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Acoustic Sensing From a Multi-Rotor Drone

Lin Wang and Andrea Cavallaro

Abstract— We propose a time-frequency processing method
that localizes and enhances a target sound by exploiting spec-
tral and spatial characteristics of the ego-noise captured by a
microphone array mounted on a multi-rotor micro aerial vehicle.
We first exploit the time-frequency sparsity of the acoustic
signal to estimate at each individual time-frequency bin the local
direction of arrival (DOA) of the sound and formulate spatial
filters pointing at a set of candidate directions. Then, we com-
bine a kurtosis measure based on the spatial filtering outputs
and a histogram measure based on the local DOA estimation
to calculate a spatial likelihood function for source localiza-
tion. Finally, we enhance the target sound by formulating a
time-frequency spatial filter pointing at the estimated direction.
As the ego-noise generally originates from specific directions,
we propose a DOA-weighted spatial likelihood function that
improves source localization performance by identifying noiseless
sectors in the DOA circle. The DOA weighting scheme localizes
the target sound even in extremely low signal-to-noise conditions
when the target sound comes from a noiseless sector. We experi-
mentally validate the performance of the proposed method with
two array placements.

Index Terms— Acoustic sensing, ego-noise reduction, micro
aerial vehicle, microphone array, source localization.

I. INTRODUCTION

MULTI-MICROPHONE acoustic sensing from a multi-

rotor drone (or MAV: micro aerial vehicle) aims to

record, localize and analyze sounds emitted by aerial or ground

objects [1], [2]. Potential applications include recreational

video capturing and broadcast, search and rescue, and sur-

veillance [3]–[8]. The rotating motors and propellers generate

strong ego-noise [9], which masks the target sound, degrades

the sound quality and leads to extremely-low signal-to-noise

ratios (e.g. SNR < −15 dB). The nonstationary spectrum of

the ego-noise depends on the rotation speed of each motor,

which changes over time [10]. Moreover, the microphones

move with the MAV thus leading to a dynamic acoustic

mixing network. Finally, the natural and motion-induced wind

increases the noise captured by the microphones. All these

issues make MAV-based acoustic sensing a very challenging

task.

Most microphone-array noise reduction techniques are suit-

able for indoor sound processing when the input SNRs are
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relatively high [11]. Based on the observation that a target

sound and the ego-noise usually have concentrated energy at

sparsely isolated time-frequency bins, we proposed a time-

frequency filtering approach [12], which formulates a spatial

filter to enhance a target direction based on local direction

of arrival (DOA) estimates at individual time-frequency bins.

This approach works robustly under strong ego-noise but has

two limitations. First, the performance of the time-frequency

filter drops significantly when the target sound arrives from

a direction close to that of the ego-noise. Second, to steer

the spatial filter it needs knowledge of the DOA of the target

sound, which is difficult to estimate due to the extremely low

SNR and the nonstationarity of the ego-noise.

To address these problems, starting from a time-frequency

processing framework [13], we propose a new source localiza-

tion and enhancement method. The proposed method estimates

the DOA of a sound by detecting the peak of a spatial

likelihood function generated by combining the histogram of

the local DOA estimates at individual time-frequency bins

and a kurtosis measure computed by steering time-frequency

spatial filters at a set of candidate directions. The combination

of these two measures improves robustness to low SNRs and

nonstationarity of the ego-noise. In addition, we divide the

DOA circle into noisy and noiseless sectors and propose a

DOA weighting scheme when calculating the spatial likelihood

function. This scheme improves source localization perfor-

mance when the target sound arrives from a noiseless sector.

Finally, the proposed method steers the time-frequency spatial

filter towards the estimated direction of the sound source.

The paper is organized as follows. Section II reviews the

state of the art for MAV-based acoustic sensing. Section III

formulates the problem and Section IV investigates the spectral

and spatial characteristics of the ego-noise. Section V pro-

poses the source localization and sound enhancement method.

Experiments are conducted in Section VI and conclusions are

drawn in Section VII.

