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Industrial spaces are known to be very noisy working environment. This noise exposure can be uncomfortable, tiring, or even
harmful, at worst. Industrial spaces have several characteristics: they are often huge flat volumes fitted with many obstacles and
sound sources. Moreover, they are usually surrounded by rooms where low noise levels are required. The existing prediction tools
can seldom model all these phenomena accurately. In this paper, a prediction model based on a diffusion equation is presented.
The successive developments carried out to deal with the various propagating phenomena met in industrial spaces are shown. For
each phenomenon, numerical or experimental examples are given to highlight the validity of this model. It is also shown that its
computation load is very little in comparison to ray-tracing-based methods. In addition, this model can be used as a reliable and
flexible tool to study the physics of the coupling between rooms. Finally, an application to a virtual factory is presented.

1. Introduction

In industrial spaces, workers are often exposed to intense
sound fields. So, for their security and comfort, reliable
acoustic predictions must be obtained. Moreover, these in-
dustrial spaces are often surrounded by other rooms, such as
offices, where low noise levels are required.

Industrial spaces present a number of acoustical charac-
teristics. Firstly, they are huge volumes and so can hardly be
treated using methods solving the propagation equation [1,
2]. Their height is often small compared to their length and
width, giving birth to nondiffuse reverberated sound fields
discarding methods based on the classical theory of rever-
beration [3]. They often contain many obstacles (machines,
stockpiles, benches, etc.) which scatter and absorb the
propagating sound: their acoustic behaviour of the room,
when fitted, is very different from that of the same room,
when empty.

To solve this particular characteristic, various prediction
models have been developed including analytical models
[4–10], empirical models [11], and simplified models [12].
Numerical models have also been developed, based on the
ray-tracing concept [13]. However, the applications of these
different models remain limited due to their assumptions

concerning the obstacles or the enclosing room. The most
flexible and reliable model was developed by Hodgson [14],
extending the ray-tracing model of Ondet and Barbry [13] to
take into account diffuse reflections at walls.

The ray-tracing method can treat coupling of rooms
through aperture, but they seldom take into account cou-
pling via transmission through common walls. Moreover,
some important reflection paths can be missed in config-
urations composed of multiple connected spaces [15]. In
industrial spaces, the number of sound sources can also
be high leading to prohibitive computation times to obtain
reliable results using the ray-tracing method.

Picaut et al. [16] have proposed a model, first derived
by Ollendorff [17], to describe the local acoustic energy
density in rooms with perfectly diffuse reflecting walls. By
using a physical analogy with the diffusion of particles in a
medium containing spherical scattering objects, as presented
by Morse and Feshbach [18], they showed that the acoustic
energy density may be the solution of a diffusion equation.
This diffusion problem can be then analytically solved for
one-dimensional configuration [19]. More recently, Valeau
et al. [20] have generalized this model to three-dimensional
enclosures and proposed a numerical implementation of
this model for room-acoustic predictions. This model was
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successively extended to take into account the acoustic
specificities met in industrial spaces. The diffusion model is
derived from the more computationally demanding trans-
port theory which is used to model the propagation of sound
in street canyon [21] or in long rooms [22, 23].

In Section 2, the basic equation of the diffusion model
is introduced. Section 3 presents the extension of this model
to mixed specular/diffuse reflections. The atmospheric atten-
uation is taken into account in Section 4. The coupling
through aperture and through partition walls is presented in
Sections 5 and 6, respectively. Section 7 shows how scattering
obstacles modify the diffusion model. The diffusion model
can then be used as a tool to investigate the coupling between
rooms, as presented in Section 8. Finally, an application to
a virtual factory is presented in Section 9. Along this paper,
numerical and experimental comparisons of the diffusion
model are showed and computation times are indicated.

2. Principle

2.1. Diffusion Equation. For a room of volume V and surface
area S, the mean-free path of the room λ can be evaluated by
the simple analytical relation [24]

λ =
4V

S
. (1)

Following the physical analogy with the diffusion of
particles in a scattering medium, the local acoustic energy
density flux J(r, t) can be approximated as the gradient of
the acoustic energy density w(r, t):

J(r, t) = −D grad(w(r, t)), (2)

where the variables r and t denote the position and time,
respectively. D is the diffusion coefficient, and its analytical
expression is directly taken from the theory of diffusion for
particles in a scattering medium:

D =
λc

3
, (3)

where c is the speed of sound. This term takes the room
morphology into account through its mean-free path.

