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ABSTRACT 

A brief history of speech research is given along with the current 

state of the art in acoustic speech recognition. The problem of speech 

segmentation in the acoustic domain using a digital computer is specific¬ 

ally addressed, i.e. determining an acoustic partition in time which has 

linguistic relevance. This problem is viewed, in more general terms, 

as that of detecting transitions, in a globally nonstationary process, 

from one local stationary state to another. Nonstationary analyses are 

approximated by considering short fixed length time series sections as 

seen through a window which moves by a fixed increment. 

Various nonstationary signal representations are explored in order 

to establish a feature space suitable for segmentation applications. 

Spectral representations are only generated as a reference space used 

to compare any mechanical segmentation procedure with the linguistically 

determined segmentation of any given speech sample. Temporal representa¬ 

tions of the zero crossings of speech signals are explored in detail. 

In particular the central sample moments of the reciprocal zero crossings 

as a function of time are used as input to a simple segmentation algorithm. 

The results of a demonstration of this algorithm show that speech 

segmentation as defined is possible by nonhuman means. 
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I INTRODUCTION 

There have been three definite turning points in acoustic speech 

research history: (l) the invention of the vocoder by Homer Dudley 

in 1932^ (2) development of the sound spectrograph by Bell Laboratories 

in 1948, and (3) utilization of the digital computer after I960. It has 

been only in the last few years, however, that the digital computer has 

really been used effectively in this area. Prior to 1965, most of the 

research work was carried out on specially built devices or on analog 

computers. One of the ultimate goals of this research in the last thirty 

years has been that of automatic speech recognition, i.e., to build a 

device which accurately converts an acoustic speech signal in some given 

language into a sequence of symbols drawn from a finite inventory (such 

as the set of phonemes for that language) . The complexity of the problem 

becomes clear when one considers that some of the nation’s top research 

laboratories have to date failed to solve this problem; some experts 

believe it to be unsolvable. 

The current state of the art can best be summed up as follows. 

For isolated single words from an unrestricted vocabulary spoken by a 

variety of male and female speakers, recognition accuracies of about 80$> 

for vowels and 50^ for consonants have been achieved [1,2, 3]* Under the 

same conditions but using a limited specially selected vocabulary of 10-20 

words, e.g. the digits, the words "yes", "no", "go", "stop", etc., top 

scores of about 98$ are reported. The reasons for these failures appear 

to be twofold: dedication to the "black box" approach for research, and 

the practice of attempting recognition without segmentation. 

The "black box" approach is that of deciding on some model or set 

of rules for recognition and then building an electromechanical analog of 
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that model. The folly of this procedure is that having spent months in 

designing and constructing such a "black box", any changes or alterations 

after the fait accompli are extremely difficult. It is impossible to 

build into such a device the generality necessary to effect the changes 

which are always required. The trend toward software simulation on a 

general purpose high speed digital computer has vastly improved model 

testing. 

Segmentation is the process of partitioning (not necessarily 

disjointly) the speech stream into linguistically significant subunits 

which are hopefully atomic. It has been greatly disputed whether this 

is possible or even necessary. These primitive speech units are known as 

phonemes. Although one can with little or no training reliably write 

down the series of phonemic symbols which correspond one to one to a 

series of phonemes which were heard (see Table i), it does not follow 

that such a procedure actually occurs in the covert real time recognition 

process in humans. In practice the acoustic phonetic "boundaries" in 

speech are subtle and may give rise to an overlapped temporal partition. 

That is to say, the actual effect of a particular phoneme may begin 

during the first or second previous phonemes and/or terminate several 

phonemes later than its peak. Such supra-segmental phonemes are still, 

however, easily identified and localized by the human recognition process 

p+]. 

With very few exceptions, all past recognition research has ignored 

or avoided the problem of segmentation as a processing corequisite. 

Typical recognition devices had an output indicator which continuously 

showed the device’s current decision as to which phoneme was currently 

being processed. Thus segmentation was achieved after the fact by 
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TABLE I 

Part I--Conversational 

Rank Phoneme Example Jk- Type 

1. t (take) 9.8 v-p 
2. n (not) 8.1 n 

3- 1 (tip) 6.3 V 
4. r (row) 6.1 1 

5- 
lA. 

(up) 1 
(hj3rd)| 

6.0 V 

6. d (dill) 4.6 v-p 

7- 2 (like) 4.6 1 
8. s (set) 4.0 (501o) v-f 

9- w (win) 3.7 s 
10. m (tne) 3-6 n 
11. k (kit) 3.6 v-p 
12. £ (ten) 2.7 V 

13- $ (then) 2.5 v-f 
14. ai (dike) 2.4 V(d) 

15. h (hat) 2.2 v-f 
16. z (zip) 2.2 v-f 

17. a (top) 2.1 V 
18. ae (tap) 2.1 V 

19. J (Z°u) 2.1 s 
20 i (eve) 2.1 (80$) V 

21. u (hoot) 2.0 V 
22. f (for) 2.0 v-f 

23. e (mate) 1.9 V 
24. V (vote) 1.8 v-f 

25. P (£it) 1.7 v-p 
26. 0 (tone) 1-5 V 

27. 8 (.get) 1.5 v-p 
28. 0 (all) 1-3 V 

29. T| (sing) 1.1 n 

30. U (took) 1.0 V 

31. 0 (thin) 0.7 v-f 

32. / (she) 0.7 v-f 

33. h (hit) 0.6 v-p 
34. au 

Gar! 
0.6 V(d) 

35. d3- 0.3 v-p-: 

36. 11 (chew) 0.^ v-p-: 

37. oi (oil) o.i V(d) 

38. iu (few) 0.1 V(d) 

39. y 
(a_zure) 0.01 v-f 

Legend: V - vowel, (d) dipthong f - fricative 
V - voiced n - nasal 

V - not voiced 1 - liquid 

P - plosive s - semivowel 

Derived from Fletcher's data for edited telephone speech. 
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TABLE I 

Part II - Written 

Rank Phoneme Example Type 

1. 1 (tip) 7-9 V 
2. n (not) 7.2 n 
3- t (take) 7.1 v-p 
4. r (row) 6.9 1 

5. 
{i 

(up) 1 
(herd)f 

5.0 V 

6. S (set) 4.6 v-f 
7- d (dill) 4.3 v-p 
8. ae (tap) 4.2 V 
9- i (.eve) 3-9 (50fo) V 

10. z (like) 3-7 1 
11. Z (zip) 3-6 v-f 
12. e (ten) 3.4 V 

13- 3 (then) 3.4 v-f 
l4. a (top) 3-3 V 
15- m (me) 2.8 n 
16. k (kit) 2.7 v-p 

17- e (mate) 2.4 V 
18. V (vote) 2.3 v-f 
19- w (win) 2.1 (80i) s 

20. P (£it) 2.1 V-p 

21. h (hat) 1.8 v-f 
22. f (for) 1.8 V-f 

23- b (hit) 1.8 V-p 

24. u (hoot) 1.6 V 

25- 0 (tone) 1.6 V 
26. ai (dike) 1.6 V(d) 

27. T\ 
(sing) 1.6 n 

28. 0 (all) 1.3 V 

29. g (set) 0.8 v-p 

30. / (she) 0.8 v-f 

31- u (took) 0.7 V 
32. au (out) 0.6 V(d) 

33* j (z°u) 0.6 s 

34. (jar) 0.5 v-p-f 

35- t / (chew) 0.5 v-p-f 
36. 9 (thin) 0.4 v-p 

37- iu (lew) 0-3 V(d) 

38. oi (oil) 0.1 V(d) 

39- (azure) 0.05 V-f 

Legend: V - vowel, (d) dipthong f - fricative 
v - voiced n - nasal 
v - not voiced 1 - liquid 
p - plosive s - semivowel 

Derived from canonical phonemic representations for 
alphabetic characters. 
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* 

detecting a change in the output. Such an approach is expensive since 

recognition must be performed continuously. Pre-segmentation would appear 

to be easier because the recognition procedure needs only to be applied at 

several places within a phoneme’s ’’boundaries” in order to identify that 

phoneme. It is also very possible that the recognition information could 

be applied to refine or correct the boundaries. In other words, the two 

processes should most likely be reciprocally interactive and iterative 

or self-correcting in nature. 
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II PURPOSE 

Recognizing the theoretical and practical importance of demonstrating 

a mechanical segmentation procedure, the author has investigated several 

methods of speech signal representation which might he useful in attacking 

this problem. The goals set forth for this thesis are then to (l) develop 

a flexible and sophisticated software-hardware time series analysis system, 

(2) examine both spectral and nonspectral representations of the speech 

signal, (3) demonstrate the existence of physical "events” in speech time 

series that can be reasonably identified as phoneme "boundary" phenomena, 

and {k) design and test a naive segmentation algorithm on tne basis of 

the work done. 