II. RELATED WORK

MAV-based acoustic sensing approaches can be classified

based on their strategy as supervised or unsupervised. More-

over, they can be grouped based on the task, e.g. source

localization and sound enhancement (Table I).

Supervised approaches use additional sensors to monitor

(i.e. to supervise) the status of the MAV in order to predict

the ego-noise. Since the MAV ego-noise mainly consists of

harmonic components whose fundamental frequency is propor-

tional to the motor rotation speed, supervised approaches build

a noise template database from which the spectrum [14] or the
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TABLE I

ACOUSTIC SENSING METHODS FOR DRONES. KEY: S - SUPERVISED; U - UNSUPERVISED; d - DIAMETER

correlation matrix [15] of the ego-noise can be predicted

depending on the MAV behaviour. The predicted ego-noise

spectrum can be used to design a single-channel spectral filter

for noise reduction [14]. The predicted noise correlation matrix

can be used to design a GEVD-MUSIC (generalized eigen-

value decomposition - multiple signal classification) algorithm

for noise-robust sound source localization [15]. The predicted

noise correlation matrix has also been used to design a

multi-channel beamformer to suppress the ego-noise of a

ground robot [16], [17]. However, application to flying MAVs

has not been reported yet. Reference microphones installed

close to the propellers can also be used to pick up motor

noises that are then adaptively cancelled [5], [18], [19]. This

approach usually requires the use of insulation materials to

prevent the reference microphones from picking up the target

sound. Supervised approaches usually perform robustly under

strong ego-noise. However, the need for dedicated monitoring

sensors limits the versatility of these approaches.

Unsupervised approaches perform acoustic sensing using

microphone signals only. Due to the nonstationarity of the

ego-noise and the extremely low SNR, it is a challenging

task to estimate the direction of the target sound from the

noisy recording. Steered response power with phase trans-

form (SRP-PHAT) [4], [20] and multiple signal classifica-

tion (MUSIC) [3], [21] have been applied to MAV-based

source localization. SRP-PHAT exploits the correlation of

microphone signals and computes a spatial likelihood map

with peaks that correspond to the locations of the target

sound sources [22]. SRP-PHAT has been widely used for

source localization in high-SNR scenarios. However, for

MAV-based applications with low SNRs, the performance of

SRP-PHAT degrades considerably because the coherence of

the target sound is masked by strong ego-noise. MUSIC is

a subspace-based high-resolution localization algorithm that

is widely employed for robot audition [11], [23]. Using

eigenvector decomposition, MUSIC decomposes an observed

noisy signal into the signal subspace and noise subspace,

which are orthogonal to each other, and then computes a

spatial spectrum of the locations, i.e. the MUSIC spectrum,

with peaks at the locations corresponding to the target sound

sources. The standard MUSIC algorithm assumes noise signals

to be uncorrelated between microphones to easily discriminate

signal and noise subspaces. In practice the discrimination is

difficult especially when the noise is directional and stronger

than the target sound. GEVD-MUSIC exploits as additional

information a noise correlation matrix to improve robustness

to noise. Although several approaches have been proposed

to blindly estimate the noise correlation matrix from the

microphone signal [3], [8], [21], the nonstationarity of the

ego-noise makes the estimation inaccurate.

Delay-and-sum (fixed) beamforming is a typical unsuper-

vised approach to enhance sounds from a desired location by

coherently delaying and summing multi-channel microphone

signals [24]. Relying only on the array geometry and the target

sound location, fixed beamforming is robust to low SNRs and

MAV movement. However, to get satisfactory noise reduction

performance it usually needs a large-size array with many

microphones, e.g. an octagonal array with 16 microphones and

2 m diameter [24], [25]. A single-channel post-filter is thus

employed to further enhance the beamforming output [26].

Another technique for ego-noise reduction is blind source

separation (BSS) [9], [12]. BSS can reduce the ego-noise more

effectively than fixed beamforming and does not require the

knowledge of the locations of the microphones and the target
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sound sources. However, the performance of BSS degrades

in a dynamic scenario with moving microphones. Moreover,

due to permutation ambiguities [27], [28], the target sound

is usually extracted into one of the several output channels,

whose channel index is unknown. The detection of this target

channel is still an open problem [12].