Let us consider the case of a room containing an acoustic
omnidirectional point source located at position rs and with
an output acoustic power P. It can be shown from (2) that
the acoustic energy density is the solution of the following
diffusion equation [20]:

∂w(r, t)

∂t
−D∇2w(r, t) = P(r, t) in V. (4)

In these equations, ∇2 is the Laplace operator and V
denotes the domain delimited by the room surfaces. In (4),
the right-hand term is a source term which models the
omnidirectional acoustic source in terms of power output
and location [20]. This model assumes that the variations
of energy density and energy flow remain small over one
mean-free path [16, 18]. This assumption implies that the
receiving location must be sufficiently far the sound source
in both time and space for the energy to scatter sufficiently,
as pointed out by Navarro et al. [25].

2.2. Boundary Conditions. Equation (4) expresses the tem-
poral and spatial evolutions of the acoustic energy density
throughout the room and must be completed by boundary
conditions taking into account the absorption acoustic
energy at the room’s surfaces. A common way of describing
energy exchanges at a boundary is by the use of a mixed
boundary condition, in the following form:

J(r, t) · n = −D
∂w

∂n
= hw(r, t) on S, (5)

where h is an exchange coefficient, similar to a convection
coefficient in heat transfer. Firstly, this expression of the
exchange coefficient was proposed [20]:

h =
cα

4
, (6)

where α is the Sabine absorption coefficient. However, this
boundary condition was limited to low absorption coeffi-
cients (α < 0.2). To improve the obtained prediction for
higher absorption coefficients, an exchange coefficient based
on the Eyring absorption coefficient was later introduced
[26, 27]:

h = −
c ln(1− α)

4
. (7)

However, this expression becomes singular for α = 1.
Using an analogy with light diffusion, Navarro et al. [25]
obtained the following expression of the exchange coeffi-
cient:

h =
cα

2(2− α)
. (8)

Equations (4) and (8) can also be obtained through the
spherical harmonics’ expansion of a transport equation [28]
or a radiative transfer model [25]. This last derivation per-
mits to show that the diffusion model can be considered as a
natural extension of the geometrical acoustics assumptions
[25]. Previously, Valeau et al. [20] demonstrated that the
diffusion model can also be seen as an extension of the
classical theory of reverberation to nondiffuse sound fields.

In the diffusion model, the boundary conditions state
the frequency band under consideration by the modelling,
as in other geometrical models. Changing the evaluated
frequency band comes to change the values of the absorption
coefficients. Otherwise, the absorption is described locally:
each surface is described by its own absorption. This more
accurate description is an advantage over the classical theory
of reverberation theory which considers only a mean absorp-
tion coefficient per room.

2.3. Room Acoustics Criteria. The most critical room-acous-
tics criterion in industrial space is the sound pressure level.
The diffusion equation models only the reverberated part of
the sound field and the direct sound field must be added at a
later stage. Thus, the sound pressure level (SPL) at a location
r can be obtained with [20]:

SPL(r) = 10× log

(

ρc

(

P

4πd2
+ cw(r)

)

×
1

P2
ref

)

, (9)
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Figure 1: (a) Top view of the considered flat room. The black dot indicates the sound source, and the dotted line indicates the location of the
measurements. (b) Evolution of the sound pressure level at the 1 kHz octave band. (c) Evolution of the reverberation time at the 1 kHz octave
band [34]. (•) Experimental data, (—) diffusion model with (6) boundary condition, (- -) diffusion model with (7) boundary condition,
and (–) diffusion model with (8) boundary condition.

where d = |r − rs| is the distance between the receiver and
the source, ρ the air density, and Pref = 2× 10−5 Pa.

