotal

importance to observe the crossover from the collisionless to

the hydrodynamic regime. Indeed, in the limit � → 0, we

have Sh = Sc = vF

√
D∗/(2D�) and Ŵh = Ŵc = γ /2. There-

fore, for small values of �, no crossover can be observed as

Sh = Sc and Ŵh = Ŵc, and the damping of the AP mode is

completely controlled by momentum-relaxing collision, with

γee dropping out of the problem.

On the other hand, for � ≫ 1, the velocities in the

two regimes converge to distinct values. The velocity of

the AP mode in the collisionless regime tends to a value

which is close (ignoring here, for the sake of simplic-

ity, many-body corrections) to the Fermi velocity, Sc →
vF, while in the hydrodynamic regime it converges to the

speed of sound in a neutral Fermi liquid [48,56], i.e., Sh →
vF

√
(D∗K )/(2DK∗) ≈ vF/

√
2. The situation is even more

dramatic for the damping Ŵω. In the hydrodynamic regime,

and for � ≫ 1, we have Ŵh ≈ γ /2 + ω2/[4(γ + γee)], while

Ŵc ≈ γ + γee, implying that the extrinsic dissipation con-

trolled by γ becomes twice more efficient with respect to the

� ≪ 1 case and a new damping mechanism controlled by γee

kicks in. In Fig. 3, we show the impact of � on the real and

imaginary parts of qp. When frequency increases, the damping

starts to acquire a significant contribution from e-e collisions.

This shows up as viscous dissipation in the hydrodynamic

regime—see the second term in Eq. (13). In this regime,

indeed, the contribution to the damping is proportional to

q2 and therefore to ω2, since we are probing the damping

along the AP dispersion. When frequency is further increased

above γee, the e-e contribution to the damping saturates to a

finite value. Note that since in hydrodynamic electron liquids

γee ≫ γ , this contribution can be the dominant one even with

moderate values of � and lead to a significant increase of the

imaginary part of q, as shown in Fig. 3(b).

V. COUPLING EFFICIENCY TO A NEAR-FIELD PROBE

In order to design experiments that are able to probe

the collisionless to hydrodynamic crossover with light, it is

important also to consider the coupling strength of APs to

an external field [49]. We characterize the coupling to an

external near-field probe using the quantity ηz(ω) defined by

the ratio between the power 〈W 〉AP(z) fed into the AP mode

by a dipole source of strength p and frequency ω, located at

an height z, with its axis perpendicular to the 2D liquid, and

the power radiated by the same source in vacuum, given by

Larmor’s formula

WLarmor =
p2ω4

3c3
. (14)

We characterize the effect of the dipole by an oscillating

charge density

ρext(q, z′, ω) = −pδ′(z′ − z), (15)

where δ′(z) is the derivative of δ(z) with respect to

its argument. The field it generates is Ed(r, z, ω) =
−∇φd(r, z, ω), with

φd(r, z, ω) =
∫

d2q

(2π )2
eiq·r

∫

dz′G(q, z, z′)ρext(q, z′, ω)

=
∫

d2q

(2π )2
eiq·r pG′(q, zd , z), (16)

where G(q, z, z′) is the electrostatic Green function defined in

Sec. III and G′(q, z, z′) ≡ ∂zG(q, z, z′).
The field Ed(r, z, ω) induces a charge oscillation in the

electron liquid, which absorbs an average power

〈W 〉(z) =
∫

d2r
1

2
Re[−eJ∗(r, ω) · Ed(r, 0, ω)]

=
ωe2 p2

2

∫

dqq

2π

|G′(q, z, 0)|2

G(q, 0, 0)
L(q, ω). (17)

Here L(q, ω) ≡ −Im[1/ǫL(q, ω)] is the loss function of the

electronic system. The details of this derivation are presented

in Appendix E.

Since we are interested only in the power fed into the AP,

which will be denoted by the symbol 〈W 〉AP(z), we consider

only the contribution to the above integral coming from wave

vectors smaller than the edge qeh of the intraband electron-

hole continuum, qeh(ω) ≡ lim�→∞ Re[qp(ω)].
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FIG. 4. Coupling efficiency ηz(ω) as a function of frequency.