The first goal was set forth in order to assure maximum flexibility 

and speed in implementation of the system [3] • 

Two basic techniques exist in acoustic speech signal analysis: 

spectral versus nonspectral (temporal). Spectral techniques consider 

transformations of the waveforms which result in functions of a frequency¬ 

like (reciprocal time) variable. Temporal techniques, however, involve 

transformations or manipulations directly in the time domain. In the past, 

spectral methods, e.g., Fourier analysis, have dominated speech research. 

It was felt tnat other areas could bear investigation, e.g., zero crossings 

(OX) analysis and nonorthogonal transformations. 

A large number of signal representations will be investigated in 

order to define a feature space suited for segmentation of speech. This 

requires tnat significant "events" in some representation be highly 

correlated with the occurrence of classical heuristically determined 

linguistic phoneme boundaries or transition regions. It will thus also be 

necessary to generate representations of speech suitable for use by a 
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trained person in conjunction with the actual speech sounds in order to 

have tnis heuristic linguistic base for comparison purposes. 

Finally, a crude segmentation algorithm is to he tested not to 

show the merit of any particular algorithm hut simply to demonstrate in 

an objective mechanical fashion what will he fairly obvious by inspection. 

It is a regrettable human weakness to assume that a given human ability 

to easily recognize some class of patterns can always be as easily stated 

in a formal fashion in order to accomplish a nonhuman implementation. 

Since only a demonstration and not an iron-clad proof is intended, the 

algorithm will not be applied to a large amount of speech from a variety 

of speakers. This is even more reasonable when one considers the fact 

that, the algorithm is to be arbitrarily chosen in the sense that it 

represents one person’s (the author’s) interpretation of how he would 

use a particular feature (segmentation) space to determine phoneme 

boundaries". The algorithm will in any case supply an objective 

definition of "event" and "boundary" in speech signals or functions 

thereof. 
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Ill APPROACH 

The most important consequence of using a digital computer 

for analysis is that only functions of discrete variables can 

easily be handled. After some preprocessing the continuous time series 

is digitized, and thus discretized in both amplitude and time, and then 

stored in the computer for processing later. Rather than use approxima¬ 

tions to continuous analytic techniques, e.g., integration or differentia¬ 

tion, it was decided to use exact discrete methods, e.g., summation and 

differencing. This is perfectly acceptable for every continuous method 

which has a discrete equivalent [5] - Thus the only errors which are 

involved are the negligible round-off errors involved in computation. 

In this work only well known standard mathematical and numerical 

techniques have been used. Heuristic or complicated nonlinear operations 

have been avoided where possible for tne sake of simplicity, ease of 

analysis, and physical interpretation. Discrete techniques have been 

taken from standard time series, statistical, and orthogonal transforma" 

tion methods. 

The spectral class of analyses will consist of discrete Fourier 

transforms (DFT) and discrete Haar transforms (DHT) of the time series. 

As a result, two types of digital spectrograms are obtained. The DFT 

spectrogram is the digital counterpart of the multiple band pass filter 

tecnniques which have been used for years in speech analysis [6]. The 

Haar transforms, however, are new and were suggested in [7] a. means 

of analyzing transient phenomena, e.g., certain consonants in speech. 

The temporal class of analyses will be made up of linear transforma¬ 

tions of the zero crossing and reciprocal zero crossing distance 

distributions of small sections of the time series. Central sample 
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moments of these distributions will be examined as an example of non- 

ortnogonal transformations. This approach has only been used in a very 

limited sense in the past [3,8]. Two different discrete orthogonal 

functions will be used to compute orthogonal transformations of the zero 

crossing distribution functions. These are the Gram polynomials and tne 

Krawtchouk functions wnich will be described in detail later. This 

approach, to my knowledge, is completely new. 

The most important consequence of working witn nonstationary 

signals like speech is the necessity of using nonstationary techniques 

in the analysis of such signals. For reasons of simplicity, all of 

the time series were assumed to be locally stationary over a period of 

less tnan 15 msec. This is reasonable because the vocal excitation 

function, a smooth periodic sawtooth function, has about this period for 

tne average person. An examination of tne frequency spectrum as a function 

of time for speech shows that the generating mechanisms, i.e., the vocal 

cords, tongue, lips, etc., are essentially motionless over short durations 

of time. For these reasons, all statistics and functions generated from 

the speecn data will always be dependent on time. This is necessary in 

order to examine any temporally evolving process like speech. 

By considering only that portion of speech visible in a time 

window of fixed width, and moving that window by a fixed discrete 

increment to the next window position, a nonstationary analysis can 

oe approximated. The functions or numbers that result from the analysis 

of each sequential window can be concatenated to form new functions 

wnich are discretely time dependent. In order to establish some 

continuity and dependence between adjacent windows, the window will 

usually be shifted by less than its own width, i.e., some fixed overlap 
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is included. To further stabilize these new time series, a small 

amount of digital low pass filtering is usually performed with respect 

to time, 
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IV EQUIPMENT 

There were two basic steps used in the analysis of the speech data: 

(1) the preprocessing step done by the external input equipment, and 

(2) the actual numerical processing and input/output done using the 

Rice University computer. The differentiation of these two phases of 

analysis is made to emphasize the minimal role that nondigital processing 

played in tne time series analysis system that was used. All equipment 

used was cnosen as a matter of convenience and any system with equivalent 

components snould serve as well. 

The preprocessing system used is shown schematically below. 

Switch 

Microphone 

Amplifier 

I 
Low Pass ? 
Filter ; > 

to A/D 
Converter 

FIGURE #1 

The microphone was an Electrovoice model 66k, a highly directional 

dynamic cardioid type with 3 db cut-off points at ^4-0 Hz and 10 KHz. The 

amplifier was constructed witn FETs and had a voltage gain of about 

30 db. The 3 db cut-off points for the amplifier were 50 Hz and 10 kHz; 

the low pass filter used was a second order cascaded RC with the 6 db 

point set at k kHz. The nigh frequency response curve for the amplifier- 

filter system is shown below. 
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The average RMS signal to the computer was about 0.5 volts which was 

less than 2 volts peak to peak; this assures no clipping at ±1.28 volts 

which is the range of the A/D converter. 

The computer system for A/D and D/A conversion, numerical 

processing and output is shown schematically below. 

Signal 

/  
in 

    I 

A/D 

EEj The 
~ Rice Computer 

Amplifier £- 
Low Pass 

Filter 

EEf 

Speaker 

Xc.. 

10 kHz 
osc. 

1    

\ 

— ,-i i 

v 

7~! i 
D/A | 

! i 
 J 

Line 
Printer 

Holding 
Circuit 

 — 

Strip Chartj 
Recorder , 

FIGURE #3 

The variable sample rate A/D converter was set for a 10 kHz sample rate. 

This imposes a Nyquist frequency of 5 kHz which is larger than tne bandwidth 

of the data after filtering. The conversion is essentially instantaneous, 

circa ^ p.sec., and yields a sequence of 8 bit l's complement numbers which 

are automatically packed 6/computer word and stored in core memory. The 
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Rice computer has a 24-K core memory of 54 hit words and a rather slow 

arithmetic section* The flexibility and open shop availability of this 

machine far outweigh the minor speed problems in processing. A 600 line/ 

minute line printer was used to produce all of the original plots. All 

of the input speech data was saved on punched paper tape and the signal 

quality was verified by using the D/A converter. The stored speech was 

either plotted at a lower rate on the strip chart recorder or listened 

to directly. 

All of the programs for input, output, manipulation, and numerical 

processing were written by the author in either the assembly languages 

"API" and tTAP2", or in the compiler language, "GENIE". Where appropriate, 

care and effort was taken to assure a high degree of efficiency for low 

running times. This is sometimes necessary when one considers the quantity 

of numbers to be processed in, say, one second of speech, e.g., at a 10 kHz 

sample rate, tnat is 10,000 data points l 
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IV DATA ACQUISITION 

The corpus of words used as a data base for this work was obtained 

by selecting the most frequently used words whicn contain internal 

allophones of the most frequent phonemes. An allophone is one of the 

contextual acoustic variants of a given phoneme which is usually not 

consciously differentiated from any other variant of that phoneme. One 

does not perceive the difference in the vowel in "cat" as compared to 

that in "pack", but the linguistic context effects the acoustic properties 

of tne vowel to some extent. 