Most of the room-acoustics criteria are related to the
temporal behaviour of the impulse response [29]. The
diffusion model assumes that the energy is sufficiently
scattered. In mixing rooms, the sound field becomes diffuse
after about three mean-free time (a mean-free time is equal
to λ/c, the time needed to travel a mean-free path) [30]. So
the sound field ought to be sufficiently scattered at shorter
times for diffusion model to be valid. Valeau et al. [20] state
that only one mean-free time is necessary, whereas Xiang
et al. [31] propose that two mean-free times are needed. A
systematic comparison with a ray-tracing software in terms
several room-acoustics criteria concludes that the sound
decays evaluated by the diffusion model become valid after
two mean-free times [32]. So the criteria based on the early
part of the sound decay, such as the early decay time EDT, the
definitionD50, or the clarityC80, cannot be reliably predicted.
On the other hand, the reverberation time evaluated from the
backward integrated sound decay [31, 33] can be accurately
evaluated as it will be shown in the following through several
examples.

2.4. Resolution of the Diffusion Problem. For one-dimension
configurations, Picaut et al. [19] obtained analytical solu-
tions for the diffusion problem. Valeau et al. [20] proposed a
numerical implementation using the finite element method,
permitting to simulate more realistic three-dimension con-
figurations. Using the diffusion model, the acoustic problem
can be reduced to a classical conduction-convection heat
transfer problem for which finite element softwares are many
and well validated. Also, using unstructured mesh, even the
most complex geometry can be treated. Moreover, the mesh
can be rather coarse, with grid size about the mean-free
path of the considered geometry [20]. So most problems
imply only several thousands of degree of freedom and can

be rapidly solved. For sound pressure levels, the stationary
form of (4) can be solved and results are obtained in a few
seconds for a given frequency. The sound decays are obtained
in a few tens of seconds, solving the time-dependent form of
(4). Moreover, the obtained results (SPL or sound decays)
are evaluated throughout the whole calculation domain
implying that no recalculation is needed if the receiver is
moved.

2.5. Application to a Flat Room. The diffusion model associ-
ated to the three boundary conditions introduced in (6), (7),
and (8) is compared to experimental data both in terms of
sound pressure level and in terms of reverberation time for a
8×8×1.2 m3 flat room (for more details, see [34]). The three
models agree well with the experimental data in terms of
SPL, with a maximum deviation of about 2 dB (Figure 1). A
good agreement is also found in terms of reverberation times
with the boundary conditions of (7) and (8). This example
shows that reliable predictions of both sound levels and
reverberation times can be obtained even for a configuration
presenting a sound field far from being diffuse.

3. Mixed Specular/Diffuse Reflections

To obtain a diffusion equation, the reflections at walls were
assumed to be perfectly diffuse. However, the reflections by
walls are usually a combination of diffuse and specular reflec-
tions [35]. Valeau et al. [36] pointed out that increasing the
value of the diffusion coefficient D permits better predictions
when specular reflections. By systematically comparing the
results of the diffusion model with a cone-tracing software,
Foy et al. [37] proposed a modified diffusion constant Dm:

Dm = κD, (10)

where D is the theoretical diffusion constant given by (3) and
κ is a function depending only on s, the scattering coefficient
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Figure 2: Evolution of the sound pressure (SPL) as a function of the
receiver location in a centre axis of a long room of size 30×2×2 m3.
(o) and (•) diffusion model, (- -) and (—) cone-tracing software,
for s = 0.2 and s = 1, respectively.

of the surfaces [38]. κ is defined by the following empirical
relation:

κ = −2.238 ln(s) + 1.549 for s > 0. (11)

It should be noted that, for s = 1 (fully diffuse reflec-
tions), the modified diffusion constant is not equal to the
theoretical one (κ /= 1) due to the empirical nature of the
relation. Using this model, reliable results are obtained in
terms of sound pressure levels whereas the reverberation
times evaluated for s < 0.4 are erroneous [33]. As an example,
Figure 2 plots the SPL for a 30 × 2 × 2 m3 long room with
s = 0.2 and 1 showing the good agreement between the
diffusion model and the cone-tracing software.

More recently, Visentin et al. [39] evaluated an estimated
diffusion constant by comparing the acoustic energy inten-
sity calculated by a particle-tracing and the diffusion model
and obtained a spatially varying diffusion constant. In the
vicinity of the source, the estimated diffusion constant is
close to the one evaluated by (3) and it increases with the
source distance [39]. This work introduces another more
rigorous way to define a diffusion constant for specular
reflecting surfaces.