Results in this figure refer to SLG separated from a metal gate

by an hBN spacer of thickness d = 4 nm, having ǭxx = ǭyy = 6.68

and ǭzz = 3.56. Squares correspond to excitation in the center of

the spacer z = −2 nm, while circles correspond to z = 10 nm,

above SLG. Solid (dashed) lines represent the approximate result of

Eq. (19) for excitation at z = −2 nm (z = 10 nm), setting Z = −0.5.

Different colors refer to different values of the screening parameter:

� = 0.25 (blue), 0.5 (orange), and 2 (green). All other parameters

are as in Fig. 3.

Finally, using the definition of the coupling efficiency as

the ratio ηz(ω) ≡ 〈W 〉AP(z)/WLarmor, we obtain the expression

ηz(ω) =
3c3

4πω3

∫ qeh (ω)

0

dqq
|G′(q, z, 0)|2

G(q, 0, 0)
L(q, ω). (18)

In Fig. 4, we show the numerically-calculated dependence

of ηz(ω) on frequency for different vertical positions z of

the dipole for the aforementioned case of a 2D material

separated from a perfect metal located at z = −d by a dielec-

tric spacer. In this case, for long wavelengths, G(q, z, 0) ≈
e−qz/C if z > 0 and G(q, z, 0) ≈ (z + d )/(dC) 0 > z > −d .

Furthermore, if dissipation is small, we can approximate

the loss function, in the relevant range of wave vectors,

as a delta function peak L(q, ω) ≈ π |Z|Re(qp)δ(q − Re(qp))

with Z ≡ [Re(qp)∂qǫL(q, ω)|q=qp
]−1 = −[2 + qP∂qσL(q, ω)

|q=qp
/σL(qp, ω)]−1 ≈ −1/2. Using these approximations in

Eq. (18) we get the approximate result for ηz(ω):

ηz(ω) ≈
3π |Z|c3[Re(qp)]3

ǭω3
×
{

dRe(qp)e−2Re(qp )z z > 0

[dRe(qp)]−1 0 > z > −d
,

(19)

where Z ≡ [Re(qp)∂qǫL(q, ω)|q=qp
]−1 = −{2 + qp∂q ln[σL

(qp, ω)]}−1 ≈ −1/2. Since qpd is a small number, we see

that the AP modes are much more coupled to a dipole located

between the material and the gate. This happens because the

electric field of AP modes is mainly concentrated in the spacer

region [50]. This suggest that to couple efficiently to these

modes, structures specially designed for launching plasmons

should be put in the region where the field is concentrated.

VI. CONCLUSION

In summary, we have studied the dispersion and damping
of APs in a 2D electron liquid at the crossover between the
hydrodynamic and collisionless regimes. We have found that,

in the presence of strong screening by an external gate, both
the velocity and the damping of AP modes are enhanced in
the collisionless regime, with the enhancement being more
dramatic for the damping. If the screening is strong enough,
i.e., if � > 1, well defined APs with a phase velocity smaller
than the Fermi velocity vF (but larger than the sound velocity

≈vF/
√

2) are allowed in the hydrodynamic regime.
Our theory relies on the presence of only one electron

band close to the Fermi level and cannot therefore be directly
applied to graphene close to charge neutrality. Interestingly,
we notice that the hydrodynamic theory for graphene (see,
e.g., Ref. [48]) also predicts (after taking into account
the screening of the electric potential by a metal gate)

that the plasmon velocity converges to ≈vF/
√

2 for low
electron densities. A more general kinetic theory approach
for single-layer graphene was developed in Refs. [51,52],
neglecting Landau parameters.

The crossover between the collisional and the hydrody-
namic regime can be considered the 2D electronic analogous
of the transition between the first and zero sound in neutral
Fermi liquid. This was predicted by Abrikosov and Khalat-
nikov [53,54] and experimentally verified [55], for example,
in liquid He3.

Notice that some properties of plasmons in 2D Fermi
liquids have been discussed in two recent publications,
Refs. [52,56]. However, the former mainly focusses on the
difference between long-range and short-range interactions,
and considers only the many-body compressibility renormal-
ization. In the latter work, effects beyond RPA are neglected,
and so are momentum nonconserving processes. We have,
however, demonstrated that the latter processes are important
to correctly describe the plasmon damping and introduce the
possibility of having overdamped excitations at low frequen-
cies and long wavelengths, as shown in Eqs. (11) and (13). The
nonlinear electromagnetic response of a Dirac electron fluid
at the crossover between the collisionless and hydrodynamic
regimes has been discussed in Ref. [57].