The ranked frequencies of phonemes in large samples of botn written 

and spoken American English are given in Table I [9]. The spoken phoneme 

taole was constructed from an examination of edited telephone conversations 

Words peculiar to telephone speech, e.g., ’’hello", "goodbye”, and profane 

words were not included in the tabulations. The written phoneme table 

was compiled from newspaper articles, written speeches, and novels. 

Both samples are considered to be statistically stable for this application 

The ranked frequency of words list used was that compiled at Brown 

University [10] . It is based on written English data but the differences 

(See Table i), at least as regards phonemes, are not important for this 

purpose. The twenty words selected for tnis work and their phonemic 

equivalents are shown in Table II. In addition, an auxiliary group of 

words was used in this research whicn was not based on frequency of 

occurrence. These are snown in Table III; the word "sunless" is of 

particular interest because it contains an acoustically subtle syllable 

break. 

The speaker who supplied the speech input to the analysis system 

was une autnor, a native speaker of mid-western American English having 



TABLE II 

Rank Orthographic Phonemic 

1. 23 not /raat/ 

2. 28 have /haev/ 

3- 31 which* /wit// 

k. 32 one /wAw/ 

5. 37 she IN 
6. k2 him /him/ 

7. k6 who /hu/ 

8. 58 than /Saew/ 

9- 59 into* /iw’tu/ 

10. 62 only* /on'li./ 

11. Z3 other /Acter/ 

12. 66 some* /sAm/ 

13- 69 two /tu/ 

l4. 71 first* /fdrst/ 

15' 72 then /SI n/ 

l6. 75 like /iaik/ 

17. 8l man /maew/ 

18. 86 after /aef't$r/ 

19- 89 did* /did/ 

20. 90 many* /me'«i/ 

* Words used to test segmentation algorithm 
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TABLE III 

Orthographic Phonemic 

1. sunless* /sAre'les/ 

2. monday* /mAn'di/ 

3- zero* /zi'TO/ 

4. speakers* /spik 'srz/ 

5- himself* /him' self / 

6. speechless* /spit/'ies/ 

7. win /win/ 

8. ten /ten/ 

9- vote /vot/ 

10. jar /d^Or/ 

11. chew /t/u/ 

12. thin /©In/ 

13- see /si/ 

14. zoo /zu/ 

15. nation /nafa.n/ 

16. vision /vl^n/ 

* Words used to test segmentation algorithm 



a slight Texas urban accent. This speaker has nad no formal speecn 

training and made no conscious attempt to control the structure of the 

input speech to bias the results. All utterances were made with as 

little inflection as possible and at a normal conversational level. The 

speaker sat in a normal position with the microphone about three inches 

from his lips. An examination of some of tne speech data containing the 

plosive consonants, (/k/, /p/, ft/, /b/, /d/, and /g/) showed no transient 

distortion in tne waveforms due to puffing of the breath. 

All words were uttered in the computer room, which contains noisy 

equipment, without tne use of an acoustic shield. The signal-to-noise 

ratio averaged circa 25 db. This environment was selected because it was 

botn convenient and realistic. It was desired that any methods discovered 

for segmentation or recognition be relatively insensitive to a reasonable 

ambient bacKground noise level. 
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VI ANALYSIS 

The data having been filtered, converted, packed, and stored, 

the numerical processing phase is entered. When a portion of the data is 

needed, it first must he unpacked, converted to a floating point form, 

and stored in a working vector. The data is always analysed by short 

"sections", each 50 to 200 sample points long. Each section represents 

that portion of the total signal presently being viewed through the moving 

time window. A scnematic illustration of this moving window technique is 

shown below. 

w 

The time variable is shown as being continuous for the sake of clarity 

and simplicity. The section duration is T , the window increment is T^, 

and the overlap between adjacent sections is T -T^ = T . Each of these 

time durations is an integer multiple of the sampling period 0.1 msec. 

No analysis "between the points" using interpolation was ever used 

since tnis would lead to unnecessary approximations and analytical 

complications. 

One of the most vivid transformations of a speecn signal is tne 

time varying Fourier transform displayed as a variable density, two 
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dimensional plot, i.e., the sound spectrogram [11]. Using the time 

implemented. The basic methods used were taken from classical time 

series analysis and applied to nonstationary, discrete, signals. 

The first step when using short term Fourier transforms, i.e., 

computing spectral estLnates, is to remove any prominent uninteresting 

spectral components before analysis [12] . This is required due to the 

fact that the unavoidable convolution of the transfom of the infinite 

time series and the transform of the finite time window, tne sine function 

will smear any large spectral components and obliterate neighboring 

components which my be of interest. The moving window technique applied 

to a long time series whose mean is zero will give rise to a sequence of 

shorter time series wnose means are generally not zero. Therefore, as a 

first, step in computing the DFT of any section, its mean is computed 

and subtracted. A large mean will give rise to distortion of the first 

few coefficients of the DFT. We thus define 

where j is the index of tne section or window position, i or k is the 

index of the points in the section, and 1 is the number of points in a 

section. 

The next step prior to the DFT itself was multiplication by an 

approximate time window taper [12] . The default taper is unity but its 

saving Cooley-Tukey DFT, one of the first digital sonographs was 

sinc(y) = 2^ (1) 

N 

(2) 

k=l 
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transform (l) has large poorly convergent side lobes. A smoother window 

taper due to Arsac [13] was chosen, which is given by 

w(x) = (1-x2)2, x e [-1, 1], (3) 

and has the Fourier transform 

w(y) = - sin(y) - 3 cos(y) + 3 Sin(y) . (4) 

y3 y4 y5 

The Arsac taper and its transform are compared to the sine transform 

pair below. 

This window taper is much more suitable and its discrete equivalent, 

w(x> sampled at equal intervals, was used. Thus we compute 

fA>** - • (5) 

The DFT of (5) was next computed using the "power of two" 

Cooley-Tukey method [5>1^]- The DFT is obtained by' 

1 
N 

N-l 

k=0 

(6) 

V = 0,1,...,N/2, N = 2m 

where A is the complex spectral coefficient for j^1 time 
J J v 

series section, and N is tne length of that section (128 points in 
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this work, i.e., m = 7 and thus Tw = 12.8 msec.). The coefficients for 

v < 0 were not computed since the DFT has conjugate symmetry for f.(t.) 
J 

real, i.e., A = A y. 

In order to reduce the complex valued representation of the spectra 

to a more physically tractable form, only the moduli of the coefficients 

were used. Furthermore some form of amplitude compression was desired 

in order to observe uhe spectral detail of certain lower power consonants, 

e.g., the fricative consonant /s/. Therefore the final transformation was 

a form of logaritnmic compression of the amplitude spectrum given by 

a = log(l + c |A |), (7) 
Jj 
V V 

where c is a constant which varies the compression effect. For 

c |A. | « 1, essentially no compression is observed since 

log(l + e) ^ e, 6 « 1 . (8) 

This transformation (7) was felt to be superior to a pure logarithm 

because tne exaggerated diminuation of small amplitudes was avoided and 

the compression effect can be controlled. 

a, is a real function.of two discrete variables V and j. The 
J J y 

actual frequency range spanned by V is 5 kHz an& thus eacn value of V 

corresponds to an increment of 78.125 Hz. T^ was chosen to be T^./2 or 

6.4 msec, which then corresponds to each increment of j. An overlap 

of one half the window width was chosen in order to obtain equally 

weighted statistical samples of the entire time series. This is true 

since the area of the Arsac taper relative to a unit window is given 

exactly by 
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which is « l/2. The bandwidth of this spectral technique based on the 

half power point of the spectral window =fj= 5 given by (4) is circa 112 Hz. 

This represents a fairly "narrow band" analysis for speech. 

In order to observe some measure of the total instantaneous 

(averaged over 12.8 msec.) perceived intensity of the speech signal as 

a function of time, the function 

N 

V=0 

N = 64 (10) 

was computed; tnis is itself a discrete time series. It is useful 

in determining the background noise level and thus gives a reference 

threshold for silence which can be used to eliminate ambiguities in the 

onset and termination times of speech sounds. 

As an example of another spectral technique, a little used set of 

discrete orthogonal functions was chosen for use in a transformation. 

These are the discrete Haar functions [15] described in Appendix I. 

The transformation was the standard linear form 

0* 0,n 

N 

V f .(t. )cpk(t.) , 
J i/Hir 1' > 

i=l 

N = 2m = 64 . 