4. Atmospheric Attenuation

The absorption of acoustical energy by the medium can have
a significant impact on its propagation, particularly at high
frequencies and for large rooms. An atmospheric attenuation
term can be introduced in the diffusion model, leading to a
modified expression of the diffusion constant [40]:

D′ = D ×
1

1 + mλ
, (12)

where m is the coefficient of atmospheric attenuation in
m−1 and D is the diffusion constant without atmospheric
attenuation as defined in (3). However, the sound absorption
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Figure 3: (a) Sound pressure level and (b) reverberation time as a
function of the receiver location in a flat room of size (30×30×3)
m3 [40]: (o) and (•) diffusion model, (- -) and (—) cone-tracing
software, without and with atmospheric attenuation, respectively.

being usually very small over a mean-free path (i.e., m≪ 1),
one can consider thereafter that D′ ≈ D. The diffusion
equation for the energy density w in the room, with a sound
source term P(r, t), becomes [37]:

∂

∂t
w(r, t)−D∇2w(r, t) + mcw(r, t) = P(r, t) in V. (13)

In this equation, the attenuation term has the typical
form of an absorption term within the diffusion framework.
Expanding a radiative transfer model, Navarro et al. [25] end
up with the same expressions. Figure 3 shows that a good
agreement is obtained between the diffusion model and a
cone-tracing software for a 30× 30× 3 m3 flat room both in
terms of SPL and RT [40]. In this example, the atmospheric
attenuation is set to 0 and 0.01 m−1 corresponding to a
7.2 kHz acoustic wave propagating in the air at 20◦C and with
50% of relative humidity [38].
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Figure 4: Evolution of the sound pressure level through the
coupling aperture at the 1 kHz octave band [42]: (•) experimental
data, (—) diffusion model, and (- -) cone-tracing software.

5. Coupling through an Aperture

Coupled volumes systems, composed of two or more spaces
that are connected through acoustically transparent openings
(i.e., a coupling aperture), have attracted considerable atten-
tion in architectural acoustics. In concert halls, these con-
figurations are of a particular interest, allowing to conciliate
a high clarity with a strong reverberance thanks to double-
sloped decays [1, 41]. This configuration can also be found
in various buildings or constructions such as industrial halls
or office spaces.

For simulating the acoustics of two coupled rooms con-
nected by an open aperture, a nonhomogeneous diffusion
problem is to be solved where the computation domain V
defined by the two coupled rooms is decomposed into two
subvolumes, V1 and V2 [42]. Moreover, it is assumed that
the value of the mean-free path in each room is unaffected
by the coupling. The following set of equations can then be
written [42]:

∂w(r, t)

∂t
−D1∇

2w(r, t) = P(r, t) in V1,

∂w(r, t)

∂t
−D2∇

2w(r, t) = 0 in V2,

(14)

together with some boundary conditions. It should be
pointed out that this method can be extended to an arbitrary
number of coupled spaces without further assumptions or
to an arbitrary of sound sources. Figure 4 plots results in the
configuration of two coupled classrooms [42] showing the
good agreement of the diffusion model with experimental
data and a cone-tracing software in terms of SPL.

6. Coupling through a Partition Wall

Acoustical energy transferring from one room to another
through partition walls can significantly deteriorate the
building comfort. To evaluate this transfer, the standards

are based on the theory of reverberation [43, 44] and their
predictions are reliable as long as the assumptions of a diffuse
sound field hold [3]. This energy transfer can be computed
using the diffusion model. Firstly, the partition wall was
assimilated as a surface source assuming a diffuse field in
the room containing the source [20]. Later, the diffusion
model was extended to solve the whole transmission problem
and to consider nondiffuse sound fields on both sides of
the partition wall [45]. Two diffusion equations must be
considered, one for each enclosure:

−D1∇
2w1(r, t) = P(r, t) in V1,

−D2∇
2w2(r, t) = 0 in V2,

(15)

whereD1 andD2 are the diffusion constants of the source and
adjacent rooms, respectively. Note that only the stationary
problem is considered here as the sound pressure level is the
main criterion of interest in acoustic transmission problem.