ACKNOWLEDGMENTS

This work has been sponsored by the European Union’s

Horizon 2020 research and innovation programme under

Grant Agreement No. 785219 “Graphene Core2” and via

the European Research Council (ERC) Grant Agreement No.

786285. B.V.D. is supported by a post-doctoral fellowship

of the Flemish Science Foundation (FWO-Vl). F.H.L.K. ac-

knowledges financial support from the Spanish Ministry of

Economy and Competitiveness, through the “Severo Ochoa”

Programme for Centres of Excellence in R&D (SEV-2015-

0522), support by Fundacio Cellex Barcelona, Generalitat

de Catalunya through the CERCA program, and the Mineco

grant Plan Nacional (FIS2016-81044-P) and the Agency for

Management of University and Research Grants (AGAUR)

2017 SGR 1656. F.M.P. and L.V.d.C. were supported by

the Methusalem Program of the Flemish Government. We

thank Niels Hesp and Hanan Hertzig Sheinfux for useful

discussions.

APPENDIX A: LINEARIZED BOLTZMANN EQUATION

For sufficiently long wavelengths (long compared with the

inverse of the Fermi wave vector kF) and low frequencies (low

144307-6



ACOUSTIC PLASMONS AT THE CROSSOVER BETWEEN … PHYSICAL REVIEW B 99, 144307 (2019)

with respect to the Fermi energy EF and to the energy Eg of

the lowest interband excitation), an interacting 2D electron

system can be described as a gas of weakly interacting quasi-

particles [1,2]. If the system is in the paramagnetic state and

there is no external perturbation coupling to the spin degrees

of freedom, the dynamics of quasiparticles is governed by the

classical, spin-independent, Hamiltonian [1,2]

H(r, p, t ) = ǫ∗
p − eφ(r) + UL(r, p, t ). (A1)

Here, ǫ∗
p is the band energy of an electron with momentum

p, renormalized by e-e interactions, φ(r, t ) is the electric

scalar potential, and UL(r, p, t ) is the spin-averaged Landau

interaction potential defined by

UL(r, p, t ) =
L2

2h̄2

∑

σσ ′

∫

d2 p′

(2π )2
fpσ,p′σ ′δ f (1)(r, p′, t ), (A2)

where fpσ,p′σ ′ is the Landau interaction function[2] between

an electron with momentum p and spin σ and an electron with

momentum p′ and spin σ ′, δ f (1)(r, p, t ) is the deviation of the

one-particle, spin summed, distribution function f (1)(r, p, t )

from its equilibrium value, and L2 is the surface of the 2D

electron system. The Landau interaction function describes, in

a mean-field way, dynamical exchange and correlation effects

arising from the deviation of the occupation numbers of the

electronic states from their equilibrium values.

The classical Hamiltonian (A1) determines the response of

quasiparticles via the Landau kinetic equation [1,2]:

[∂t + vvv(r, p, t ) · ∇r + F(r, p, t ) · ∇p] f (1)(r, p, t )

= Sel{ f (1)(r, p′, t )}(r, p, t ) + See{ f (1)(r, p′, t )}(r, p, t ),

(A3)

where vvv(r, p, t ) ≡ ∇pH(r, p, t ) is the quasiparticle veloc-

ity, F(r, p, t ) ≡ −∇rH(r, p, t ) = −eE(r, t ) − ∇rUL(r, p, t )

is the total force acting on quasiparticles, E(r, t ) =
−∇rφ(r, t ) being the electric field, Sel{ f (1)(r, p′, t )}(r, p, t ) is

the collision integral that takes into account collisions with the

lattice (i.e. electron-phonon scattering) and electron-impurity

collisions, while See{ f (1)(r, p′, t )}(r, p, t ) is the collision inte-

gral for e-e scattering.