(11) 

The restriction of requiring the time series section to be a power of 

two in length is a peculiarity of the discrete Haar basis and is 

unrelated to tne same restrictions imposed by the particular DFT algorithm 

employed earlier. The unit window was used here because no convolution 

theorem exists for tne Haar transform and no justification could be 
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found for using another window. Values of = T^ = 6.4 msec, were 

chosen as a matter of convenience for this analysis. 

Because of the strange nature of the Haar ‘basis, e.g., the multiple 

indexing scheme required, representation and interpretation of the 

transformation is a serious problem. The index n is related to some 

exponential form of a frequency variable and the index k is related to a 

time position in the interval. Although the transient nature of the 

Haar basis might suggest an application to transient frequency analysis, 

it also has the ability to extract temporal information. As a final 

step the same form of logarithmic compression used on the DFT was applied 

to the DHT for the same reasons. Thus 

■ log(l+ C|^n|) (12) 

was computed, for plotting and visual examination. 

Zero, or axis, crossing (OX) data has "been used for many years in 

various schemes to track the first few formants (principle spectral 

peaks) of speech for recognition and compression applications [16,17]. 

These early investigations were no doubt prompted hy the discovery and 

subsequent analysis of the statistical relationship between OX measure¬ 

ments of signals and their frequency spectra [18,19,20]. The use of 

OX data for speecn compression ana transmission has been shown both in 

theory and practice [21,22,23]. All of the approaches referenced above 

used the first moment of the OX distribution, i.e., the mean OX count. 

Most earlier work involved analog techniques to find OX rates but more 

recently digital computers have been used for this purpose [24,25]. 

Since speech is generated hy a stochastic process, i.e., the speech 

signal is a function of a random variable as well as time, transformations 
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of the speech signal will he functions of a random variable. This 

fact suggested the use of standard statistical techniques to extract 

probabilistic information from sucn signals or functions of them. 

A standard tool used in the analysis of a discrete distribution 

function is the computation of its central sample moments, i.e., 

M 

= g Z h(xi)(xiVt 'll2 («) 
i=l 

where h(x^) is tne discrete distribution function. The definition of 

n(x.) includes the normalization v x' 

M 

g Z h(xi) ■ 
1 • (i4) 

i=l 

Here is taken to be the first noncentrai moment, i.e., 

M 

^ ■ sZ h(xi)xl • (15) 

i=l 

Moment analyses of the OX distance and reciprocal OX distance 

distributions were carried out. As before, the time series section 

currently in the moving window was considered. In order to establish 

a meaningful zero reference line, the best straight line fitting the 

section in the least squares sense was used for that purpose as shown 

T below. 
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Linearly detrending in this manner has the effect of a mild high pass 

filter. The computation of the reference line is explained in Appendix II. 

As a computational convenience the moments were computed directly 

from the sample data [3-} shown in jj=6 using the equations 

M- j,q (16) 

and 

d. 
J 

(17) 

rather than computing the sample distribution h(d. .) beforehand and 
J j

1 

then using (13). The subscript j is as before the index of the time 

series section and the number of zeroes (P.+l) in a section is a function 
J 

of j. 

The central moments for the Reciprocal OX distances were also 

computed by replacing d. . in (l6) and (17) with d.\. The d.\ have 
j.?1 J.?1 J,?1 

the dimensions of frequency and thus h(d.*K) is a type of crude frequency 
1 

spectrum. In order to compare these two moment sets, {p (d.)] and 
q <3 

[n (d7^*)} = p~(d.), the first group was replaced by f[p (&.)] purely 
q j q j q J 

for dimensional consistency. The relationship between these two 

different approaches, i.e., reciprocal arithmetic means versus harmonic 

means, is examined in detail in Appendix III. 

Sample moments may be regarded as the coefficients of an expansion 

of a function of a discrete variable in terms of a nonorthogonal, but 

independent, power basis. A generalized expansion would be written as 
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(18) 
M 

i=l 

k = 0,1. M-l 

The relation of (13) to the above equations is seen by making the 

substitution 

(19) 

Expansions, using the linear transformation shown in (l8), of the time 

dependent OX distributions h(d. .) were computed using two different 
J 91 

discrete orthonormal bases. These two bases and discrete orthogonal 

functions in general are discussed in Appendix IV. 

The first discrete basis to be examined was the Krawtchouk functions 

[26,27]. These functions are the discrete equivalent of the Hermites 

[28] which are related to derivatives of the normal Gaussian distribution. 

An expansion using these functions is then the discrete equivalent of the 

Gram-Charlier A series [29] . Series of this kind are useful in representing 

distributions wnich are approximately normal Gaussian. The testing of such 

a hypothesis is unfortunately complicated by the normal variable restriction 

which is implied for the distribution in question, i.e., one must set 

jj.^ = 0, and |JL = 1. The analytical complications involved in normalizing 

a discrete variable were felt to be beyond the scope of this present 

work and thus the normal Gaussian hypothesis was never tested. 

The second discrete basis used was the Gram functions [28]. 

These functions have no continuous equivalent but strongly resemble 

Chebychev functions [28] for orders higher than two. (See Appendix IV.) 

The Gram functions are roughly sinusoidal and thus give approximately even 
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weighting over the interval in question, i.e., the domain of g(d. .)• 
J J 

1 

In contrast, the Krawtchouk functions are more centrally dense and are 

very small at the extremes of the domain for the lower order functions, 

i.e., k < 10. It was therefore felt that the Gram expansion might give a 

more economical series, i.e., require fewer terms to approximate any 

given function, than would the Krawtchouk. Examination of the OX 

distributions for speech showed them to he highly variant in form and thus 

more easily represented by a series in some basis like the Gram functions. 

Since OX distributions are virtually independent of the amplitude 

of the signals from which they are derived, differentiation between 

silence (background noise) and the speech signal on a basis of these 

distributions is difficult. Therefore associated with an analysis of OX 

functions is the computation of time varying RMS values of the speech 

signal. This was found by computing 

I. 
3 

L i=l 

(20) 

where f.(t.) is the linearly detrended time series in the section. 
<3 

This is simply the deviation of f.(t.) given by 
J 

a. 
3 

r N 

I 
i=l 

v 

1/2 

(21) 

since (as shown in Appendix II) f. = 0. A characteristic function for 
J 

the presence of speecn can now be obtained by examination of I.. 
J 

Most of the analyses just described involve the reduction of a 

very long time series to a few short time series, e.g., I.. The reduction 
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of the number of points is rougnly "by a factor of 100 depending on 

the window width and overlap. It was usually found that the new shorter 

time series had a small amount of high frequency noise superimposed on 

them. This is mainly an artifact of the approximations used for 

nonstationary analysis, i.e., the fixed increment and width moving window 

technique. In order to reduce this effect and smooth the short time 

series, a very mild low pass digital filter [12] was vised. The filtering 

was accomplished by averaging sequential groups of s points and replacing 

the short time series by these moving averages by computing 

s-1 

®j^i^ = s E ^i+k^ 3 (
22

^ 
k=0 

i = 1,2,... ,N-s+l . 

Notice that filtering in tnis manner has the effect of shortening the 

time series by s-1 points and causing a time shift of (s-l)/2 points 

relative to the unfiltered function. A further explanation and analysis 

of this procedure is given in [12]. In the work reported herein, s was 

either two or three. 

The exact effect of the summing filter (22) can be found by computing 

the DFT of the filter function which is the unit discrete boxcar function 

of s points. We have then 

A 
Sk 

1 
“ N 

S-1 
^ ei2nkj/N 

j=o 

sin[rrsk/N] 
N sinLrrk/N] (23) 

which is the amplitude transfer function. For small k this function 

resembles the sine function (l) since sin x « x for |x| « 1. This 
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filter function has zeroes for k = multiples of N/s hut can he smoothed out 

if multiple filtering is performed with s chosen such that maxima of one 

filter are cancelled hy the minima of another. The scheme for s = 3 

followed hy s = 2 gives such results. In all, tnis method of low pass 

filtering was found to he very efficient and useful. 
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VII DESCRIPTION OF RESULTS 

It will "be impossible to display all the results that were 

obtained in this work. The examples that are cited are typical and 

were chosen for that reason. Some of the less fruitful methods will 

be illustrated by one example while some methods warrant many diverse 

examples and extensive discussion. Due to the large amount of 

information contained in some plots, display problems have been serious. 

The plots have been reproduced and displayed within the limitations 

of the medium. Each type of display will be explained in detail. 

One particular word, "sunless, " has many interesting properties and 

will be shown in many examples. 

