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ABSTRACT

A brief history of speech research is given along with the current
state of the art in acoustic speech recognition. The problem of speech
segmentation in the acoustic domain using a digital computer is specific-
ally addressed, i.e. determining an acoustic partition in time which has
linguistic relevance. This problem is viewed, in more general terums,
as that of detecting transitions, in a globally nonstationary process,
from one local stationary state to another. Nonstationary analyses are
approximated by considering short fixed length time series sections as
seen through a window which moves by a fixed increment.

Various nonstationary signal representations are explored in order
to esgtablish a feature space suitable for segmentation applications.
Spectral representations are only generated as a reference space used
to compare any mechanical segmentation procedure with the linguistically
determined segmentation of any given speech sample. Temporal representa-
tions of the zero crossings of speech signals are explored in detail.

In particular the central sample moments of the reciprocal zero crossings
as a function of time are used as input to a simple segmentation algorithm.
The results of a demonstration of this algorithm show that speech

segmentation as defined is possible by nonhuman means.
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I TINTRODUCTION

There have been three definite turning points in acoustic speech
research history: (1) the invention of the vocoder by Homer Dudley
in 1932, (2) development of the sound spectrograph by Bell Laboratories
in 1948, and (3) utilization of the digital computer after 1960. It has
been only in the last few years, however, that the digital computer has
really been used effectively in this area. Prior to 1965, most of the
research work was carried out on specially built devices or on analog
computers. One of the ultimate goals of this research in the last ﬁhirty
years has been that of automatic speech recognition, i.e., to build a
device which accurately converts an acoustic speech signal in some given
language into a sequence of symbols drawn from a finite inventory (such
as the set of phonemes for that language). The complexity of the problem
becomes clear when one considers that some of the nation's top research
laboratories have to date failed to solve this problem; some experts

believe it to be unsolvable.

The current state of the art can best be summed up as follows.
For isolated single words from an unrestricted vocabulary spoken by a
variety of male and female speakers, recognition accuracies of about 80%
for vowels and 50% for consonants have been achieved [1,2,3]. Under the
same conditions but using a limited specially selected vocabulary of 10-20
words, e.g. the digits, the words "yes", "no", "go", "stop", etec., top
scores of about 98% are reported. The reasons for these failures appear
to be twofold: dedication to the "black box" approach for research, and
the practice of attempting recognition without segmentation.

The "black box'" approach is that of deciding on some model or set

of rules for recognition and then building an electromechanical analog of
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that medel. The folly of this procedure is that having spent months in
designing and constructing such a "black box", any changes or alterations

after the fait accompli are extremely difficult. It is impossible to

build into such a device the generality necessary to effect the changes
which are always required. The trend toward software simulaiion on a
general purpose high speed digital computer has vastly improved model
testing.

Segmentation is the process of partitioning (not necessarily

disjointly) the speech stream into linguistically significant subunits
which are hopefully atomic. It has been greatly disputed whether this

is possible or even necessary. These primitive speech units are known as
phonemes. Although one can with little or no training reliably write
down the series of phonemic symbols which correspond one to one to a
series of phonemes which were heard (see Table I), it does not follow
that such a procedure actually occurs in the covert real time recognition
process in humans. In practice the acoustic phonetic "boundaries" in
spéech are subtle and may give rise to an overlapped temporal partii:ion.
That is to say, the actual effect of a particular phoneme may begin
during the first or second previous phonemes and/or terminate several
phonemes later than its peak. Such supra-segmental phonemes are still,
however, easily identified and localized by the human recognition process
[4].

With very few exceptions, all past recognition research has ignored
or avoided the problem of éegmentation ag a processing corequisite.
Typical recognition devices had an output indicator which continuously
showed the device's current decision as to which phoneme was currently

being processed. Thus segmentation was achieved after the fact by



TABLE I

Part I--Conversational

Rank Phoneme Example % Type
1. t (take) 9.8 V-p
2. n (not) 8.1 n
3. I (tip) 6.3 v
L. T E;oy) 6.1 1

A up
5. 3 (herd) 6.0 v
6. d (di11) h.6 v-p
7. 2 (Like) 4.6 1
8. s (set) L.o (50%) v-f
9. W (win) 3.7 s

10. m (me) 3.6 n

11. k (kit) 3.6 V-p

12. € (ten) 2.7 \

13. 3 (then) 2.5 v-F

14, ai (dike) 2.4 v(a)

15. h {hat) 2.2 v-f

16. z (zip) 2.2 v-f

17. a (top) 2.1 v

18. ae (tap) 2.1 v

19. J (you) 2.1 s

20 (eve) 2.1 (80%) V

21. u (boot) 2.0 v

22, f (for) 2.0 v-f

23. e (mate) 1.9 \

2k, v (vote) 1.8 v-f

25. D (pit) 1.7 V-p

26. o (tone) 1.5 v

27. g (get) 1.5 v-p

28. 9 (all) 1.3 A\

29. M (sing) 1.1 n

30. U (took) 1.0 v

31. 8 (thin) 0.7 v-f

32. ) (she) 0.7 v-f

33. b (bit) 0.6 v-p

3k, au (outg 0.6 v(d)

35 Q}. Jar 0.3 v-p-f

36 tf (chew) 0.3 v-p-f

37 oi (0il) 0.1 v(d)

38 iu (few) 0.1 v(d)

39 ¥ (azure) 0.01 v-f

Legend: V - vowel, (d) dipthong f - fricative

v = voiced n - nasal
v - not voiced 1 - liquid
p - plosive s - semivowel

Derived from Fletcher's data for edited telephone speech.



TABLE T

Part IT - Written

Rank Phoneme Example % Type
1. I (tip) 7.9 \
2. n (not) 7.2 n
3. t (take) 7.1 V=D
b, T ggoy) 6.9 1

A up
5. {3 (ora) 5.0 v
6. s (set) h.6 v-f
7. d (aill1) 4.3 v-p
8. ae (tap) 4.2 v
9. i (eve) 3.9 (50%) v
10. £ (like) 3.7 1
11. z (zip) 3.6 v-f
12. € (ten) 3.k v
13. 3 (then) 3.4 v-f
1k. a (top) 3.3 s
15. m (me) 2.8 n
16. k (kit) 2.7 V-p
17. e (mate) 2.4 v
18. v (vote) 2.3 v-f
19. W (win) 2.1 (80%) s
20. D (pit) 2.1 v-p
21. h (hat) 1.8 7-f
22, f (for) 1.8 v-f
23. b (bit) 1.8 V=P
2L, u (boot) 1.6 \s
25. o) (tone 1.6 v
26. ai (dike) 1.6 v(a)
27. Hi (sing) 1.6 n
28. p) (all) 1.3 v
29. g (get) 0.8 V=D
30. f (she) 0.8 v-f
31. U (took) 0.7 v
32. au (out) 0.6 v(d)
33. J (you) 0.6 s
3L, dz (jar 0.5 v-p-f
35 tf (chew) 0.5 v-p-T
36 9 (thin) 0.4 7-p
37 iu (few) 0.3 v(a)
38 oi (0il) 0.1 v(a)
39 3 (azure) 0.05 v-f
Legend: V - vowel, (d) dipthong f - fricative
v - volced n - nasal
¥ - not voiced 1 - liquid
p - plosive s - semivowel

Derived from canonical phonemic representations for
alphabetic characters.



detecting a change in the output. Such an approach is expensive since
recognition must be performed continuously. Pre-segmentation would appear
to be easier because the recognition procedure needs only to be applied at
several places within a phoneme's "boundaries™ in order to identify that
phoneme. It is also very possible that the recognition information could
be applied to refine or correct the boundaries. In other words, the two

processes should most likely be reciprocally interactive and iterative

or self-correcting in nature.



IT PURPOSE

Recognizing the thecretical and practical importance of démonstrating
a mechanical segmentation procedure, the author has investigated several
methods of speech signal representation whicn might be useful in attacking
this problem. The goals set forth for this thesis are then to (1) develop
a flexible and sophisticated software-hardware time series analysis system,
(2) examine both spectral and nonspectral representations of the speech
signal, (3) demonstrate the existence of physical "events" in speech time
series that can be reasonably identified as phoneme "boundary" phenomena,
and (4) design and test a naive segmentation algorithm on tne basis of
the work done.