At the coupling area, the energy exchanges between the
rooms must be expressed as well as its absorption at its
surface. Thus, the following boundary condition is obtained
on the source room’s side with a normal exterior vector n1

[45]:

D1
∂w1

∂n1
+ h1w1(r, t) =

τc

4
w2. (16)

The left hand term is similar to (5) and depicts the loss
of energy form the source room to the partition wall. The
right hand term stands for the energy transferred from the
adjacent room to the source room through the partition wall
as a function of the transmission loss R (or the transmission
coefficient τ = 10−R/10). A similar boundary condition can
be written on the adjacent room’s side with a normal exterior
vector n2:

D2
∂w2

∂n2
+ h2w(r, t) =

τc

4
w1. (17)

The right hand term describes here the energy transferred
from the source room. Similarly to the coupling through
apertures, the principle can be extended to an arbitrary
number of coupled rooms and sound sources. Otherwise,
it can be shown that the energy balance obtained using the
diffusion model can be reduced to the one obtained using the
theory of reverberation, if a diffuse sound field is assumed in
each room [45]. Figure 5 depicts the difference of sound level
between two coupled classrooms [45]. A good agreement is
between the measurement and the diffusion model.

7. Diffusion by Scattering Objects

As stated in the introduction, the industrial halls are seldom
empty and contain many obstacles that scatter and absorb
the sound energy during its propagation. This scattering
objects can be modelled statistically and characterised by
their density n f (i.e., the number of scattering objects per
unit volume), their average scattering cross-section Q f , and
their absorption coefficient α f [4, 5]. The scattering of sound
by this obstacles can be then modelled by a diffusion process
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Figure 5: Sound pressure level difference by third octave band [45]:
(•) experimental data and (—) diffusion model.

characterised by a mean-free path λ f = 1/(n fQ f ) and a
diffusion constant D f = λ f c/3 [9]. The mean-free path
of a sound particle travelling in a room characterised by a
mean-free path λe (for empty) and the scatterers previously
described can be then written [32]:

λ =
λeλ f

λe + λ f
. (18)

The diffusion equation for the acoustic energy density in
a room containing scattering obstacles is then [36]:

∂w(r, t)

∂t
−Dt∇2w(r, t) + c

α f

λ f
w(r, t) = P(r, t) in V ,

(19)

with

Dt =
c
(

λeλ f

)

3
(

λe + λ f

) =
DeD f

De + D f
, (20)

where De is the diffusion constant in the empty room a
defined in (3). Equation (20) describes the combination
of two diffusion processes, one due to the walls and the
other due to the scattering objects. The additional term
in (19) takes into account the absorption of sound energy
by the scattering objects. Figure 6 shows that the obtained
agreement of the diffusion model with the experimental data
[13] is very good, similar to the one obtained with a ray-
tracing software [36].

8. Diffusion Model and Coupled Rooms

Due to concert halls applications, systems of rooms coupled
through apertures coupled volumes systems have attracted
considerable attention. The diffusion model was shown to
be a flexible and reliable tool to investigate the behaviour
of these systems. It was firstly validated by comparison
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Figure 6: Sound pressure level distribution [36]: (•) experimental
data [13], (—) diffusion model, and (- -) ray-tracing software.

with statistical theory and experimental data [42]. It reliably
models the gradual transition both in terms of sound
pressure level (see Figure 5) and in terms of sound decays
through the aperture. Jing and Xiang [46] used the diffusion
model to study the energy flow from one room to another as
a function of the time. It permits to observe that, for double-
sloped decays, the energy flows back from the adjacent
room to the source room. This reversal of the energy flow
is associated with a dip of the energy-flow decay. These
phenomena are not observed when the sound decays are
not double-sloped. Moreover, Jing and Xiang [28] showed
that the double-sloped decays can be accurately modelled
by comparison with scale model measurements. It permits
to link the energy flow reversal and the dip observed in its
magnitude to the switching of slope in the measured sound
decay. Pu et al. [47] observed that the double-sloped decays
also occur in the adjacent room and is not restricted to the
source room.