Figure #7 (foldout) shows a digital spectrogram of a typical 

utterance of the two syllable word "sunless" by the author. This plot 

strongly resembles the sound spectrograms of speech shown in [ll], where 

a variable density is used to indicate intensity. The horizontal scale 

is time (marked in centi-seconds), and the vertical scale is frequency 

(in Hertz). The numbers shown (zeros are omitted for clarity) are 

the a. from (7); i.e., the compressed discrete spectral estimates. 
<b 

w 

The time scale ranges from 0 to 1.5 seconds in increments of 6.4 msec. 

and the frequency scale ranges from 0 to 5 KHz in increments of 

78.125 Hz. The rounded numbers are printed in the range from 1 to 9 

on this type of plot although sometimes the upper limit is a,b, ...,f. 

This is due to the necessity of predicting max{a. v} from 
m^x{l.), which 

is given by (20), for scaling the a. for plotting. This simply means 
J; v 

that the maximum number printed is determined by an approximate method 

to avoid storing and scanning the entire time variant transform before 

plotting. 
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The actual word begins at 33 on 'the time scale and ends at 119" 

This represents a total duration of ~ .86 seconds for this utterance of 

"sunless." The energy at lower frequencies (< 1 KHz) indicated before 

and after these points represent background noise. The phonemic 

representation of this word is /sAw^es/. All of these symbols, drawn 

from the international phonetic alphabet, and examples of their 

pronunciation are to be found in Table I. Due to the known spectral 

structure of these phonemes, they can be easily located in this plot. 

The initial /s/ is seen to start at 33 and terminate at 51 • 

/s/ is typified by a relatively flat spectrum from ~ 2.5 KHz up to 

~ 5 KHz. The final /s/ is also easily located from 96 to 119* The 

roll-off in the higher frequencies of the spectrum is due to the aliasing 

filter. The /s/ - /A/ boundary is very clear in this plot as is the 

/A/ - jnj transition. Careful examination of the /A/ region, 51 to 63, 

shows several spectral ridges called "formants" which are typical 

of vowels. The /nf - ft, I boundary can be provisionally located by 

noticing the sudden population of slightly higher frequencies and the 

transient event both occurring at ~ 76. This phenomenon will be examined 

later in greater detail and identified with the syllable boundary which 

occurs there. The nasal consonants /«/ and /m/ have very weak formants 

and a strong voice band in the lower frequencies. The second vowel /s/ 

in this example is betrayed by the reappearance of formants at 87* The 

formants of /e/ are weaker and displaced relative to those in the /A/. 

The total (compressed) spectral intensity given by (10) is 

plotted in Figure =§&. The time span and increment is identical for 

this function except for a slight effect due to digital smoothing. This 

function was filtered by running sums of 3 points followed by running 
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sums of 2 points. The result of this process is a shortening of the time 

series S. by 3 points and a time shift of l-l/2 points. Taking this into 
J 

account, the plot has been marked at the same points as the spectrogram. 

Notice that each marked point corresponds to a region of change in 

perceived intensity. The ’’loudest" part of the word occurs during the 

vowel /A/. This is because vowels are typically more intense than 

consonants and also /A/ occurs during the accented syllable. It is 

obvious that even knowing the word beforehand, one could hardly have 

located the phoneme boundaries accurately using this intensity plot alone. 

Figure #9 shows a discrete Haar spectrogram for the same word. 

This represents the compressed coefficients given by (12). In both the 

DFT and DHT spectrograms, the compression constant c was chosen by 

trial and error to show the greatest detail in the plots. The horizontal 

scale (time) is the same for both spectrograms. The vertical scale, 

however, is not simply related to frequency as before but is a linearized 

form of the multiple indices k and n. The index k was allowed to run over 

its range for each value of n. The boundaries for each value of 

n = 0,1, ...,5 are shown on the vertical scale. 

The DHT spectrogram and the DFT spectrogram hear a strong 

resemblance to one another. Some of the boundaries, e.g., /s/-/A/, 

/A/~/W/, and /e/-/s/, can readily be seen. The effect of changing from 

one value of n, e.g., 5 to k to 3> can be noticed in the region 60 to 

100 on the time scale. The formant structure in /A/ can be seen here 

as rising bands rather than horizontal bands as before. One can roughly 

associate n with log^ of the frequency and k as the time shift in the 

section. This strange frequency and time dependence of the DHT 

coefficients help to explain the appearance of the spectrogram. 
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The actual time series for "sunless" is shown in Figure #10 as 

plotted on a rectilinear hot pen recorder receiving its input from the 

D/A converter of the computer. The time scale here is 20 msec/large 

division (l cm on the original plot). Some of the phoneme "boundaries 

are obvious from this plot, e.g., /s/-/A/, /A/-/«/, and /e/-/s/. It 

would, however, have been impossible to apply any heuristic segmentation 

procedure to this function as was done using the DFT spectrogram. The 

raw time series shows the complex nature of the signals under investigation 

here. 

The RMS as a function of time for the linearly detrended signal 

given by (20) is shown in Figure #11. The time scale for this function 

is 10 msec/point which is also the case for all of the OX functions to 

"be discussed. This function tends to show absolute intensities rather 

than the perceived (logarithmically compressed) intensities shown in 

Figure #8. The RMS function was low passed filtered with a minimal "sum 

"by 2" filter resulting in a time shift of ~ 1 point. Relative intensities 

of the various phonemes in "sunless" can readily "be seen in Figure #11. 

The remaining functions to he discussed are concerned with the 

short time OX distributions of the speech waveform. Figure #12 shows 

the time varying OX histogram for the word "sunless." The horizontal 

scale is time, 10 msec/point, and the vertical scale is distance between 

zeros in each detrended section. The actual frequencies are scaled between 

0 and f (interstitial hexadecimal) and rounded. As in the spectrograms, 

the 0's are omitted for clarity. Small OX distances correspond to high 

frequencies since time is the reciprocal of frequency. Each histogram, 

i.e., one column of numbers, is normalized according to (l4). The 
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distributions have an upper limit of 51 points between zeros, which is 

~ l/3 of the window length of 150. This limit was determined empirically 

from a large amount of data and results from the low frequency rejection 

of the amplifier system and the detrending process. The range of d, 

[1, 51]> is roughly equivalent to a frequency range of [5 KHz, 100 Hz] 

[18]. 

The first transformation of the OX distributions we will consider 

is [\i. ] ^ from (l6) and (17), displayed in Figure #13 for q = 1,2. 

Higher moments, q > 2, are not shown due to their very low information 

content and poor quality. [\i^\ ^ is proportional to the mean frequency, 

i.e., half the number of OX/second of the signal [18]. The initial and 

final /s/ phonemes stand out very noticeably. These functions and the 

A 

^j,q ~ ^ (cl- ) in Figures #l4-l6 have been filtered by summing by 2. 
Q. J 

(i. for q = 1, 2 is shown in Figure fflh, for q = J,,k in figure #15, and- 
9. 

for q = 5 and in Figure #16. The last function was computed 

to determine the effect of normalizing the third moment by the variance 

|ig. These moment functions will be discussed in more detail later. 

It is appropriate here to point out the similarity between |i 

and [|j.^] 1 in Figures =ff.l4 and #13 respectively. It is apparent that \±^ 

is more sensitive to signal variations, e.g., phoneme transitions, than 

is [\ij] which has been used exclusively in speech research in the past. 

This difference is easily explained in Appendix III where the approximate 

relat ion 

1 [^i (2k) 
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is derived. This simply means that \is a function of both the OX 

count and the variance of the OX distances. This approximation is only 

valid for p^ > Ad^ which was later shown not to hold for all portions 

of the speech signal, e.g., the /s/ phoneme where p,^ is small. In any 

case the results in Appendix III are useful at least qualitatively in 

explaining the behavior of these new moments. 

Figures #17 and #18 show the time varying Gram transform coefficients 

cfu(x) = G (x) and thus = g^. The same distributions were expressed in 

terms of Krawtchouk functions, cp^(x) -X ^(x), and their coefficients as 

a function of time k^ kg, k^ and k^ are shown in Figures #19 and #20. 

As before, these functions have been slightly smoothed and were derived 

from the same utterance of "sunless." Both occurrences of /s/ are very 

th 
obvious in these figures for both transformations. In both cases the 0 

coefficient is not shown because g^ is just the mean OX distance, p.^, 

since GQ = 1, and gave very poor results due to the concentration of 

KQ at the center of the domain of OX distributions, d^ (see Appendix IV.) 
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VIII DISCUSSION OF RESULTS 

The purpose of the previous section has been to show how to read and 

interpret the plots of the various functions of the speech signal that 

have been computed. The location of the phonemes in the word "sunless" was 

determined heuristically on a linguistic basis mostly from the DFT spectro¬ 

gram and also using the a priori knowledge of the sound of the word spoken. 