Time-frequency processing, a recently proposed approach,

exploits the sparsity of the acoustic signal in the time-

frequency domain to design a spatial filter that enhances the

signal from a desired direction [12]. While this approach works

robustly under ego-noise, it requires the knowledge of the

target direction. Moreover, its performance is sensitive to the

direction of the target sound. In this paper, we propose a

method that address both issues.

III. PROBLEM FORMULATION

Let a circular array with M microphones be mounted on

a multi-rotor MAV. Let the locations of the microphones be

R = [r1, · · · , r M ], where rm = [rmx , rmy ]
T is the position

of the m-th microphone in a 2D coordinate system and the

superscript (·)T denotes the transpose operator.

In MAV-based applications, the distance between the target

sound source and the microphone array is usually much larger

than the array size. It is thus reasonable to assume a far-field

model for the target sound source, whose sound wave impinges

on the array in the form of planar waves [29]. Let a target

source lie in the far field emitting sound with DOA θd .

We assume a low-reverberant environment without natural

wind and that the relative positions of microphones and sound

source are fixed (e.g. the MAV hovers stably while recording

the sound from a static source).

The microphone signal, x(n) = [x1(n), · · · , xM (n)]T,

contains both the target sound, s(n) = [s1(n), · · · , sM (n)]T,

and the ego-noise, v(n) = [v1(n), · · · , vM (n)]T, i.e.

x(n) = s(n) + v(n), (1)

or, written in the short-time Fourier transform (STFT) domain:

x(k, l) = s(k, l) + v(k, l), (2)

where k and l are the frequency and frame indices, respec-

tively. Let K and L be the total number of frequency bins and

time frames, respectively.

Given only x(n) and R, our goal is to estimate the

DOA of the target sound θ̂d and to design a spatial filter

w(k, l) = [w1(k, l), · · · , wM (k, l)]T that extracts the target

sound from the noisy recording via

y(k, l) = wH(k, l)x(k, l), (3)

where the superscript (·)H denotes the Hermitian transpose.

To achieve the goal, we built a prototype composed of

a 3DR IRIS quadcopter and an 8-microphone circular array

with diameter d = 0.2 m [9]. The array is placed on the

top side of the MAV body (at a distance of 0.15 m) in order

to avoid the self-generated wind blowing downwards from the

propellers. We consider two configurations when mounting the

array on the MAV (Fig. 1). The first configuration (Array-C)

is more compact and the array is mounted close to the middle

Fig. 1. Two array placements on the hardware prototype. (a) and (c) Array-C:
the array is placed close to the centre of the MAV body. (b) and (d) Array-F:
the array is placed close to the front end of the MAV body. The noiseless
sector is illustrated with a shadowed area.

Fig. 2. Input SNR at onboard microphones for a human speaker talking
aloud at a varying distance (from 2 m to 6 m) to the MAV. The MAV is fixed
on a tripod and operating stably at 50%, 100%, and 150% of the hovering
power.

of the MAV body, centring the four motors. In the second

configuration (Array-F), the array is mounted close to the front

end of the MAV body, but it is still inside the critical collision

protection area [30].

The main challenge is the extremely low SNR at the

microphones. Fig. 2 gives an example of the input SNR

at the microphones for a human talking aloud at a varying

distances, from 2 m to 6 m from the MAV. The input SNR

was measured with the prototype shown in Fig. 1(c), with the

MAV fixed on a tripod at a height of 1.8 m and operating at

50%, 100% and 150% of the hovering power. When the MAV

is operating at the hovering status, the input SNR can be lower

than -20 dB: this is extremely challenging for state-of-the-art

sound enhancement and source localization algorithms.