9. Application to a Virtual Factory

To exhibit the interest of the diffusion model to real-life
applications, a configuration, similar to a small factory, is
presented in Figure 7 [48]. This building is composed of a
20 × 25 × 10 m3 hall (A in Figure 7) connected through a
0.9 × 2.1 m2 aperture to a 20 × 2.5 × 2.5 m3 corridor (B).
The walls of the hall are in concrete (α = 0.03), and the
zone A′ (9 × 7 × 5 m3) is fitted with scattering objects
with absorption α f = 0.3 and density n f = 0.25. Two
5.9 × 3.5 × 2.5 m3 offices (D and E) are connected through
0.9×2.1 m2 openings as well and a 8×3.5×2.5 m3 workshop
(E) through a 2 × 2.1 m2 opening. Four sound sources with
different sound power level are located in the hall A: source 1
(120 dB) and sources 2, 3, and 4 (100 dB). Another 100 dB
source is located in the workshop (5). The atmospheric
sound attenuation is set to 0.005 dB/m.

In this study, two configurations of the corridor are com-
pared. In the first configuration, the corridor is specularly
reflecting (s = 0.2) and its absorption is homogeneous
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Figure 7: Sketch of the simulated building. A is an industrial hall where A′ represents a volume fitted with scattering objects. B is a corridor,
C a small workshop, D and E two offices. The numbers 1–5 indicate the sound sources.

20

18

16

14

12

10

8

6

4

2

0

85

80

75

70

65

60

55

50

45

0 5 10 15 20

y
(m

)

SPL (dB)

x (m)

(a)

20

18

16

14

12

10

8

6

4

2

0
0 5 10 15 20

85

80

75

70

65

60

55

50

45

SPL (dB)

x (m)

y
(m

)

(b)

Figure 8: Color maps of the sound pressure level (SPL) of the
reverberated sound field at 1.2 m: (a) nontreated configuration, (b)
treated configuration.
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Figure 9: Sound pressure level (SPL) along the corridor at 1.2 m:
(- -) nontreated corridor, (—) treated corridor.

(α = 0.06). In the second configuration, the corridor’s sur-
faces are diffuse (s = 1) and the ceiling is absorbent (α = 0.6).

The computation time is around 30 s for the steady
state sound levels. Due to the geometrical complexity of
the problem, a simulation carried out using a ray-tracing
software would need a huge number of rays (and so a very
long computing time to obtain) in order to obtain physically
consistent results.

Figure 8 presents color maps of sound pressure level
of the reverberated sound field at 1.2 m high for both
configurations. In particular, one can observe the decrease
of SPL in the fitting zone, in comparison with the SPL in
the hall, due to additional absorption from the scattering
objects. The effect of the treatment is also clearly effective
in the connected rooms. For example, the SPL decreases of
about 5 dB in room E. Figure 9, plotting the SPL along the
corridor at 1.2 m high, allows one to observe more closely the
effect of treatment. The increase of absorption and scattering
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raises the sound attenuation of more than 8 dB. The acoustics
treatment in the corridor is also responsible for the decrease
of the sound energy within the offices (D and E).

10. Conclusions

Industrial spaces often consist in huge, flat volumes fitted
with a large number of diffracting objects and numerous
sound sources. Moreover, they are often connected to other
rooms (like offices) through common walls or apertures.
These characteristics lead to complex acoustic problem to
solve.

In this paper, a numerical model based on a diffusion
equation was reviewed. It has been shown that the successive
developments of this model succeed to solve most of the
met difficulties of such acoustical spaces: nondiffuse sound
field, atmospheric attenuation, coupling through apertures,
transmission through partition walls, and sound absorption
by scattering objects. This model can also be extended to
an arbitrary number of sound sources or coupled spaces.
Numerical and experimental comparisons were presented for
each phenomenon exhibiting the reliability of the proposed
model, both in terms of sound pressure levels and in terms
of reverberation times. Moreover, the computation time
has shown to remain very limited in regards to classical
geometrical acoustics software. This model was thus used
as a flexible and reliable tool to investigate the behaviour
of the coupled-rooms, giving a new understanding of their
behaviour. A real-life application to a virtual factory was
presented, showing the capacity of the diffusion model in
complex industrial spaces.

However, the limitations of the model were also pointed
out. It cannot reliably model the early part of the sound decay
and so cannot predict room-acoustics parameters such as
definition, clarity, or early decay time. In spaces covered with
specularly reflecting surfaces, the diffusion model permits
to predict reliable sound pressure levels but is unable to
obtain physically consistent reverberation times. The model
also cannot predict the diffraction occurring around sound
barriers. Those are several of the remaining challenges to be
solved in the future.
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