The first goal was set forth in order to assure maximum flexibility
and speed in implementation of the system[B];

Two basic techniques exist in acoustic speech signal analysis:
spectral versus nonspectral (temporal). Spectral technigues consider
transformations of the waveforms whicn result in functions of a frequency-
like (reciprocal time) variable. Temporal techniques, however, involve
transformations or manipulations directly in the time domain. In the past,
spectral methods, e.g., Fourier analysis, have dominated speech research.
It was felt tnat other areas could bear investigation, e.g., zero crossings
(0X) analysis and nonorthogonal transformations.

A large number of signal representations will be investigated in
order to define a feature space suited for segmentation of speech. This
requires tnat significant "events" in some representation be highly
correlated with the cccurrence of classical heuristically determined
linguistic phoneme boundaries or transition regions. It will thus also be

necessary to generate representations of speecn suitable for use by a
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trained person in conjunction with the actual speech sounds in order to
have this heuristic linguistic base for comparison purposes.

Pinally, a crude segmentation algorithm is to be tested not to
show the merit of any particular algorithm but simply to demonstrate in
an opjective mechanical fashion what will ve fairly oobvious by inspection.
It is a regrettable human weakness to assume that a given human ability
to easily recognize some class of patterns can always be as easily stated
in a formal fashion in order to accomplish a nonhuman implementation.
Since only a demonstration and not an iron-clad proof is intended, the
algoritnm will not be applied to a large amount of speech from a variety
of speakers. This is even more reasonable when one considers the fact
that the algorithm is to be arbitrarily chosen in the sense that it
_represents one person's (the author's) interpretation of how he would
use a particular feature (segmentation) space to determine phoneme
"boundaries'". The algorithm will in any case supply an objective
definition of "event" and "boundary" in speech signals or functions

thereof.



IIT APPROACH

The most important consequence of using a digital computer
for analysis is that only functions of discrete variables can
easily be handled. After some preprocessing the continuous time series
is digitized, and thus discretized in both amplitude and time, and then
stored in the computer for processing later. Rather than use approxima-
tions to continuous analytic techniques, e.g., integration or differentia-
tion, it was decided to use exact discrete methods, e.g., summation and
differencing. This is perfectly acceptable for every continuocus method
which has a discrete equivalent [5]. Thus the only errors which are
involved are the negligible rouna-off errors involved in compubation.

In this work only well known standard mathematical and numerical
techniques have been used. Heuristic or complicated nonlinear operations
have been avoided waere possible for tne sake of simplicity, ease of
analysis, and physical interpretation. Discrete techniques have been
taken from standard time series, statistical, and orthogonal transforma-
tion methods.

The spectral class of analyses will consist of discrete Fourier
transforms (DFT) and discrete Haar transforms (DHT) of the time series.
As a result, two types of digital spectrograms are obtained. The DFT
spectrogram is the digital counterpart of the multiple band pass filter
techniques which have been used for years in speech analysis [6].  The
Haar transforms, however, are new and were suggested in [7] as a meens
of analyzing transient phenomena, e.g., certain consonants in speech.

The temporal class of analyses will be made up of linear transforma-
tions of the zero crossing and reciprocal zero crossing distance

distributions of small sections of the time series. Central sample
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moments of these distrivutions will be examined as an example of non-
ortnogonal transformatibns. This approach has only been used in a very
limited sense in the past [3,8]. Two different discrete orthogonal
functions will be used to compute orthogonal transformations of the zero
crossing distribution functions. These are the Gram polyﬁomials and tne
Krawtchouk functions wnich will te described in detail later. This
approach, to my knowledge, is completely new.

The most important consequence of working witn nonstaticonary
signals 1like speech is the necessgity of using nonstationary techniques
in the analysis of such signals. For reasons of simplicity, all of
the time series were assumed to be locally stationary over a pefiod of
less tnan 15 msec. This is reasonaple because the vocal excitation
function, a smooth periodic sawtooth function, has about this period for
the average person. An examination of the frequency spectrum as a function
of time for speech shows that the generating mechanisms, i.e., the vocal
cords, tongue, lips, etc., are essentially motionless over short durations
of time. For these reasons, all statistics and functions generated from
the speecn data will always be dependent on time. This is necessary in
order to examine any temporally evolving process like speech.

By considering only that portion of speech visible in a time
window of fixed width, and moving that window by a fixed discrete
increment to the next window position, a nonstationary analysis can
ve approximated. The functions or numbers that result from the analysis
of each sequential wimdow can be concatenated to form new functions
wnich are discretely time dependent. In order to establish some
continuity and dependence between adjacent windows, the window will

usually be shifted by less than its own width, i.e., some fixed overlap



is included. To further stabilize these new time series, a small
gmount of digital low pass filtering is usuvally performed witn respect

to time.
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IV EQUIEMENT

There were two pasic steps used in the analysis oI the speech data:
(1) the preprocessing step done by the external input equipment, and
(2) the actual numerical processing and input/output done using the
Rice University computer., The differentiation of these two phases of
analysis is made to emphasize the minimal role that nondigital processing
played in tne time series analysis system that was used. All equipment
used was cnosen as a matter of convenience and any system with equivalent
components snould serve as well,

The preprocessing system used is shown schematically below.

Switch '
N~ ! to A/D
! i L - Low Pass |__ A
; i v~ Amplifier Filter ?’ Converter
Microphone -

FIGURE #1

The microphone was an Electrovoice model 664, a highly directional
dynamic cardioid type with 3 db cut-off points at 40 Hz and 10 kHz. The
amplifier was constructed witn FETs and had a voltage gain of about

30 do. The 3 db cut-off points for the amplifier were 50 Hz and 10 klz;
the low pass Tilter used was a second order cascaded RC with the 6 db
point set at 4 kHz. The high frequency response curve for the amplifier-

tilter system is shown below.
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FIGURE #2

The average RMS signal to the computer was about 0.5 volts which was
less than 2 volts peak to peak; tnis assures no clipping at #1.28 volts
which is the range of the A/D converter,

The computer system for A/D and D/A conversion, numerical

processing and output is shown schematically below.

PRSPPIV gSeus RPN

Signal " : rj‘ T

W

— : {
. The = 1
L ) A/D ==  Rice Computer = p/A , | Line
in : —— — % Printer
B — pam— i
10 kHz - s
osc |
2 hJ——~mn~~*w~1
. Low Pass Holding Strip Charﬁ
Amplifier K Filter Circuit ' Recorder
Speaker r.— ' e
FIGURE #3

The variable sample rate A/D converter was set for a 10 kHz sample rate.
This imposes a Nyquist frequency oY 5 kHz which is larger than tne bandwidth
of the data after filtering. The conversion is essentially instantaneous,
circa 4 psec., and yields a sequence of 3 bit 1l's complement numbers which

are automatically packed 6/computer word and stored in core memory. The
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Rice computer has a 24K core memory of 54 bit words and a rather slow
arithmetic section. The flexibility and open shop availability of this
machine far outweigh the minor speed problems in processing. A 600 line/
minute line printer was used to produce all or the original plots. AlL
of the input speech data was saved on punched paper tape and the signal
quality was verified by using the D/A converter. The stored speech was
either plotted at a lower rate on the strip chart recorder or listened

to directly.

A1l of the programs for input, output, manipulation, and numerical
processing were written by the author in either the assemply languages
"AP1" and "AP2", or in the compiler language, "GENIE'". Where appropriate,
care and effort was taken to assure a high degree of efficiency for low
running times. This is sometimes necessary when one considers tne gquantity
of numbers to be processed in, say, one second of speech, e.g., at a 10 kHz

sample rate, tnat is 10,000 data points!
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IV DATA ACQUISITION

The corpus of words used as a data base for this work was obtained
by selecting the most frequently used words whicn contain internal
allophones of the most frequent phonemes. An allophone is one of the
contextual acoustic variants of a given phoneme which is usually not
consciously differentiated from any other variant of that phoneme. One
does not perceive tne difference in the vowel in "cat" as compared to
that in "pack', but the linguistic context effects the acoustic properties
of the vowel to some extent.

The ranked frequencies of phonemes in large samples of botn written
and spoken American English are given in Table I [9]. The spoken phoneme
taple was constructed from an examination of edited telepnone conversations.
Words peculiar to telephone speech, e.g., "hello", "goodbye', and profane
words were not included in the tabulations. The written phoneme table
was compiled from newspaper articles, written speeches, and novels,

Both samples are considered to be statistically stable for this application.