To simplify Eq. (A3) we introduce the following ansatz

[27]:

f (1)(r, p, t ) = f0(ǫ∗
p ) − f ′

0(ǫ∗
p )

+∞
∑

m=−∞
Fm(r, t )eimθp, (A4)

where f0(ǫ) = {exp[(ǫ − μ̄)/(kBT )] + 1}−1 is the equilib-

rium Fermi-Dirac distribution function at chemical potential

μ̄ and temperature T , f ′
0(ǫ) is its derivative with respect to the

energy ǫ.

Inserting this ansatz in Eq. (A3), retaining only terms that

are linear in the coefficients Fm(r, θp, t ), integrating over the

energy ǫ∗
p, Fourier transforming with respect to time, and

making use of the parametrization

fp↑,p′↑ + fp↑,p′↓

2
=

1

L2N ∗

∞
∑

l=−∞

F s
|l|e

il (θp−θp′ ) (A5)

of the Landau interaction function in terms of the so-called

dimensionless Landau parameters [2,40] F s
l – where, N ∗ is

the renormalized density of states at the Fermi level and θp is

the polar angle of the vector p – we obtain

−iω

+∞
∑

m=−∞
Fm(r, ω)eimθp + v

∗
F p̂ ·

[ +∞
∑

m=−∞

(

1 + F s
|m|
)

∇Fm(r, ω)eimθp + eE(r, ω)

]

= −
+∞
∑

m=−∞

[

Ŵel
m + Ŵee

m

]

Fm(r, ω)eimθp . (A6)

Here, E(r, ω) is the total electric field, i.e., the sum of the external field and the field generated by the electron distribution itself

(the Hartree self-consistent field), v
∗
F ≡ |∇pǫ

∗
p|p=h̄kF

is the Fermi velocity as renormalized by e-e interactions, p̂ = p/|p|, and the

relaxation coefficients Ŵee/el
m are defined in terms of the respective linearized collision integrals by

Ŵλ
m =

∫ ∞

−∞
dǫp

∫

dθp

2π
e−imθpSλ

1 {− f ′(ǫp′ )eimθp′ }(p), (A7)

where λ = ee, el identifies the scattering mechanism. Conservation of the particle number in collisions forces Ŵ0 to vanish for all

scattering processes. Similarly, the conservation of total momentum forces Ŵ±1 to vanish for e-e collisions, while electron-lattice

and electron-impurity processes are not subject to this constraint.

We are now interested in solving Eq. (A6) in the presence of translational invariance. To this aim, we perform a Fourier

transform on the spatial variable, multiply (A6) by exp(−inθp), and average over the angle θp. This yields the infinite matrix

equation

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

. . .
...

...
...

...
... . .

.

· · · a−2 b−1 0 0 0 · · ·
· · · b∗

−2 a−1 b0 0 0 · · ·
· · · 0 b∗

−1 a0 b1 0 · · ·
· · · 0 0 b∗

0 a1 b2 · · ·
· · · 0 0 0 b∗

1 a2 · · ·
. .

. ...
...

...
...

...
. . .

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

...

F−2(q, ω)

F−1(q, ω)

F0(q, ω)

F1(q, ω)

F2(q, ω)
...

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

= −
iev∗

F

2

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

...

0

E (+)(q, ω)

0

E (−)(q, ω)

0

...

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, (A8)
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where

an = ω + iŴee
n + iŴel

n (A9)

and

bn = b
(

1 + F S
|n|
)

. (A10)

Here, b = −v
∗
Fq(+)/2, with q(±) = qx ± iqy, and E (±)(q, ω) =

Ex(q, ω) ± iEy(q, ω).

The solution of Eq. (A8) requires the inversion of the

tridiagonal matrix M appearing on the left-hand side of this

equation. In what follows we evaluate the relevant elements

of M−1, using the continued fraction method [43], with the

aim of calculating the response of the electron density to a

longitudinal electric field.

Up to now our model has been completely general. For

the purpose of obtaining a simple expression for the response

function, we make the following assumptions: (i) the electron-

lattice and electron-impurity processes are characterized by

only one parameter, i.e., γ . We therefore have Ŵel
0 = 0 and

Ŵel
m = γ for |m| > 1. (ii) The e-e collisions are described

by only one parameter, i.e., γee, resulting in Ŵee
0 , Ŵee

±1 = 0,

and Ŵee
m = γee for |m| > 1. (iii) We consider only the zeroth-

and first-order Landau parameters, F s
0 and F s

1 , respectively,

while all the F s
l with l � 2 are set to zero. The solution

method presented in the next section can, however, be trivially

generalized to any finite number of Landau parameters and

relaxation rates.