The DHT spectrogram confirmed these findings but was not found to be 

as useful as the DFT for this purpose. An examination of the various 

transformations of the OX data for the "sunless" example (Figures #12-20). 

and the remainder of the word corpus (Tables II and III) showed strong 

correlations between classically determined phoneme boundaries and 

transients or "events" in these OX functions during the same time intervals. 

The real problem in speech analysis is the reduction of a large 

amount of data, ~5 X 10^ bits/second, to a more tractable quantity 

comparable with the theoretical information rate of ~ 50 bits/second 

[30]. This can be achieved only if a reduction of data by at least a 

factor of 100 is first obtained, otherwise any practical attempt at machine 

analysis is hopeless. For these reasons, the DFT and DHT spectro- 

graphic techniques described here will not be exploited for segmentation 

procedures. The reason for this is that these spectra are basically one 

to one transformations which are only amenable to visual human analysis 

unless further reduced. The OX techniques do however give a substantial 

data reduction (l00:l) and provide a set of functions which are in a 

vector space of low enough dimension for direct machine analysis in 

searching for phoneme boundaries. 

Of the two types of OX transformations, moments and orthogonal 



functions, one of each kind seemed worthy of further investigation. 

These are the central sample moments of the reciprocal OX distances and 

the Gram transforms of the OX distributions. The Gram transform is an 

2 
orthogonal transformation in the L sense, i.e., using the inner product 

defined by (l8) (the Euclidean norm) and therefore generates representations 

in terms of the Gram polynomials, having errors minimized with respect 

to sums of squares or power. It is rarely the case in speech signals or 

OX distributions of them that the information (with respect to 

segmentation or recognition) is proportional to the power of some component 

of the speech signal or functions of it. But since most physical functions 

2 2 
are L and L transforms are mathematically tractable, this approach to 

signal representation is very attractive. 

In the case of OX distributions, it appears that the nonorthogonal 

moment analysis of the reciprocal distributions holds the most promise 

for the problems under consideration. This is believed since the 

(p. ) had the most consistent transient activity of all the functions 
Q. 

at classical phoneme boundaries for all of the words tested. Moment 

analysis was originally chosen because of the simplicity of computation 

and interpretation. Such analyses have long been used for feature extraction 

of distribution functions. The physical interpretations of the first 

moment and the second through fourth central moments are well known; 

P1 = mean (center of gravity), pg = variance (spread), p^ 
= skew (symmetry), 

and |_i^ = kertosity (peakedness). Because of their attractiveness and 

unusual nature, the (u. ) were chosen as input to a segmentation 

algorithm. Since these functions are essentially independent of amplitudes 

the BMS intensity function I. was also chosen in order to establish a 
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characteristic function for the speech signal to determine regions in 

time of relative silence. 

The principal element s of the segmentation algorithm which was 

finally chosen can he justified by examination of the next example, the 

word "into" which is written /in’tu/ phonemically. In fact the phonetic 

form of the instance of "into" which was spoken by the author was 

/iI^tuUA/.^ This shows the transitory nasal sound /i/ and the dipthongniza- 

tion and closure of the final vowel /u/. The onset of nasalization during 

the final portion of a prenasal vowel is well known and has been 

demonstrated physiologically [ 31]. The termination of a final vowel 

with a weak neutral /A/ is a common regional linguistic phenomenon. The 

complex phonetic structure of this word was verified when the final 

algorithm was applied to it. 

The first step necessary for segmentation, using the moment 

functions, is the delimiting of the null phoneme /§/. This was done by 

marking those places where I., Figure #21 for "into", crossed a threshold 
J 

line and did not recross it for at least 3 points (30 msec.). The threshold 

line was 2.5 times the average of the first 10 points of I.. This 
J 

average thus represents a high estimate of the ambient noise level prior 

to the onset of speech. The speech boundaries found by this technique 

for the example "into" are shown as t on Figure #21. The horizontal line 

drawn is the computed threshold level. The t indicate speech between 4l and 

67 and between 72 and 115. The 30 msec, hysteresis on the threshold 

was chosen because the shortest phonemes, the plosives /p/, /k/, and /t/, 

last at least 40 msec. This can be seen here as the /t / (after the short 

/§/ in the middle of the word) in "into" which lasts about 70 msec. 

*1* Verified by a person with linguistic training 
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Figures #22 and #23 show p , p. and p. , p. . respectively 
o) -L J j ^ J J j 

with the delimiting t for /$/ and other interesting "events". Event 

may be defined for the present as activity in {p. }, where q = 1, 2,3, 4, 
3, Q. 

not in /$/ regions, and which is indicated by relatively large concurrent 

changes in the magnitude of the first differences of {p. }. The latter 
3, 1 

quantity is defined generally as 

A 
j+1,1 3,(1 

(25) 

In order to detect such events it was necessary to compute {|Ap. | } and 
J; 1 

then order this set over each interval of time (the index j) not in 

regions of /§/. In order to relativize all measurements, the normalized 

quantity 

% 

1 .1 * q 

max |AM | 

j 

; 3 e J,, (26) 

t h t h 
is computed where is the k disjoint range set of j for the k 

speech interval, i.e., not in a /§/ region. 

It should "be obvious that the number of meaningful acousto- 

linguistic events in a given interval of speech is limited by the rate 

of speech and the language itself. For the problem at hand, 

n^ = card(Jk}/4 (27) 

was chosen as the maximum number of events to be considered in the k^*1 

speech interval. This simply means that a maximum rate of one phoneme/40 

msec, is allowed, which is reasonable for this demonstration since the 

shortest phonemes in English are of this duration when spoken at a 

normal rate. For each k, the first n, elements of P^ are defined as 
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k r*k 
e, . Since the/- . were ordered over j this means that given k and q J>q. ^j,q 
eH is a sequence of the n. largest first difference magnitudes in 
«b o. k 

^ for j e J^. For "into" k = 1, 2 and n^ = (4l-67)/4 = 6 and 

rig = (115-72)/4 = 10. The number of possible events in any word 

containing T speech intervals is simply 

T 

■ 

(28) 
k=l 

which is deliberately set high in order not to miss any subtle events. 

The segmentation algorithm is then based on [e. } whose elements 

will be considered as weights of the linguistic significance of an 

event; computationally the respective values of j for each e. are 

stored along with the weight itself in the computer. The remaining 

information for k and q is implicit in the storage sequence of the 

weights. It should be clear that V k, j,q, e. e [0,1] due to (26). 
<b q. 

It now remains to measure concurrence for any k over q for e . , i.e. 
3? 1 

which weights for different q have the same or nearly the same j or 

time or occurrence. Experience with a large number of words showed that 

there was a trend of less and less information in ([i. J as q increased. 

For this reason } was used for q = 1,2, ^,4 and concurrence in time 
3, q 

was always determined with respect to e. • 
J; 

k 
The algorithm then consists of three steps on [e . } which 

3 s 1 

finally yields the segmentation markers 2 which are really pairs of 
J 

weights and locations (in time) . ^ can be thought of as an accumulator 
J 

for the algorithm over the three steps which is initially set to zero. 

The first step is given by 
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V i = j. (29) 

k 
yk k k 

1. = e+) e. , 
j 0,1 Z_v i, <3. 

1=2 

This amounts to summing over q all weights which have exactly the same 

temporal index as those where q = 1, i.e. in the first moment. The 

second step is given by 

k 

AA 
(30) 

v i, j 3 !i-jl = 1. 

This then is summing all weights which are nearly (±. 1 point) concurrent 

temporally to the weights from the first moment. An added complication 

in this step is that if , for |i-j| = 1, then j in 2^ is 
9. J 

replaced for that weight hy i. This simply associates the location 

which corresponds to the larger weight for more accurate determination 

of boundaries. The final step removes all markers which are too close 

(± l) together by computing 

sk = sk (31) 
J J i ' 

V i, j 3 I i-jl = 1 . 

Here again the index of the larger weight is used as a final marker 

location and the index of the smaller weight is discarded. The remaining 

indices and their accumulated weights define the set of segmentation 

markers for a word. 