The ranked frequency of words list used was that compiled at Brown
University [10]. It is based on written English data but the difrerences
(See Table I),at least as regards phonemes, are not important for tnis
purpose. The twenty words selected for this work and their phonemic
equivalents are shown in Table II. In addition, an auxiliary group of
words was used in this research whicn was not based on frequency of
occurrence. These are snown in Table ITIT; the word "sunless" is of
particular interest because it contains an acoustically subtle syllable
break.

The speaker who supplied the speech input to the analysis system

was t.e autnor, a native speaker of mid-western American English having
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TABLE II

Rank Orthographic Phonemic
1. 23 not’ /nat/
2. 28 have /haev/
3. 31 which* JwItf/
L, 32 one Jwhn/
5. 37 she /f1/

6. L2 him /hIm/
7. L6 who /hu/
8. 58 than  /Baen/
9. 59 into¥ JIn'tu/

10. 62 only* Jon'si/

11. 53 other /ABar/

12. 66 some¥ /shm/

13. 69 two Jtu/

1k, 71 First¥* /farst/

15. T2 then /8In/

6. 75 like [Laik/

17. 81 man /meen/

18. 86 after /aef 'tar/

19. 89 did# /a1a/

20. 90 many¥ /me 'ni/

* Words used to test segmentation algorithm

15



Orthographic

= W

10.
11.
12.
13.
1h.
15.
16.

O O 3 O W

TABLE IIT

sunless¥*
monday¥*
zero¥
speakers¥
himself*
speechless¥
win

ten

vote

Jjar

chew
thin

see

Z00
nation

vision

Phonemic

/shn'les/
JuAn'di/
/zi'ro/
/spik'arz/
/oIm'self/
/spit['des/
Jwin/
[ten/
Jvot/
/@}9r/
[tfu/
/e1n/

/sif

[zu/
[nefan/
/L 32/

¥  Words used to test segmentation algorithm

16



a slignht Texas urban accent. This speaker has nad no formal speecn
training and made no conscious attempt to control the structure of the
input speech to bias the results. All utterances were made with as

little inflection as possiple and at a normal conversational level. The
speaker sat in a normal position witn the microphone about three inches
from his lips. An examination of some of tne speecn data contalning the
plosive consonants, (/k/, /p/, /t/, /o/, /a/, and /g/) showed no transient
distortion in tne waveforms due to puffing of the bpreatn.

All words were uttered in the computer room, which contains noisy
equipment, without tne use of an acoustic shield. The signal-to-noise
ratio averaged circa 25 db. This environment was selected because it was
botn convenient and realistic. It was desired that any methods discovered

for segmentation or recognition be relatively insensitive to a reasonable

ampient vackground noise level.
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VI ANALYSIS

The data having peen filtered, converted, packed, and stored,
the numerical processing phase 1s entered. When a portion of the data is
needed, it first must be unpacked, converted to a floating point form,
and stored in a working vector. The data is always analysed by short
"sections", each 50 to 200 sample points long. Each section represents
that portion of the total signal presently being viewed through the moving
time window. A schematic illustration of this moving window tecnnique is

shown below,

f(t)

"Tf

A S?ction 1 A
\__ﬁv___zt :
Ti % Section 2 & : FIGURE
- _J :
th Section 3 4 )
;_‘Y'__*J "t
W

The time variable is shown as being continuous for the sake orf clarity
and simplicity. The section duration is Tw’ the window increment is Ti’
and the overlap between adjacent sections is TW-Ti = TO. Each of these
time durations is an integer multiple of the sampling period 0.1 msec.
No analysis "between the points" using interpolation was ever used
gsince tnis would lead to unnecessary approximations and analytical
complications.

One of the most vivid transformations of a speecn signal is tne

time varying Fourier transform displayed as a variaple density, two

18



dimensional plot, i.e., the sound spectrogram [11]. Using the time
saving Cooleerukey]IFT, one of the first digital sonographs was
implemented. The basic methods used were taken from classical time
series analysis and épplied to nonstationary, discrete, signals.

The first step when using short term Fourier transforms, i.e.,
computing spectral estlumates, is to remove any prominent uninteresting
spectral components before analysis [12]. This is required due to the

.

Tact that the unavoidabie convolution of the transfom of the infinite

time series and the transform of the finite time window, tne sinc function

sin(y) (1)

sinc (y) 5

will smear any large spectral components and obliterate neighboring
components which may ve of interest. The moving window tecnnique applied
to a long time series whose mean is zero will give rise to a sequence of
shorter time series Wwnose means are generally not zero. Therefore, as a
first step in computing the DFT of any section, its mean 1s computed

and suptracted. A large mean will give rise to distortion of the first

Tew coeffiéients of the DFT. We thus define

N
S DIEACHN (2)

k=1

fj(ti) = fj(t

ZII—'

where j is the index of tne section or window position, i or k is the
index of the points in the section, and N is the number of points in a
section.

The next step prior to the DFT itself was multiplication by an

approximate time window taper [12] . The default taper is unity but its

19



transform (1) has large poorly convergent side lobes. A smoother window

taper due to Arsac [13] was chosen, which is given by

w(x) = 1=9)% xe [, 1), (3)

and has the Fourier transform

w(y) = - sinly) 3 cos(y) , 3 sin(y) (1)

|
y3 J Y5

The Arsac taper and its transform are compared to the sinc transform

vpalir below.

wix)

AVAN

FIGURE #5
Thie window taper is much more suitable and its discrete equivalent,

w(x; sampled at equal intervals, was used. Thus we compute

fj(ti) = fj(ti)'w(ti) . (5)

The DFT of (5) was next computed using the "power of two"

Cooley-Tukey method [5,14}. The DFT is obtained by

A

o - Y, £yt ©

v=0,1,...,N/2, N =2"

where Aj Y is the Vth complex spectral coefficient for jtn time
s

series section, and N is tne length of that section (128 points in

20



this work, i.e., m = 7 and thus TW = 12.8 msec.). The coefficients for

*%
V < 0 were not computed since the DFT has conjugate symmetry for fj(ti)

real, i.e., Aj,v = Aj,v‘

In order to reduce the complex valued representation of the spectra
to a more pnysically tractable form, only the moduli of the coefficients
were used. Furtnermore some form of amplitude compression was desired
in order to observe the spectral detail of certain lower power consonants,

e.g., the fricative consonant /s/. Therefore the final transformation was

a form of logarithmic compression of the amplitude spectrum given by

. = log(l + A,
aJ;v g( Cl J)V,)J (7)

wrere ¢ is a constant which varies the compression effect. For

c]Aj V] << 1, essentially no compression is observed since
2

log(l + €) =~ ¢, e << 1. (8)

This transformation (7) was felt to be superior to a pure logarithm
because the exaggerated diminuation of small amplitudes was avoided and
the compression effect can be controlled.

aj,v is a real function of two discrete variables V and j. The
actual frequency range spanned by V is 5 kHz and thus eacn vaiue of V
corresponds to an increment of 78.125 Hz. Ti was chosen to be TW/2 or
6.4 msec. which then corresponds to each increment of j. An overlap
of one nalf the window widtﬂ was chosen in order to ootain equally
weighted statistical samples of the entire time series. This is true

since the area of the Arsac taper relative to a unit window is given

exactly by

1t 2,2 8
5 J:l (1-x")%ax = 5 (9)

21



which is ~ 1/2. The bandwidth of this spectral technique based on the
half power point of the spectral window #5 given by (4) is circa 112 Hz.
This represents a fairly "narrow band" analysis for speech.

In order to observe some measure of the total instantaneous
(averaged over 12.8 msec.) perceived intensity of tne speech signal as

a function of time, the function

N
_ 1
sj = F Z TR N =64, (10)

was computed; this is itself a discrete time series. It is useful
in determining tne background noise level and thus gives a reference
threshold for silence which can be used to eliminate ambiguities in the
onset and termination times or speech sounds.

As an example of anotner spectral technique, a little used set of
discrete ortnogonal functions was chosen for use in a transformation.
These are the discrete Haar functions [15] descrived in Appendix I.