IV. EGO-NOISE: SPECTRAL AND SPATIAL

CHARACTERISTICS

Since the relative positions of microphones and ego-noise

sources (i.e. motors and propellers) are fixed, prior knowledge

on the ego-noise would be helpful for choosing an appropriate
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Fig. 3. Time-frequency spectrum of a segment of ego-noise lasting
30 seconds. The rotation speed of the motors remains constant in the first
12 seconds and then varies randomly in the following 18 seconds.

sound processing algorithm. To this end, we investigate the

spectral and spatial characteristics of the ego-noise.

Fig. 3 depicts the time-frequency spectrum of a segment of

ego-noise recorded with a microphone randomly chosen from

Array-C. The sampling rate is 8 kHz and the time-frequency

spectrum is obtained by applying STFT with a window

size 1024 and half overlap. The rotation speed of the motors

is constant in the first 12 seconds and then varies randomly

in the following 18 seconds. The ego-noise mainly consists of

multiple narrow-band harmonic noise (the mechanical sound

of the rotating motors) and broadband noise (the rotating

propellers cutting air) [9]. The fundamental frequency of

the harmonic noise typically varies with the motor rotation

speed, leading to nonstationary spectrum. The harmonic noise

presents evident time-frequency sparsity with energy peaks at

isolated frequency bins. The ego-noise typically shows high

correlation at these harmonic frequencies (a detailed analysis

is presented in [9]). This time-frequency sparsity can be

exploited to design a time-frequency spatial filter that enhances

the sound from a desired direction [31].

In both cases (Array-C and Array-F) the microphones are

close to the noise sources (i.e. motors and propellers) and thus

present similarly low SNR. However, the ego-noise does show

different spatial characteristics for the two array placements.

To verify this, we build a histogram of the local DOA

estimates at individual time-frequency bins (see Sec. V-A for

the details of local DOA estimation). Fig. 4 compares the

DOA histograms for different noise segments recorded by

Array-C and Array-F. Interestingly, for each noise segment,

the whole DOA circle [−180°, 180°] can be divided into two

sectors: a noisy sector and a noiseless sector, with the latter one

indicated with red arrows in Fig. 4. For each noisy segment,

the DOA histogram shows high values in the noisy sector, and

shows low values in the noiseless sector. Let us compare the

two segments recorded by Array-C, i.e. in Fig. 4(a) and (c).

The histogram of the ego-noise has high values in the noisy

sector, with roughly four peaks. While the shape of the

histogram differs for the two segments, the locations of the

four peaks remain almost unchanged. The ego-noise consists

of the motor and propeller sounds. The directions of the motor

sound correspond to the four peaks of the DOA histogram and

remain unchanged with time. The propeller sound originates

from the swept area of the rotating blades and its direction

spreads widely within the noisy sector and around the four

Fig. 4. Histogram of the DOA estimates at individual time-frequency bins for
a segment of ego-noise lasting 30 seconds. (a) and (c) Two different segments
for Array-C. (b) and (d) Two different segments for Array-F. The noiseless
sector is indicated with red arrows.

DOA peaks. The variation of the DOA histogram plot across

segments implies that the DOA of the propeller sound at

individual time-frequency bins changes as consequence of the

MAV behaviour.

The histogram of the ego-noise has instead low values

in the noiseless sector. These values remain almost constant

for the two signal segments. Similar observations can be

made for the two ego-noise segments recorded by Array-F,

i.e. in Fig. 4(b) and (d). One contrast is that the width of the

noiseless sector for Array-F is larger than that for Array-C.

In Fig. 1(a) the ego-noise tends to arrive from the directions

around Array-C, while in Fig. 1(b) the ego-noise tends to

arrive from the back side of Array-F (i.e. the side closer to the

motors), thus leading to a larger noiseless sector. Considering

the low probability of the ego-noise from the noiseless sector,

we presume that a target sound could get detected more easily

and accurately if it arrives from the noiseless sector.

V. PROPOSED METHOD

We propose a method for joint source localization and

sound enhancement based on the spectral and spatial char-

acteristics of the ego-noise discussed in the previous section.