For the word "into” the segmentation markers found by the algorithm 

are indicated by the large f in Figures #22 and #23 • The ordinal under 

each t is the rank of the weight associated with that marker. Some of 
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the markers coincide exactly with the markers of /§/ found from Ij in 

Figure #21. It is clear that all of the markers are at or very near 

transition regions in the moments and to a lesser extent in the RMS 

intensity. Due to the discrete nature of all of the functions used in 

this analysis, the markers are really only determined within ± 1 point 

of their computed location, i.e., ±10 msec. This uncertainty of position 

is still well within the limits necessary for practical application of 

the technique for recognition purposes. 

It is appropriate now to indicate what legitimate linguistic 

phenomena if any can "be associated with these markers. This is done 

hy comparing the location of classical linguistic activity, heuristically 

determined from the DFT spectrogram, to the position of the markers. 

The spectrogram for "into" can he seen in Figure #24 with the t. Recall 

that the phonetic form of the sample was /IIw'tuUA/. With this in mind 

let us examine the first speech interval for k = 1 in the spectrogram. 

The most obvious charge in this interval can he seen where marker 5 is 

at 53• This is the vowel-nasal boundary for the first syllable, i.e., 

the point when a majority of the acoustic power is nasal rather than 

oral. This is true since the two formant structure of the /n/ starts 

at that time. The onset of nasalization, when the velum begins to open 

the path from the larynx to the nasal cavity, is indicated at 48 by 

marker 4. This can be seen as a dropping off of the second formant in 

the vowel, and an overall loss of power as seen in Figure #21. 

The remaining markers 3 and 1 in this interval can also be explained. 

Marker 1 at 56 is undoubtedly due to the completion of the vowel-to-nasal 

transition. Physiologically this occurs when the apex (tip) of the 
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tongue touches the hard palate just behind the teeth and thus cuts off 

any sound from the mouth. The region between markers k and 1 is the 

transitional sound /i/ indicated earlier. Marker 3 could only have been 

caused by the initial vowel /i/ reaching near full power from silence 

in about 50 msec. This sudden change in the rate of buildup in air 

velocity in the vocal tract carries no apparent linguistic information 

but caused a sufficient change in the moments to be detected. Marker 2 

coincides with the stop interval before the plosive /t/ which had been 

already detected by the threshold level detector. 

The second interval and syllable, k = 2, are easier to explain 

with reference to the markers found there. Marker 9 corresponds to the 

explosion of the ft/ and the beginning of the interval. It, as well as 

marker 2 in the previous interval and 6 in this interval, coincides with 

points found by the threshold detector. The typical formant structure of 

a vowel can be seen starting at marker 2. From marker 2 through 5 we 

can see the top three formants move steadily downward to lower frequencies . 

This is the triphthong/uUA/ found in this instance of "into". From marker 

5 to 6 lies a region where the word is essentially dying. The power in 

the sound is very low after 100 csec. as can be seen from the small 

values in Figure $2b or graphically on Figure $21. The markers in this 

region correspond to a very low frequency component in the vocal cord 

vibrations due to instability caused by decreasing air pressure from the 

lungs. This is seen on the spectrogram as an increase in the value of the 

spectral components just before markers 4 and 7* This must be considered 

as noise but is typical of this speaker for words ending in a vowel. 

59 



It is felt that all the markers found for this word are linguistically 

and acoustically meaningful. There is a definite correlation between 

linguistic significance and the weights that were assigned automatically 

to the markers. For this word and almost all others used, a marker was 

always placed very near (± 10 msec.) a classically determined phoneme 

boundary. The remaining markers could be interpreted as being associated 

with transitional sounds or phonemes, or as high level linguistic noise, 

e.g., lip noise, and vocal cord instability. The only mismarking or 

omissions were due to known shortcomings in the marking process. A more 

involved threshold algorithm perhaps including the use of I. would have 

prevented improper delimiting of /$/, which in some cases resulted in 

the application of the segmentation algorithm to regions of noise generating 

an inordinate number of highly weighted markers. Because of this, the 

quota nv for an interval was used up on spurious events causing other 

real events not in the noise interval to be completely overlooked. A more 

sophisticated segmentation algorithm could possibly contend with: 

(1) very low power or dying vowels where vocal instabilities arose, and 

(2) highly transitional phonemes such as the liquids /&/ and especially 

/r/. 

The subset of the corpus used to actually test the segmentation 

algorithm was the set of words on Tables II and III which are followed 

by an asterisk. A consolidated list of these words and the segmentation 

scores are found in Table IV. Each word is followed by two fractions. 

The first is the ratio of markers which corresponded to actual classical 

phonemic boundaries to the total number of such boundaries. The second 

is the ratio of markers which corresponded to significant linguistic or 
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TABLE IV 

Test Word Scores 

1. Sunless 6/7, 3/3 

2. Monday 6/6, 4/4 

3- Zero 5/5, 4/4 

4. Speakers 8/8, 4/4 

5 • Himself 8/8, 3A 

6. Speechless 8/8, 4/4 

7- Which 4/4, 3/3 

8. Into 5/5, 5/5 

9- Only V5, 2/5 

10. Some 5/5, 2/4 

n. First 6/6, 3/3 

12. Did 4/4, 2/3 

13- Many 5/5, 1/3 

Totals 9l1°> 00
 

ro
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acoustic phenomena. The latter class of events are made up of: 

(l) noisy phonemes, e.g., /r/ and final vowels, (2) high level articulatory 

noise, and (3) phonetic boundaries which do not coincide with phonemic 

boundaries, e.g., nondisjoint pairs like vowel-nasal combinations. The 

most significant fact, other than the consistently high scores, is that 

none of the ratios are greater than unity. This attests to the validity 

of even so simple a segmentation algorithm. It was also thte case that 

every instance of a syllable boundary was detected by this algorithm. 

It seems clear that the algorithm could be improved to eliminate the 

problems previously stated and would give highly accurate results. The 

high performance of this algorithm considering its simplicity indicates 

that the reciprocal OX moments give a reliable measure of changes in 

stationarity indicating phoneme transitions in speech. 
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IX CONCLUSIONS 

As far as the original goals are concerned, this research was a 

success. The flexibility of the time series analysis system which was 

developed played a major role in allowing a large number of different 

approaches to be explored in an efficient manner. Although the spectral 

representations (DFT and DHT) investigated were used only as a 

fiducial base for phoneme boundaries generated linguistically by the 

author, the work done in that area was for the most part new and could 

bear further probing for other applications, e.g., speech recognition. 

The new techniques for OX analysis of nonstationary time series proved 

to be very fruitful for speech analysis and have opened new avenues for 

future research. These methods are currently being used for signal 

analysis research under an ONR contract and have been suggested as a basis 

for a new type of hearing aid [32]. 

The segmentation of speech can be considered in three domains: 

linguistic, acoustic, and articulatory (physiological). The methods 

explored have shown the existence of acoustic cues which correspond to 

certain linguistic and spectral features denoting phonetic transitions. 

In fact earlier work has also revealed certain physiological correlates 

to acousto-linguistic boundaries [33] • In practice this segmentation 

procedures gives only phonetic boundaries which are not paired as to 

onset and termination. This results in a subphonetic partition which 

then must be filtered using linguistic information via recognition 

in order to achieve phonemic segmentation. The nondisjoint nature of 

this partition seems to have been borne out in this experiment. An 

objective definition of a segmentation has thus been created in the form 
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of an algorithm and has led to a deeper insight into the possible nature 

of the human speech generation process. 
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APPENDIX I 

Haar Functions 

The Haar basis [15] is defined as 

' 211"1/2, x E [(2k-2)X, (2k-l)X] 

t_2n-l/2^ x g [(afc-i)x, 2kX] 

, 0, elsewhere 

where 

\ = 2~(n+1^ 

n = 0, lj 2, • • »j oo 

k = 1, 2| 3# • • • $ 2 , and 

0(x) « 1, x € [0,1]. 

2 
This is an orthonormal set which is complete in L . The first few 

Haar functions are shown below. 