The transformation was the standard linear form

=) n (el (1)
i=1

=

N=2"= 6y,
The restriction or requiring the time series section to be a power of
two in lengtn is a peculiarity of the discrete Haar basis and is
vnrelated to the same restrictions imposed by the particular DFT algorithm
employed earlier. The unit window was used here because no convolution

theorem exists for tne Haar transform and no justification could be
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found for using another window. Values of Tw = Ti = 6.4 msec. were
chosen as a matter of convenience for this analysis.

Because of the strange nature of the Haar basls, e.g., the multiple
indexing scheme required, representation and interpretation of the
transformation is a serious problem, The index n is related to some
exponential form of a frequency variable and the index k is related to a
time position in the interval, Although the transient nature of the
Haar basis might suggest an application to transient frequency analysis,
it also has the ability to extract temporal information. As a final

step the same form of logarithmic compression used on the DFT was applied

to the DHT for the same reasons. Thus

of o = Log(L+ cld; 1) (12)

was computed for plotting and visual examination.

Zero, or axis, crossing (0X) data has been used for many years in
various schemes to track the first few formants (principle spectral
peaks) of speech for recognition and compression applications [16,17].
These early investigations were no doubt prompted by the discovery and
subsequent analysis of the statistical relationship betﬁeen 0X measure-
ments of signals and their frequency spectra [18,19,20]. The use of
OX>data for speecn compression and transmission has been shown both in
theory and practice [21,22,23]. All of the approaches referenced above
used the first moment of tne OX distribution, i.e., the mean OX count.
Most earlier work involved analog techniques to find OX rates but more
recently digital computers have been used for this purpose [24,25].

Since speech is generated by a stochastic process, i.e., the speech

signal is a function of a random variable as well as time, transformations
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of the speech signal will be functions of a random variable. This
fact suggested the use of standard statistical techniques to extract
provabilistic information from sucn signals or functions of them,

A standard tool used in the analysls of a discrete distribption

function is the computation of its central sample moments, i.e.,

M
1

= = ; -, )4 :
b = Z n(x)(x-u)%  a>2 (13)
i=1
where h(xi) is the discrete distribution function. The definition of
n(xi) includes tne normalization
M
h(xi) = 1. (14)

=+

i=1

Here Hy is taken to be the first noncentralr moment, i.e.,

M
R DI A (15)
i=1

Moment anatyses of the OX distance and reciprocal 0X distance
distributions were carried out. As before, the time series section
currently in the moving window was considered., 1In order to establish
a meaningful zero reference line, the best straight line fitting the

section in the least squares sense was used for that purpose as shown

below. T

—
(%) Least squares
line

!
|
f
i
|
{
|

: FIGURE #6
2k



Linearly detrending in this manner has the effect of a mild high pass
filter. The computation of the reference line is explained in Appendix IT.
As a computational convenience the moments were computed directly

from the sample data [di} shown in #6 using the equations

J
1 a
“a T E Z ,-3,) (16)
]_:
and
P.
J
- 1
4 = 51 fT'Z{: 4 (an)
i=1

rather than computing the s;mple distribution h(dj,i) beforehand and
then using (13). The subscript j is as before the index of the time
series section and the number of zeroces (Pj+l) in a section is a function
of j.

The central moments for the Reciprocal OX distances were also
computed by replacing dj’i in (16) and (17) with dgfi. The dT}i have
the dimensions of frequency and thus h(di}i) is a type of crude freguency
spectrum. In order to compare these two moment sets, {u (d.)} and
{p (d )} by (d ), the first group was replaced by {[u (d )] } purely
for dimensional consistency. The relationshlip between these two
different approaches, i.e.,, reciprocal arithmetic means versus harmonic
means, is examined in detail in Appendix IIT.

Sample moments may be regarded as the coefficients of an expansion

of a function of a discrete variable in terms of a nonorthogonal, but

independent, power basis. A generalized expansion would be written as
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M

% = b%z h(x ) (x,) - (18)
i=1

The relation of (13) to the above equations is seen by making the

substitution

o) = (x50F. (29)

Expansions, using the linear transformation shown in (18), of the time
dependent OX distributions h(dj,i) were computed using two different
discrete orthonormal bases. These two bases and discrete orthogonal
functions in general are discussed in Appendix IV.

The first discrete basis to be examined was the Krawtchouk functions
[26,27]. These functions are the discrete equivalent of the Hermites
[28] which are related to derivatives of the normal Gaussian distribution.
An expansion using these functions is then the discrete equivalent of the
Gram-Charlier A series [29] . Series of this kind are useful in representing
distributions wnich are approximately normal Gaussian. The testing of such
a hypothesis is unfortunately complicated by the normal variable restriction
which is implied for the distribution in question, i.e., one must set
By = 0, and Ho = 1. The analytical complications involved in normalizing
a discrete variable were felt to be beyond the scope of this present
work and thus the normal Gaussian hypothesis was never tested.

The second discrete basis used was the Gram functions [28].
These functions have no continuous eguivalent but strongly resemble

Chebychev functions [28] for orders higher than two. (See Appendix IV.)

The Gram functions are roughly sinusoidal and thus give approximately even
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weighting over the interval in question, i.e., the domain of g(dj,i)'
In contrast, the Krawtchouk functions are more centrally dense and are
very small at the extremes of the domain for the lower order functions,
i.e., k< 10. It was therefore felt that the Gram expansion might give a
more economical series, i.e., require fewer terms to approﬁimate any
given function, than would the Krawtchouk. Examination of the 0X
distributions for speecn showed them to be highly variant in form and thus
more easily represented by a series in some basis like the Gram functions.
Since OX distributions are virtually independent of the amplitude
of the signals from which they are derived, differentiation between
silence (background noise) and the speech signal on a basis of these
distributions is difficult. Therefore associated with an analysis of OX

functions is the computation of time varyingRMS values of the speech

signal. This was found by computing

N 1/2
I, = %Z EJ.(ti)2 (20)

i=1

where Ej(ti) is the linearly detrended time series in the jth section.

This is simply the deviation of fj(ti) given by

N _T1/2
- LN 3 Y
o = |§ /.. (fj(ti) fj) (21)
i=1 -

since (as shown in Appendix II) fﬁ =0, A characteristic function for
the presence of speecn can now be cbtained by examination of Ij'
Most of the analyses just described involve the reduction of a

very long time series to a few short time series, e.g., Ij' The reduction
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of the number of points is rougnly by a factor of 100 depending on

the window width and overlap. It was usually found that the new shorter
time series had a small amount of high frequency noise superimposed on
them. This is mainly an artifact of the approximations usgd for
nonstationary analysis, i.e., the fixed increment and width moving window
teennique. In order to reduce this effect and smooth the short time
series, a very mild low pass digital filter [12] was used. The filtering
was accomplished by averaging sequential groups of s points and replacing

the short time series by these moving averages by computing

1
Bt = T ) el (22)
k=0

1=1,2,...,N-s+1 .

Notice that filtering in tnis manner has the effect of shortening the
time series by s-1 points and causing & time shift of (s-1)/2 points
relative to the unfiltered funetion., A further explanation and analysis
of this procedure is given in [12]. In the work reported herein, s was
either two or three.

The exact effect of the summing filter (22) can be found by computing
the DFT of the filter function which is the unit discrete boxcar function

of s points. We have then

s-1

Al L iemkj/N| _ sin[msk/N]

k| T _Z € = N sin[mk/N] (23)
J=0

which is the amplitude transfer function. For small k this function

resenbles the sinc function (1) since sin x ~ x for |x] << 1. This
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filter function has zeroes for k = multiples of N/s but can be smoothed out
if multiple filtering is performed with s chosen such that maxima of one
filter are cancelled by the minima of another. The scheme for s = 3
followed by s = 2 gives such results. In all,tnis method of low pass

filtering was found to be very efficient and useful.
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VIT DESCRIPTION OF RESULTS

It will be impossible to display all the results that were
obtained in this work. The examples that are cited are typical and
were chosen for that reason. Some of the less fruitful methods will
be illustrated by one example while some methods warrant many diverse
examﬁles and extensive discussion. Due to the large amount of
information contained in some plots, display problems have been serious.
The plots have been reproduced and displayed within the limitations
of the medium. Each type of display will be explained in detail.

One particular word, "sunless," has many interesting properties and
will be shown in many examples.