With the aforementioned approximations, we find a0 = ω,

a±1 = ω + iγ , am = ω + iγtot, with γtot ≡ γ + γee for |m| �
2, while b0 = b(1 + F s

0 ), b±1 = b(1 + F s
1 ), and bm = b for

|m| � 2.

APPENDIX B: DERIVATION OF

HYDRODYNAMIC EQUATIONS

Following Ref. [27], we can obtain the hydrodynamic

equations by truncating the matrix Mi j , retaining only the

elements with i, j � 2.

For i = 0, we obtain the continuity equation

−iωn(q, ω) + iq · J(q, ω) = 0, (B1)

where the induced density is directly related to F0(q, ω) by

n(q, ω) ≡
∫

d2 p δ f (1)(q, p, ω) ≈ N
∗
F0(q, ω), (B2)

and the current is related to F±1(q, ω) by

J(r, ω) ≡
∫

d2 pvvv(r, p,ω) f (1)(r, p, ω)

≈
N ∗

v
∗
F

2

(

1 + F s
1

)

(

F−1(r, ω) + F1(r, ω)

iF1(r, ω) − iF−1(r, ω)

)

.

(B3)

In the above equations, we neglected, for consistency, terms

of higher order in the coefficients Fn(q, ω) and ignored the

thermal smearing of the Fermi-Dirac function.

From the two equations for i = ±1 and using

the equations for i = ±2 to eliminate F±2(q, ω),

we obtain

−iωJ(q, ω) = −γ J(q, ω) −
(v∗

F )2
(

1+F s
0

)(

1 + F s
1

)

2
iqn(q, ω)

−
e(v∗

F )2N ∗(1 + F s
1

)

2
E(q, ω)

−
(v∗

F )2
(

1 + F s
1

)

4(γ + γee − iω)
q2J(q, ω). (B4)

By taking the limit ω ≪ γ + γee in the last term and identify-

ing

(v∗
F )2

(

1 + F s
1

)

4(γ + γee)
= ν∗, (B5)

v
2
FN

2
=

n̄

m
, (B6)

v
∗
F

vF

(

1 + F s
1

)

=
D∗

D
, (B7)

n̄mvFv
∗
F

(

1 + F s
0

)

2
=

1

K∗ , (B8)

we obtain the Navier-Stokes equation (1) in the main text.

APPENDIX C: LONGITUDINAL RESPONSE

In this Appendix, we calculate the density response

to a longitudinal field. In this case, we write E(q, ω) =
−iqφ(q, ω), yielding E (±)(q, ω) = −iq(±)φ(q, ω). We are in-

terested in calculating the density response, which, as stated

in Eq. (B2), is proportional to F0(q, ω). The proper density-

density response function [2] of the system is then given by

χ̃nn(q, ω) =
N ∗F0(q, ω)

−eφ(q, ω)

= −N
∗{b[M−1]0,−1 + b∗[M−1]0,1}

= N
∗ a0[M−1]00 − 1

1 + F s
0

. (C1)

In writing the last equality we had to invert the matrix M in

Eq. (A8). We also used (i) the Kramers rule expression for the

inverse matrix elements [M−1]0,±1 = −D±1,0/D, [M−1]00 =
D0,0/D, where Di, j is the determinant of the matrix obtained

from M by suppressing the ith row and the jth column and

D = det[M]. (ii) The Laplace expansion on the zeroth column

of the determinant D, which yields D = a0D0,0 − b0D−1,0 −
b∗

0D1,0. (iii) b0 = b(1 + F s
0 ).