2 + 

-2 T 

FIGURE #1-1 

65 



2 
functions. Given a function f(x) e L [0,1], we may therefore expand 

f(x) in terms of Haar functions "by computing 

where 

00 

f(x) = Y/ an^n(x)‘ 

n, k 

In the case where x* = 0,1, we may define the discrete 

Haar basis by restricting N = 2m. The original definition needs only 

the following modifications: 

X' = \(N-1), 

n = 0,1, 2, .. .,m-l, and 

k = 1, 2, 3> • • •> 2 
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Any "bounded function f(x') may be expanded in terms of the discrete 

Haar basis by using 

N-l 

*n = 5 E 
x '=0 

where 

m-1 2 
n-l 

f<*'> - E E «!$<«'> 
n=0 k=l 

Further properties of orthogonal bases composed of functions of a 

discrete, bounded variable are discussed in Appendix III. The actual 

computation of the a^'s are trivial numerically since the basis functions 

are simply constants. One merely computes sums of those portions of 

f(x') where^f^(x') ^0, and then multiplies by^ £(X*)/N. 
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APPENDIX II 

Least Squares Line 

Given a set of observed values {y°} it is desired to find the 

function y\ = a+bi such that the 

N 

i=l 

is minimum. This is the least squares problem for the straight line 

and the coefficients a and b may be found by solving the system of 

equations 

£ N N 

a ^ 1 + b \ i = \ y° 

i=l 3=1 i=l 

N N N 

V • -u ~ *2 T o. a y i + b > l = / y^i 

i=l i=l i=l 

if one can make the restriction that the y? are equispaced samples. 

In the case of most discrete time series this is true and therefore 

leads to simplifications. The above system can be rewritten by replacing 

the sums on the left hand sides giving 

aN + b 
NfN+l) 

N 

■ z 
i=l 

N 
NfN+l') + ^ N(2N +SN+1) _ yN yoi E 

i=l 

68 



In order to facilitate manipulation, the above is rewritten as 

an.^ + bng = n^ 

an2 + bn^ = n , 

which may be solved analytically. The solution was found to be 

a = 
“3. ^2 /n1

n5~n2n^\ 

nl ' nl\ Vl-n|/’ 

b = 
ninS~n2n^ 

n4nl"n2 

Before substituting the values of the n's, another simplification 

can be found. Recall that 

n 
3 

N 

\' o 
2_ yi* 0r 

i=l 

n3 . By 

If the mean value of the time series is removed beforehand, i.e. 

o* o o 
yi = y± " y > or 

o* n 
y = o , 

then after re substitution and reduction we have 

a = 
_ (N+nb 

, and 

N 

) o* 

b = 
i=l 

yi 1 

W/l2(K -l) 
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In terras of Ta, the least squares straight line is then 

t (M+l^b 
yi = 

+ bi , or 

This represents a very compact and efficient means for removing linear 

trends in equispaced data. 

A convenient property of linearly detrended data is that its 

mean is zero. This can be easily proved by writing first 

~o o* t 
yi = yi " yi ' 

and computing the mean 

~o o* t 
y = y - y • 

O# 
By definition we have set y =0 and 

y
1
 = b[i - -^2^"] > or 

yt = b[i - (^|r)] , where 

N 

7 _ 1 V i = N^+l) = -(^1 
N i_, N2 2 

i=l 

Therefore we find that 

? - 0 - . 0. 

Q.E*D. 
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APPENDIX III 

Arithmetic and Harmonic Moments 

Let be the distance or time, i.e., number of points, between 

"til S”t 
the i and i + 1 zero for any given time series section. We may 

then write 

d. = d + Ad., 
1 TJ 

where Ad^ is the variation of d^ and 

i=l 

is the mean. P+1 is the total number of zeros in a segment D points long, 

therefore 

3 = J. 

i.e., the mean of the ox distances is approximately proportional to the 

reciprocal number of zeros. By definition then we have Ad^ = 0 and thus 

d 4 f(Ad^); i.e., the mean is independent of the variation. 

For the case of reciprocal ox distances d^ ^ we can write 

P 

d = (d+Adi) “I _ I \ 
P /_ /T 

:='i 

Assuming that Ad^/d < l\/l, then 

-i _ i T I 

i=l 

Ad. /Ad A 2 

! - — + (—1 
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or 

f1 ~ -±- K 

p 
Ad2" 

d - Ad. + - \ 

i=l 
L CL J 

This reduces to 

,-l 
1 + (^) = g(M), 

and thus d 1 is dependent on the variation. 

Let us define for q > 2: 

l_i = (Ad.)q , and 

f = [Afd;1)]-! = (ri--a'iy. 
q \d+Ad. 

Let < > be used for 

([(d+Ad.)"1 - <(d+Adi)"1>]q-) 

!_ [A.^i 
iq L\ i \d/ 

i - 
Ad. 
 l 

Ad. 
for ~zr < 1 

d 
Ad. (Ad.)2 - (Ad.)2 

__ + — 

d d 

1 //Mi\q / Adi\q_1 

" _ +i'T) ? \\ d 

~(Ad.)2 - (Ad.)2 

s2 

(-Ad.)( 

d‘ 

(-Dq 

0 p . and 
2q 

, then 

72 



1 L 

M-o 
1 + 2 

M-1J 

, where = d. 

The above relations between u. and u. hold only if Ad. < d but are at 
q. 0. i 

least of interest for qualitative comparison. 
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APPENDIX IV 

Discrete, Finite Orthogonal Functions 

2 
The most general form of the L orthogonality property is given 

by 

c 6 
n n, m 

which if Q?(X) € C can he written 

'l'n(x)\|rm(x)Q',(x)dx c 6 
n n, m 

where 

rl, n = m 

6 
n, m 

\0, n ^m 

p 
This means that the set {\]r^ (x) ] is orthogonal in L with respect 

to the weighting function W(x) = a'(x). If oi(x) is a step function 

with jumps at x = 0,1,2, ...,N-1 (where N is a fixed positive integer), 

then we may write 

N-l Et (x)ty (x)W(x) = c 6 
n m' ' ' ' n n, m 

x=0 

n,m = 0,1, .. .,N-1 

Here W(x) are the values of the jumps at the grid points x e [0,N-1] 

as described above. This now defines orthogonality for functions of a 
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discrete bounded variable with respect to a weighting function of the 

same variable. 

It is usually most convenient to deal with functions that are 

orthonormal with respect to a unity weighting function, i.e., c
n 

= an(^ 

W(x) =1. This can be easily done by defining a new set of functions 

9n(x) 

■/cnW(x) 

which will have the property 

N-l 

^ CD (x)cp (x) 

x=0 

6 
m, n* 

Functions of this type are very useful in the computation of linear 

transformations on arbitrary bounded functions of a discrete bounded 

variables, e.g. 

N-l 

§ = N f(x)cp (x), where 

x=0 

N-l 

f(x) = ) 5 9 (x). 

n=0 

Completeness is guaranteed if there exist N mutually orthogonal functions 

in a vector space of dimension N. 

One of the most interesting classes of discrete orthonormal 

functions are those where 

n 

*n(x) = p
n(
x>N) = J/ aixl 

i=0 

x = 0,1, ...,N-l 
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i.e., {^n(x)} are polynomials evaluated on an equispaced grid of N 

points [26,28]. If one chooses the discrete ■weighting functions W(x,N) = 1, 

then the resulting finite set is given by 

Gn(x,N+l) 
n 

cn,N E k: 

N - k 

,n - k, 
> 

and are known as the Gram or Chebychev polynomials. The form a' ' in 

in the above equation is defined as 

a (b) a.' 
(a-b)! 

b-1 
n (a-j) 

j=0 

The normalizing constant can be found to be 

Cn,N = (-l)n[(2n+l)N(nV(N+n+l)(n+l)] ^ . 

The more standard form for these polynomials can be derived and is 

Gn(x,N+l) 

n 

k=0 

(ti 

The polynomials were evaluated for N = 74, and n = 1,2,3, 4, 5,6 and are 

shown in Figure #IV-1 to be compared to Chebychev functions 

7V’ / \ cos(n cos 1x) 
J n X " „lA ' 

(1-x2) 

X 6 [-1,1] 

which they resemble for higher orders. 

Another very interesting set of polynomials is associated with 

the weighting function * 
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W(x,N+l) = (®), 

and are given by 

n 

Kn(x,H+l) = on>N <£ 

k=0 

These are the Krawtchouk polynomials [26,27] and the orthonormal basis is 

3^n(x,N+l) = K^XjN+lUwUjN+l)]1/2 

where 

C = [(i)N/(N)ll/2 
n,N u2' Mn'J 

These functions have the interesting property that 

-'3in(z)’ 

where(z) are the Hermite functions [27,28] given by 

. H (z)e"z2/2 

*-w ■ 

Hn(z) are the Hermite polynomials which are defined as 

H (z) = (-1) V* 
nv ' 

s
 ' , n 7 

dz 

and 

N , ,N\ 
x = g + z(-) 

1/2 

The Krawtchouk functions are therefore the discrete equivalent of 

the Hermite functions. These two functions were computed for N = 7^-. 
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and n = 0,1,2,3,4, 5 and are shown in Figure #IV-2 and Figure #IV-3- 

The difference in these two functions only becomes evident for higher 

order n. 
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