Figure #7 (foldout) shows a digital spectrogram of a typical
utterance of the two syllable word "sunless" by the author. This plot
strongly resembles the sound spectrograms of speech shown in [11]}, where
a variable density is used to indicate intensity. The horizontal scale
is time (marked in centi-seconds), and the vertical scale is frequency
(in Hertz). The numbers shown (zeros are omitted for clarity) are

the a5 from (7), i.e., the compressed discrete spectral estimates.
2

v

The time scale ranges from O to 1.5 seconds in increments of 6.4 msec.

and the frequency scale ranges from O to 5 KHz in increments of

78.125 Hz. The rounded numbers are printed in the range from 1 to 9

on this type of plot although sometimes the upper limit is a,b,...,f.

RN . R max

This is due to the necessity of predicting 3 v{

2

is given by (20), for scaling the aj v for plotting. This simply means
2

max
a, from . {I.), which
J;U} J av

that the maximum number printed is determined by an approximate method
to avoid storing and scanning the entire time variant transform before

plotting.
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The actual word begins at 33 on the time scale and ends at 119.
This represents a total duration of ~ .86 seconds for this utterance of
"sunless.” The energy at lower frequencies (< 1 KHz) indicated before
and after these points represent background noise . The.phonemic
representation of this word is /fsAnfes/. ALl of these symbols, drawn
from the international phonetic alphabet, and examples of their
pronunciation are to be found in Table I. Due 1o the known spectral
structure of these phonemes, they can be easily located in this plot.
The initial /s/ is seen to start at 33 and terminate at 51.
/s/ is typified by a relatively flat spectrum from ~ 2.5 KHz up to
~ 5 KHz. The final /s/ is also easily located from 96 to 119. The
roll-~off in the higher freéuencies of the spectrum is due to the aliasing
filter. The /s/ - /A/ boundary is very clear in this plot as is the
/A/ - /n/ transition. Careful examination of the /A/ region, 51 to 63,
shows several spectral ridges called "formants" which are typical
of vowels. The /n/ - /4/ boundary can be provisionally located by
noticing the sudden population of slightly higher frequencies and the
transient event both occurring at ~ 76. This phenomenon will be examined
later in greater detail and identified with the syllable boundary which
occurs there. The nasal consonants /n/ and /m/ have very weak formants
and. a strong voice band in the lower frequencies. The second vowel /e/
in this example is betrayed by the reappearance of formants at 87. The
formants of /c/ are weaker and displaced relative to those in the /A/.
The total (compressed) spectral intensiﬁy given by (10) is
piotted in Figure #3. The time span and increment is identical for
this function except for a slight effect due to digital smoothing. This

function was filtered by running sums of 3 points followed by running
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sums of 2 points. The result of this process is a shortening of the time
series Sj by 3 points and a time shift of 1-1/2 points. Taking this into
account, the plot has been marked at the same points és the spectrogram.
Notice that each marked point corresponds to a region of change in
perceived intensity. The "loudest" part of the word occurs during the
vowel /A/. This is because vowels are typically more intense than
consonants and also /A/ occurs during the accented syllable. It is
obvious that even knowing the word beforehand, one could hardly have
located the phoneme boundaries accurately using this intensity plot alone.

Figure #9 shows a discrete Haar spectrogram for the same word.

This represents the compressed coefficients given by (12). 1In both the
DFT and DHT spectrograms, the compression constant ¢ was chosen by

trial and error to show the greatest detail in the plots. The horizontal
scale (time) is the same for both spectrograms. The vertical scale,
however, is not simply related to frequency as before but is a linearized
form of the multiple indices k and n. The index k was allowed to run over
its range for each value of n. The boundaries for each value of
n=20,1,...,5 are shown on the vertical scale.

The DHT spectrogram and the DFT spectrogram bear a strong
resemblance to one another. Some of the boundaries, e.g., /s/-/A/,
/N/-/n/, and [e/-/s/, can readily be seen. The effect of changing from
one value of n, e.g., 5 to 4 to 3, can be noticed in the region 60 to
100 on the time scale. The formant structure in /A/ can be seen here
as rising bands rather than horizontal bands as before. One can roughly
associate n with log2 of the frequency and k as the time shift in the
section. This strange frequency and time dependence of the DHT

coefficients help to explain the appearance of the spectrogram.
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The actual time series for "sunless" is shown in Figure #.0 as
plotted on a rectilinear hot pen recorder receiving its input from the
D/A converter of the computer. The time scale here is 20 msec/large
division (1 cm on the origihal plot). Some of the phoneme boundaries
are obvious from this plot, e.g., /s/-/A/, /A/-/n/, and [e/-/s/. It
would, however, have been impossible to apply any heuristic segmentation
procedure to this function as was done using the DFT spectrogram. The
raw time series shows the complex nature of the signals under investigetion
here.
The RMS as a function of time for the linearly detrended signal
given by (20) is shown in Figure #l1. The £ime scale for this function
is 10 msec/point which is also the case for all of the OX functions to
be discussed. This function tends to show absolute intensities rather
than the perceived (logarithmically compressed) intensities shown in
Figure #3. The RMS function was low passed filtered with a minimal "sum
by 2" filter fesulting in a time shift of ~ 1 point. Relative intensities
ot the various phonemes in "sunless" can readily be seen in Figure #11.
The remaining functions to be discussed are concerned with the
short time OX distributions of the speech waveform. Figure #12 shows

' The horizontal

the time varying OX histogram for the word "sunless.'
scale is time, 10 msec/point, and the vertical scale is distance between
zeros in each detrended section. The actual frequencies are scaled between
O and f (interstitisl hexadecimal) and rounded. As in the spectrograms,
the O's are omitted for clarity. Small OX distances correspond to high

frequencies since time is the reciprocal of frequency. Each histogram,

i.e., one column of numbers, is normalized according to (14). The
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distributions have an upper limit of 51 points between zeros, which is
~ 1/3 of the window length of 150. This limit was determined empirically
from a large amount of data and results from the low frequency rejection
of the amplifier system and the detrending process. The range of 4,
[1, 511, is roughly equivalent to a frequency range of [5 KHz, 100 Hz]
[18].

The first transformation of the OX distributions we will consider
is [uj’q]-l from (16) and (17), displayed in Figure #13 for q = 1,2.
Higher moments,q > 2,.are not shown due to their very low information
content and poor quality. [ul]-l is proportional to the mean frequency,
i.e., half the number of OX/second of the signal [18]. The initial and
final /s/ phonemes stand out very noticeably. These functions and the

- A

My, q = Uq(dgl) in Figures #14~16 have been filtered by summing by 2.

b3 g for q = 1,2 is shown in Figure #14, for q = 3,4 in figure #5, and
for ¢ = 5 and u;/(u;)3/2 in Figure #16. The last function was computed
to determine the effect of normalizing the third moment u; by the variance
u;. These moment functions will be discussed in more detail later.
It is appropriate here to point out the similarity between ui
and [ul]'l in Figures #1L and #13 respectively. It is apparent that “i
is more sensitive to signal variations, e.g., phoneme transitions, than
is [ul]—l which has been used exclusively in speech research in the past.

This difference is easily explained in Appendix III where the approximate

relation

by < [ul]-l[l +—%:| ' (2k)
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is derived. This simply means that ui is a function of both the 0X
count and the variance of the OX distances. This approximation is only
valid for My > Adi which was later shown not to hold for all portions
of the speech signal; e.g., the /s/ phoneme where My is small. In any
case the results in Appendix III are useful at least qualitatively in
explaining the behavior of these new moments.

Figures #17 and #18 show the time varying Gram transform coefficients
g2 8 g3, and. 8), from (18) for the normalized OX distributions by using

@i(x) = Gi(x) and thus @i = g;+ The same distributions were expressed in

terms of Krawtchouk functions, @i(x) =:}Li(x), and their coefficients as

a function of time ky, k,, k, and k) are shown in Figures #19 and #20.