For a tridiagonal matrix M in the form (A8), a diagonal

element of the inverse matrix M−1 can be expressed as a

continued fraction [43]

[M−1]00 =
1

a0 − b1b∗
0

a1−
b2b∗

1
a2−···

− b0b∗
−1

a−1−
b−1b∗−2
a−2−···

=
1

a0 − 2|b|2(1+F s
0 )(1+F s

1 )

a1+(1+F s
1 )ξ (q,ω)

, (C2)
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where ξ (q, ω) respects the self-consistent equation

ξ (q, ω) =
−|b|2

a2 − |b|2

a2− |b|2
···

= −
|b|2

a2 + ξ (q, ω)
. (C3)

Solving for ξ (q, ω) and substituting the values of a2 and b, we obtain

ξ (q, ω) =
ω + iγtot

2

⎡

⎣

√

1 −
(v∗

F )2q2

(ω + iγtot )2
− 1

⎤

⎦. (C4)

Here, we chose the solution of Eq. (C3) with the positive sign of the square root to make sure that the first-order expansion of ξ

in powers of |b|2 in Eq. (C4) coincides with the truncation of the continued fraction up to first order in Eq. (C3).

Making use of Eqs. (C1)–(C2) and (C4), we obtain the final result

χ̃nn(q, ω) =
(

1 + F s
1

)

(v∗
F )2N ∗q2

ω(ω + iγ )
(

1 − F s
1

)

−
(

1 + F s
1

)[

iγeeω − ω
√

(ω + iγtot )2 − (v∗
F )2q2 + (v∗

F )2q2
(

1 + F s
0

)] . (C5)

Equation (C5) is the semiclassical density-density response

function of a 2D electron liquid, taking into account

momentum-conserving and momentum-nonconserving colli-

sions, and many-body effects through the renormalization

of vF and N , and the Landau parameters F s
0 and F s

1 . This

result can be easily converted into the longitudinal con-

ductivity in Eq. (2) of the main text using χ̃nn(q, ω) =
−iq2σL(q, ω)/(e2ω), Eqs. (B7) and (B8), and N /N ∗ =
v

∗
F/vF.

APPENDIX D: EXACT SOLUTION OF

PLASMON EQUATION

This Appendix is devoted to the calculation of the solution

of the plasmon equation ǫL(q, ω) = 0 with ǫL(q, ω) given by

Eq. (8) of the main text.

By rearranging the various terms, the equation ǫL(q, ω) =
0 is equivalent to

√

(ω + iγ + iγee)2 − (qv
∗
F )2 =

(

�−1 + K
K∗

)

v
∗
F

ωvF

(qvF )2 −
2Dv

∗
F(ω + iγ )

D∗
vF

+ (ω + iγ + iγee). (D1)

Under the condition

Re

[

(

�−1+ K
K∗

)

v
∗
F

ωvF

(qvF )2 −
2Dv

∗
F(ω + iγ )

D∗
vF

+ (ω+iγ+iγee)

]

� 0, (D2)

this becomes

(qvF

ω

)4

+ Q
(qvF

ω

)2

+ R = 0, (D3)

with

Q =
ωD∗

D

v
∗
F

vF
−2

[(

2
v

∗
F

vF
−D∗

D

)

(ω+iγ )−iD
∗

D
γee

](

�−1+ K
K∗

)

ω
(

�−1+ K
K∗

)2 D∗

D

v
∗
F

vF

,

(D4)

and

R = −
4(ω + iγ )

[

D∗

D
(ω + iγ + iγee) − v

∗
F

vF
(ω + iγ )

]

ω2 v
∗
F

vF

(

D∗

D

)2(

�−1 + K
K∗

)2
. (D5)

Equation (D3) is a quadratic equation for (qvF/ω)2 with

solutions

(qvF

ω

)2

= −
Q

2
−

√

Q2 − 4R

2
= −Q

1 +
√

1 − 4RQ−2

2
,

(D6)

where we discarded the second solution since it gives Im(q) <

0, which has no physical meaning. Finally, Eq. (D6) is equiv-

alent to the result of the main text if we define the following

quantities as the velocity and damping, respectively,

Sω =
vF

√

Re
[(

qvF

ω

)2]
(D7)

and

Ŵω =
ω

2

Im
[(

qvF

ω

)2]

Re
[(

qvF

ω

)2]
. (D8)

In order to obtain expressions for Sω and Ŵω in the col-

lisionless limit, we expand up to linear order in γ /ω and

γee/ω. We find Q ≈ Q0 + iγ /ωQγ + iγee/ωQee and R ≈
R0 + iγ /ωRγ + iγee/ωRee, where