1’ T2’ 73
As before, these functions have been slightly smoothed and were derived

t

from the same utterance of "sunless." Both occurrences of /s/ are very

obvious in these figures for both transfommations. In both cases the Oth
coefficient is not shown because g is just the mean OX distance, My

since GO = 1, and k. gave very poor results due to the concentration of

0

KO at the center of the domain of OX distributions, di (see Appendix IV.)
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VIITI DISCUSSION OF RESULTS

The purpose of the previous section has been to show how to read and
interpret the plots of the various functions of the speech signal that
have been computed. The location of the phonemes in the word "sunless' was
determined heuristically on a linguistic basis mostly from the DFT spectro-
gram and also using the a prioril knowledge of the sound of the word spoken.
The: DHT spectrogram confirmed these findings but was not found to be
as useful as the DFT for this purpose. An examination of the various
transformations of the OX data for the "sunless" example (Figures #12-20)
and the remainder of the word corpus (Tables II and III) showed strong
correlations between classically determined phoneme boundaries and
transients or "events'" in these OX functions during the same time intervals.

The real problem in speech analysis is the reduction of a large
amount of data, ~5 X lOLL bits/second, to a more tractable quantity
comparable with the theoretical information rate of ~ 50 bits/second
[30). This can be achieved only if a reduction of data by at least a
factor of 100 is first obtained, otherwise any practical attempt at machine
analysis is hopeless. For these reasons, the DFT and DHT spectro-
graphic techniques described here will not be exploited for segmentation
procedures. The reason for this is that these spectra are basically one
to one transformations which are only amenable to visual human analysis
unless further reduced. The OX techniéues do however give a substantial
data reduction (100:1) and provide a set of functions which are in a
vector space of low enough dimension for direct machine analysis in
searching for phoneme boundaries.

Of the two types of OX transformations, moments and orthogonal
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functions, one of each kind seemed worthy of further investigation.
These are the central sample moments of the reciprocal 0X distances and
the Gram transforms of the OX distributions. The Gram transform is an
orthogonal transformation in the L2 sense, i.e., using the inner product
defined by (18) (the Euclidean norm) and therefore generates representations
in terms of the Gram polynomials, having errors minimized with respect
to sums of squares or power. It is rarely the case in speech signals or
0X distributions of them that the information (with respect to
segmentat ion or recognition) is proportional to the power of some component
of the speech sigmal or functions of it. But since most physical functions
are L2 and L2 transforms are mathematically tractable, this approach to
signal representation is very attractive.

In the case of OX distributions, it appears that the nonorthogonal
moment analysis of the reciprocal distributions holds the most promise
for the problems under consideration. This is believed since the
{ug,q} had the most consistent transient activity of all the functions
at classical phoneme boundaries for all of the words tested. Moment
analysis was originally chosen because of the simplicity of computation
and interpretation. Such analyses have long been used for feature extraction
of distribution functions. The physical interpretations of the first
moment and the second through fourth central moments are well known;
b, = mean (center of gravity), b, = variance (spread), by = skew (symmetry),
and p = kertosity (peakedness). Because of their attractiveness and
unusual nature, the {ps’q] were chosen as input to a segmentation

algorithm. Since these functions are essentially independent of amplitudes

the RMS intensity function Ij was also chosen in order to establish a
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characteristic function for the speech signal to determine regions in
. time of relative silence.

The principal element s of the segmentation algorithm which was
finally chosen can be Jjustified by examination of the next example, the
word "into" which is written /In'tu/ phonemically. In fact the phonetic
form of the instance of "into" which was spoken by the author was
/IIn'tuUn/.T This shous the transitory nasal sound /E/ and the dipthongniza-
tion and closure of the final vowel /u/. The onset of naéalization during
the final portion of a prenasal vowel 1s well known and has been
demonstrated physiologically [31]. The termination of a final vowel
with a weak neutral /A/ 1s a common regional linguistic phenomenon. The
complex phonetic structure of this word was verified when the final
algorithm was applied to it.

The first step necessary for segmentation, using the moment
functions, is the delimiting of the null phoneme /@/. This was done by
marking those places where Ij’ Figure #21 for "into", crossed a threshold
line and did not recross it for at least 3 points (30 msec.). The threshold
line was 2.5 times the average of the first 10 points of Ij' This
average thus represents a high estimate of the ambient noise level prior
to the onset of speech. The speech boundaries found by this technique
for the example "into" are shown as t on Figure #21. The horizontal line
drawn is the computed threshold level. The 1t indicate speech between 41 and
67 and between 72 and 115. The 30 msec. hysteresis on the threshold
was chosen because the shortest phonemes, the plosives /p/, /k/, and /t/,
last at least 40 msec. This can be seen herg as the /t / (after the short

/2/ in the middle of the word) in "into" which lasts about 7O msec.

T Verified by a person with linguistic training
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. and T . respectivel
Hi,2 My, 37 M, b TO°P Y

with the delimiting ' for /2/ and other interesting "events". Event

Figures #22 and #23 show H3 17
J

may be defined for the present as activity in {u3 q}’ where q = l,2,3,h,
2
not in /3/ regions, and which is indicated by relatively large concurrent
changes in the magnitude of the first differences of {p3 q}. The latter
2

quantity is defined generally as

Ay, = . - W 2
Hi,a Hie,q  Mi,q (25)

In order to detect such events it was necessary to compute [|Au3 ql} and
)

then order this set over each interval of time (the index j) not in

regions of /&/. In order to relativize all measurements, the normalized

quantity
k _lﬁﬂé;glﬂ_ e J (26)
. = _ s Jd €
4,4 max [Ap, | k
. J,a
J
th

is computed where Jk is the kth disjoint range set of j for the k
speech interval, i.e., not in a /§/ region.

It should be obvious that the number of meaningful acousto-
linguistic events in a given interval of speech is limited by the rate

of speech and the language itself. For the problem at hand,

n, = card[Jk}/h (27)

. t
was chosen as the maximum number of events to be considered in the k h

speech interval. This simply means that a maximum rate of one phoneme/ho
msec. is allowed, which is reasonable for this demonstration since the
shortest phonemes in English are of this duration when spoken at a

k .
normal rate. For each k, the first n, elements of E:j a are defined as
J

k
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eg’q. Since theE;? q were ordered over j this means that given k and g

J
ek
dos

is a sequence of the o largest first difference magnitudes in

L, for jed = (41-67)/4 = 6 and

Jsa k’
n, = (115-72) /% = 10. The number of possible events in any word

For "into" k = 1,2 and n,

containing T speech intervals is simply

ny = Z n_ (28)

which is deliberately set high in order not to miss any subtle events.
The segmentation algorithm is then based on {e? } whose elements
J

will be considered as weights of the linguistic significance of an

L}

event; computationally the respective values of j for each e? are
2

stored along with the weight itself in the computer. The remaining
information for k and g is implicit in the storage sequence of the

. k
weights. It should be clear thatV X,J,q, €j,q e [0,1] due to (26).

. k .
It now remains to measure concurrence for any k over g for Gj ¢ i.e.
J

which weights for different g have the same or nearly the same j or
time or occurrence. Experience with a large number of words showed that
there was a trend of less and less information in [u3 q} as g increased.

2

For this reason (€° ) was used for q = 1,2,3,4 and concurrence in time
J

was always determined with respect to €g’l.
The algorithm then consists of three steps on {€§,q} which

finally yields the segmentation markers Z? which are really pailrs of

weights and iocations (in time). 2? can be thought of as an accumulator

for the algorithm over the three steps which is initially set to zero.

The first step 1s given by
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i

e k k

2 ot 3 = 3

307 517 Z i, 7 1= 4 (29)
g=2

This amounts to summing over q all weights which have exactly the same
temporal index as those where q = 1, i.e. in the first moment. The

second step is given by

k k  k k
Z_ = Z. + . + Z . 0
j 37851 i,q 7 (30)
g=2
vi,gos li-gl = 1.

This then is summing all weights which are nearly (% 1 point) concurrent
temporally to the weights from the first moment. An added complication
- . .k k s AR
in this step is that if ¢. > €, for |1-Jl =1, then J in &, is

1,9 Jy1 J
replaced for that weight by i. This simply associates the location
which corresponds to the larger weight for more accurate determination
of boundaries. The final step removes all markers which are too close

(£ 1) together by computing

Z? = Z? + 2? , (31)

vi,gos li-jl = 1
Here again the index of the larger weight is used as a final marker
location and the index of the smaller weight is discarded. The remaining
indices and their accumulated weights define the set of segmentation
markers for a word.
For the word "into" the segmentation markers found by the algorithm
are indicated by the large ! in Figures #22 and #23. The ordinal under

each T is the rank of the weight associated with that marker. Some of
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the mearkers coincide exactly with the markers of /&/ found from Ij in
Figure #21. It is clear that all of the markers are at or very near
transition regions in the moments and to a lesser extent in the RMS
intensity. Due to the discrete nature of all of the functicns used in
this analysis, the markers are really only determined within * 1 point
of their computed location, i.e., * 10 msec. This uncertainty of position
is still well within the limits necessary for practical application of
the technique for recognition purposes.

It is apprOpriate now to indicate what legitimate linguistic
phenomena if any can be associated with these markers. This is done
by comparing the location of classical linguistic activity, heuristically
determined from the DFT spectrogram, to the position of the markers.
The spectrogram for "into" can be seen in Figure #24 with the T. Recall
that the phonetic form of the sample was /Ifn'tuUA/. With this in mind
let us examine the first speech interval for k¥ = 1 in the spectrogram.
The most obvious change in this interval can be seen where marker 5 is
at 53. This is the vowel-nasal boundary for the first syllable, i.e.,
the point when a majority of the acoustic power is nasal rather than
oral. This is true since the two formant structure of the /n/ starts
at that time. The onset of nasalization, when the velum begins to open
the path from the larynx to the nasal cavity, is indicated at 48 by
marker 4. This can be seen as a dropping off of the second formant in
the vowel, and an overall loss of power as seen in Figure #21.

The remaining markers 3 and 1 in this interval can also be explained.
Marker 1 at 56 is undoubtedly due to the completion of the vowel-to-nasal

transition. Physiologically this occurs when the apex (tip) of the
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tongue touches the hard palate just behind the teeth and thus cuts off
any sound from the mouth. The region between markers 4 and 1 is the
transitional sound /I/ indicated earlier. Marker 3 could only have been
caused by the initial vowel /I/ reaching near full power from silence

in about 50 msec. This sudden change in the rate of buildup in air
velocity in the vocal tract carries no apparent linguistic information
but caused a sufficient change in the moments to be detected. Marker 2
coincides with the stop interval before the plosive /t/ which had been
already detected by the threshold level detector.

The second interval and syllable, k = 2, are easier to explain
with reference to the markers found there. Marker 9 corresponds tc the
explosion of the /t/ and the beginning of the interval. It, as well as
marker 2 in the previous interval and 6 in this interval, coincides with
points found by the threshold detector. The typical formant structure of
a vowel can be seen starting at marker 2. From marker 2 through 5 we
can see the top three formants move steadily downward to lower frequencies.
This is the triphthong /uUA/ found in this instance of "into". From marker
5 to 6 lies a region where the word is essentially dying. The power in
the sound is very low after 100 csec. as can be seen from the small
values in Pigure #24 or graphically on Figure #21. The markers in this
region correspond to a very low frequency component in the vocal cord
vibrations due to instability caused by decreasing air pressure from the
lungs. This is seen on fhe spectrogram as an increase in the value of the
spectral components just before markers 4 and 7. This must be considered

as noise but is typical of this speaker for words ending in a vowel.
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It 1s felt that all the warkers found for this word are linguistically

and acoustically meaningful. There is a definite correlation between
linguistic significance and the weights that were assigned automatically
to the markers. For this word and almost all others used, a marker was
always placed very near (% 10 msec.) a classically determined phoneme
boundary. The remaining markers could be interpreted as being associated
with transitional sounds or phonemes, or as high level linguistic noise,
e.g., lip noise, and vocal cord instability. The only mismarking or
omissions were due to known shortcomings in the marking process. A more
involved threshold algorithm perhaps including the use of ij would have
prevented improper delimiting of /2/, which in some cases resulted in
the application of the segmentation algorithm to regions of noise generating
an inordinate number of highly weighted markers. Because of this, the

quota n, for an interval was used up on spurious events causing other

k
real events not in the noise interval to be completely overlooked. A more
sophisticated segmentation algorithm could possibly contend with:
(1) very low power or dying vowels where vocal instabilities arose, and
(2) highly transitional phonemes such as the liquids /ﬂ/ and especilally
/x/.

The subset of the corpus used to actually test the segmentation
algorithm was the set of words on Tables IT and III which are followed
by an asterisk. A consolidated list of these words and the segmentation
scores are found in Table IV. Each word is followed by two fractions.
The first is the ratio of markers which corresponded tQ actual classical

phonemic boundaries to the total number of such boundaries. The second

is the ratio of markers which corresponded to significant linguistic or
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TABLE IV

Test Word Scores
1. Sunless 6/7, 3/3
2. Monday 6/6, 4/
3. Zero 5/5, b/h
4., Speakers 8/8, h/k
5. Himself 8/8, 3/
6. Speechless 8/8, u/h
7. Which b/h, 3/3
8. 1Into 5/5, 5/5
9. Only k/5, 2/s

10. Some 5/5, 2/h

11. First 6/6, 3/3

12. Dia b/k, 2/3

13. Many 5/5, 1/3

Totals 97%, 82%
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acoustic phenomena. The latter class of events are made up of:

(1) noisy phonemes, e.g., /r/ and final vowels, (2) high level articulatory
noise, and (3) phonetic boundaries which do not coincide with phonemic
boundaries, e.g., nondisjoint pairs like vowel-nasal combinations. The
most significant fact, other than the consistently high scores, is that
none of the ratios are greater than unity. This attests to the validity
of even so simple a segmentation algorithm. It was alsc thé case that
every instance of a syllable boundary was detected by this algorithm.

It seems clear that the algorithm could be improved to eliminate the
problems previously stated and would give highly accurate results. The
high performance of this algorithm considering its simplicity indicates
that the reciprocal O0X moments give a reliable measure of changes in

stationarity indicating phoneme transitions in speech.
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IX CONCLUSIONS

As far as the original goals are concerned, this research was a
success. The flexibility of the time series analysis system which was
developed played a major role in allowing a large number of different
approaches to be explored in an efficient manner. Although the spectral
representations (DFT and DHT) investigated were used only as a
fiducial base for phoneme boundaries generated linguistically by the
author, the work done in that area was for the most part new and could
bear further probing for other applications, e.g., speech recognition.
The new technigues for OX analysils of nonstationary time series proved
to be very fruitful for speech analysis and have opened new avenues for
future research. These methods are currently being used for signal
analysis research under an ONR contract and have been suggested as a basis
for a new type of hearing aid [32].

The segmentation of speech can be considered in three domains:
linguistic, acoustic, and articulatory (physioclogical). The methods
explored have shown the existence of acoustic cues which correspond to
certain linguistic and spectral features denoting phonetic transitions.
In fact earlier work has also revealed certain physiological correlates
to acousto-linguistic boundaries [33]. In practice this segmentation
procedures gives only phonetic boundaries which are not paired as to
onset and termination. This results in a subphonetic partition which
then must be filtered using linguistic information via recogrnition
in order to achieve phonemic segmentation. The nondisjoint nature of
this partition seems to have been borne out in this experiment. An

objective definition of a segmentation has thus been created in the form
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of an algorithm and has led to a deeper insight into the possible nature

of the human speech generation process.
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APPENDIX I

Haar Functions
The Haar basis [15] is defined as

2n-l/2,

O, elsewhere

where
\ = 2-(n+l),
n=0,1,2,...; »
K=1,23..., 22 and

i}f'o(x) = 1, x e [0,1].

This is an orthonormal set which is complete in L2.

Haar functions are shown below.