Q0 = −
2
(

2
v

∗
F

vF
− D∗

D

)(

�−1 + K
K∗

)

− D∗

D

v
∗
F

vF
(

�−1 + K
K∗

)2 D∗

D

v
∗
F

vF

, (D9)

Qγ = −
2
(

2
v

∗
F

vF
− D∗

D

)

(

�−1 + K
K∗

)

D∗

D

v
∗
F

vF

, (D10)

Qee =
2D∗

D
(

�−1 + K
K∗

)

D∗

D

v
∗
F

vF

, (D11)
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and

R0 = −
4
(

D∗

D
− v

∗
F

vF

)

v
∗
F

vF

(

D∗

D

)2(

�−1 + K
K∗

)2
, (D12)

Rγ = −
8
(

D∗

D
− v

∗
F

vF

)

v
∗
F

vF

(

D∗

D

)2(

�−1 + K
K∗

)2
, (D13)

Ree = −
4

v
∗
F

vF

D∗

D

(

�−1 + K
K∗

)2
. (D14)

The replacement of the approximate expressions for Q and

R, with the coefficients above, into Eq. (D6) results in the

following expression:

(qvF

ω

)2

≈

⎡

⎣−Q0

1 +
√

1 − 4R0Q−2
0

2

⎤

⎦

+
iγ

ω

Qγ

[

−Q0
1+

√
1−4R0Q−2

0

2

]

+ Rγ

Q0

√

1 − 4R0Q−2
0

+
iγee

ω

Qee

[

−Q0
1+

√
1−4R0Q−2

0

2

]

+ Ree

Q0

√

1 − 4R0Q−2
0

. (D15)

Finally, the replacement of Eq. (D15) into Eqs. (D7) and (D8)

yields Eqs. (10) and (11) of the main text.

On the other hand, we can obtain the corresponding results

in the hydrodynamic limit by expanding (D6) for γee ≫ ω.

This leads to
(qvF

ω

)2

+ Rh = 0, (D16)

with

Rh =
−2(ω + iγ )

D∗

D
ω
[

(

�−1 + K
K∗

)

− i
v

∗
Fω

2vF (γ+γee )

] . (D17)

Replacing Eq. (D16) into Eqs. (D7) and (D8) results in

Eqs. (12) and (13) of the main text.

APPENDIX E: AVERAGE POWER

In this Appendix, we briefly reconstruct the steps used for

the calculation of the average power absorbed by the electron

liquid.

Starting from the first line of Eq. (17), we use the continuity

equation to obtain

〈W 〉(z) =
∫

d2r
1

2
Re[−eJ∗(r, ω) · Ed(r, 0, ω)]

=
1

2
Re

[

iωe

∫

d2r n∗(r, ω)φd(r, 0, ω)

]

.
(E1)

Next, using Parseval’s theorem

〈W 〉(z) =
1

2
Re

[

iωe

∫

d2q

(2π )2
n∗(q, ω)φd(q, 0, ω)

]

=
1

2
Re

[

−iωe2

∫

d2q

(2π )2
χ∗

nn(q, ω)|φd(q, 0, ω)|2
]

,

(E2)

where we also made the identification n(q, ω) =
χnn(q, ω)(−e)φd(q, 0, ω), χnn(q, ω) being the density-density

response function of the electron system. Finally, using

Im[χnn(q, ω)] = Im[1/(vqǫL(q, ω))], defining the loss

function L(q, ω) = −Im[1/ǫL(q, ω)], and making use of

the definition of the interaction potential (4), and of the

Fourier transform of (16), we obtain the result in the last line

in Eq. (17):

〈W 〉(z) = −
ωe2

2

∫

d2q

(2π )2
|φd(q, 0, ω)|2Im[χnn(q, ω)]

=
ωe2

2

∫

d2q

(2π )2
|φd(q, 0, ω)|2Im

[

−1

vqǫL(q, ω)

]

=
ωe2 p2

2

∫

d2q

(2π )2

|G′(q, z, 0)|2

G(q, 0, 0)
L(q, ω)

=
ωe2 p2

2

∫

dqq

2π

|G′(q, z, 0)|2

G(q, 0, 0)
L(q, ω). (E3)
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