X e-[(2k~2)x, (2k-1)A1]

H e - 2 e ek, 2]

The first few

2+ . S
3 (x) H. (%)

1 1

0 7

1
=1 = -1
_2-;- : .‘2‘{.
FIGURE #I-1
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%21 (%) ol %:(1,)

0 } 'X— O 7(.
1 1
~1 T -1+
-2 1 SR

_2 L ' —2_—

FIGURE #I-2
Haar functions may therefore be constructed from combinations of step
functions. Given a function f(x) € L2[O,l], we may therefore expand

f(x) in terms of Haar functions by computing

1
o = / () R () ax,
0

where
ke kK
f(x) = 2{; an}fn(x).
n, k

In the case where x' = 0,1,...,N-1 we may define the discrete

Haar basis by restricting N = 2m. The original definition needs only

the foliowing medifications:

A= a(N-1),

n=20,1.,2,...,m"1, and

n-1
kK =1,2,3,...,2 ©.
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Any bounded function f(x') may be expanded in terms of the discrete

Haar basis by using

N—
k _ 1l YLk
o = 1) IR,
x'=0
where
m-1 2n—l
"N keyrk,
f(x") = 22% n(x")
n=0 k=1

Further properties of orthogonal bases composed of functions of a
discrete, bounded variable are discussed in Appendix III. The actuai
computation of the ai's are trivial numerically since the basis functions
are simply constants. One merely computes sums of those portions of

£(x") where ¢ “(x' , and then multiplies by x")/N.
(") E(xr) #o L 5(x)
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APPENDIX IT

Least Squares Line

Given a set of observed values [yz} it is desired to find the

function yg = a+bi such that the

N
X
NCREAY
i=1

is minimum. This is the least squares problem for the straight line

and the coefficients a and b may be found by solving the system of

equations

N N N
T Foma N

a VM 1+b N i = \ yg
i=1 i=1 i=1
N N N

a }L' i+hb 'iJ i2 = Z_ ygi
i=1 i=1 i=1

if one can make the restriction that the yz are equispaced samples.
In the case of most discrete time series this is true and therefore
leads to simplifications. The above system can be rewritten by replacing

the sums on the left hand sides giving

N
oy + p ML) 2 y°
2 i
i=1
o N
N(N+1) N(oN"+3N+1) 0.
a 5 + Db g = 2{: yil.
i=1
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In order to facilitate manipulation, the above is rewritten as

anl + bn2 n3

an2 + bnu n

5}

which may be solved analytically. The solution was found to be

23 ) Eg'<nln “n,n >
n n ?

a = 2
1 1 nunl-n2
. nln —ngn
= ———5———53 .
nunl n2

Before substituting the values of the n's, another simplification

can be found. Recall that

N
-\ 0
B3 T L Y OF
i=1
O
n, = N .
3 y

If the mean value of the time series is removed beforehand, i.e.

o* 0 _ o or
yi - yl y J

o¥
¥ = 0,

then after resubstitution and reduction we have

_ {N+1)b

a = 5 9 and
N
A
L yo*i
i=1 -
b = _—2—'—‘ .
N/12(N"-1)
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In terms of b, the least squa

res straight line is then

yi.-' -M+bi,or
i 2
i o= e[ - H]

This represents a very compact and efficient means for removing linear

trends in equispaced data.

A convenient property of linearly detrended data is that its

mean is zero. This can be ea

~0
i

and computing the mean

<d|

m—

*
By definition we have set yo

i

t
y

t
y

|

Therefore we find that

~Q _

o -

Q.E.D.

sily proved by writing first

_ o¥ _  t
- yi yi 2
%t
= V¥ -y
= 0 and
- B,
b[I - (N——Zl] , where
N
1 \“ i N(N+1) N+L1
N L. N2 - 2
i=1
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APPENDIX IIT

Arithmetic and Harmonic Mowments

Let di be the distance or time, i.e., number of points, between

the ith and 1 + lSt zero for any given time series section. We may

then write

where Adi is the variation of di and

4 =

e [og

P

—

Z— d'
B S

i=1

is the mean. P+l is the total number of zeros in a segment D points long,

therefore

a =

el [

i.e., the mean of the ox distances is approximately proportional to the
reciprocal number of zeros. By definition then we have ZEi = 0 and thus
a # f(Adi); i.e., the mean is independent of the variation.

For the case of reciprocal ox distances di-l we can write

_ P
~ — - A
at - (<1+Adi):L = %) —
1oy (@)
Assuming that Ad, /d < 11, then
p
—_— P A3, [pd\2
- 1 1
™ - E,\'.J.‘[l"“i+(—.—l) - ]
. a a

L



or

This reduces to

— 2
At A [l + (& ] = g(ad),
a

ot |-

and thus d-l is dependent on the variation.

Let us deline for q > 2:

A q
Hq = (Adi) , and
- A -1 1 -1
by = oIala® = (m— -
4 d+Ad,
1
Let < > be used for

u(; = <[(c_l+Ad )7t - <(E+Adl) J>]q>

- 1 "< ANd <Ad.i>2 > << Ad
o= = L-—+(—) - ...)- L ~-—

4 ad L a a d

A,
for 'Tl <1

i i Ad (Ad )2 (Ad )2

- L. 3 + i i
e T @\ 3 e

FAY Ad,\q-1 [(Ad )2 (ra )2

H'N_l_(__l_> +q<__i> i i

4 at N\ a a @

- q

i (-2d,) (-1)¢
[ s TS = i, and

q P! 29 q
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- 1 |J~2 A -
My =~ ;I [i + ;5], where By = d.
1

The above relations between ué and pq hold only if Adi < d but are at

least of interest for qualitative comparison.
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APPENDIX IV

Discrete, Finite Orthogonal Functions

The most general form of the L2 orthogonality property is given
by

n n,m

f v (¥ (x)dx(x) = c b

-0

which if o(x) € ¢’ can be written

/ v () (o' (x)ax = ¢ b

nn,m

-0

where

n,m
0, n #m

This means that the set {wi(x)} is orthogonal in 12 with respect

to the weighting function W(x) = o'(x). If w(x) is a step function
with jumps at x = 0,1,2,...,N~1 (where N is a fixed positive integer),
then we may write

N-1

) v v NG = e

n n,m
x=0

n,m = 0,1,...,N-1

Here W(x) are the values of the jumps at the grid points x e [0,N-1]

as described gbove. This now defines orthogonality for functions of s

Th



diserete bounded variable with respect to a weighting funetion of the
same variable.

It is usually wmost convenient to deal with functions that are
orthonormal with respect to a unity weighting funection, i.e., c, = 1 and
W(x) = 1. This can be easily done by defining a new set of functions

v, (x)

o/ an(x)

CPn(x) =

which will have the property

N-1
Y @9, = 6
x=0

m,n

Functions of this type are very useful in the computation of linear
transformations on arbitrary bounded functions of a discrete bounded

varisbles, e.g.

8 = \_\ f(x)cpn(x), vhere
x=0
N-l

M) = 5 e (x).

n=0

1

Completeness is guaranteed if there exist N mubually orthogonal functions
in a vector space of dimension N.

One of the most interesting classes of discrete orthonormal
functions are those where

n

\lfn(X) = Pn(X,N) = Ea.xi

i
i=0
x=0,1,...,N-1

>



i.e., {wn(x)} are polynomials evaluated on an equispaced grid of N
points [26,28]. If one chooses the discrete weighting functions W(x,N) = 1,

then the resulting finite set is given by

n ,_.\k (n) /N -k
G (x,N+l) = ¢ (1) (nTk) x(k),
n n, N k. " -k
k=0
and are known as the Gram or Chebychev polynomials. The form a(b) in

in the above equation is defined as

o) e )
@oyr = 9 :

The normalizing constant can be found to be

(n+l)]l/2.

c = (-l)n[(2n+l)N(n)/(N+n+l)

n, N

The more standard form for these polynomials can be derived and is

TR (%) ()
BN L2yl T

k=0

Gn(x,N+1) = c

The polynomials were evaluated for N = T4, and n = 1,2,3,4,5,6 and are
shown in Figure #IV-1 to be compared to Chebychev functions

-1
zJJn(x) _ cos(n zoi/hxl’
(1-x%)

|

x e [-1,1]
which they resemble for higher orders.
Another very interesting set of polynomials is associated with

the weighting function v
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W(x,W1) = (ﬁ),

and are given by

Kn(x;N'i-l) = Cn’N Zﬂ\ (_l)n-k(N_:)(X)'
k=6 n-k/\k

These are the Krawtchouk polynomials [26,27] and the orthonormal basis is

j{n(x,lxm) = Kn(x,N+l)[W(x,N+l)]l/2

where

_ /LN, N, .1/2
These functions have the interesting property that

TN Gom) = T (2),

wherei}fn(z) are the Hermite functions [27,28] given by
g2
H (z)e 2 /2

HNale) = =7

(n:2%V/m)

Hn(z) are the Hermite polynomials which are defined as

2
2 -2
z d
H () = (1R el
dz
and

x = ¥4z H)l/z
= 5 5 .

The Krawtchouk functions are therefore the disecrete equivalent of

the Hermite functions. These two functions were computed for N = Th.

8



and n = 0,1,2,3,4,5 and are shown in Figure #IV-2 and Figure #IV-3.
The difference in these two functions only becomes evident for higher

order n.
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