The proposed method estimates the DOA locally at individual

time-frequency bins and performs source localization with a

DOA-weighted combination of a histogram and a kurtosis

measure. The source localization result then leads to a spatially

informed time-frequency spatial filter (Fig. 5).

A. Local DOA Estimation

The observation that the target sound (e.g. human speech)

and the ego-noise usually present energy peaks sparsely in

the time-frequency domain allows us to estimate the DOA at

individual time-frequency bins. Given the microphone signal

x(k, l) and the microphone locations R, the DOA of the sound
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Fig. 5. Block diagram of the proposed method.

at each time-frequency bin can be estimated by building a local

generalized cross correlation (GCC) function [12], [32]

γTF(k, l, θ)

= R
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, (4)

where fk denotes the frequency at the k-th bin, the super-

script (·)∗ denotes the complex conjugation, and the operator

R{·} denotes the real component of the argument. The term

τ (m1, m2, θ) =
krm2

−rθk−krm1
−rθk

c
denotes the delay between

two microphones m1 and m2 with respect to the sound coming

from θ , where c is the velocity of sound and rθ is the location

of the far-field sound source from direction θ , and can be

approximated as rθ = [D sin θ, D cos θ ]T , where D � d is

set as 10 m for ease of computation. The local DOA of the

sound at the (k, l)-th bin can then be determined as

θTF(k, l) = arg max
θ∈(−180°,180°]

γTF(k, l, θ). (5)

B. Histogram-Based Spatial Likelihood

We use the local localization results at all time-frequency

bins, {θTF}, to build a histogram-based spatial likelihood

function:

ρ̃Hist(θ) = H({θTF}), (6)

where H(·) denotes the histogram. We normalize (6) as

ρHist(θ) = N (ρ̃Hist(θ)) =
ρ̃Hist(θ)

max(ρ̃Hist)
, (7)

where max(·) is the maximum value of the sequence, and

N (·) is the normalization procedure.

C. Kurtosis-Based Spatial Likelihood

A target sound usually shows a higher non-Gaussianity,

as measured by its statistical kurtosis value [33], than an

ego-noise. In extremely low-SNR scenarios, the microphone

signal is dominated by the ego-noise and thus presents a lower

non-Gaussianity. If a spatial filter can extract the target sound

by suppressing the ego-noise, the output tends to show a higher

non-Gaussianity. Based on this assumption we formulate mul-

tiple spatial filters pointing at a set of candidate directions,

θ ∈ {θ1, · · · , θD}, and use the kurtosis of the spatial filtering

outputs to indicate the spatial likelihood of the target sound.

We use a time-frequency approach to design the spatial

filter [12], which is based on the localization results at

individual time-frequency bins. To formulate a spatial filter

pointing at direction θ , we first measure the closeness of each

time-frequency bin (k, l) to the direction θ . Assuming the

DOA estimates to be Gaussian-distributed with mean θ

and standard deviation σ , the closeness measure is defined

as

cd (k, l, θ) = exp

(

−
(θTF(k, l) − θ)2

2σ 2

)

, (8)

where the scalar cd(·) ∈ [0, 1]. The higher cd(·), the higher

the probability that the sound at the (k, l)-th bin arrives from

direction θ . Next, we calculate an M × M target correlation

matrix of the direction θ as

�ss(k, l, θ) =
1

L

L
∑

l=1

c2
d(k, l, θ)xH(k, l)x(k, l), (9)

where cd (·) is the contribution of the (k, l)-th bin to the corre-

lation matrix [31]. With this target correlation matrix, we for-

mulate a standard Multichannel Wiener filter (MWF) [34]

wTF(k, l, θ) = �−1
x x (k, l)φss1(k, l, θ), (10)

where φss1(k, l, θ) is the first column of �ss(k, l, θ), and

�x x(k, l) is the correlation matrix of the microphone sig-

nal, which can be estimated directly using �x x(k, l) =

1
L

L
∑

l=1

x(k, l)Hx(k, l). The sound coming from the direction

θ is extracted as

yTF(k, l, θ) = wH
TF(k, l, θ)x(k, l). (11)

We calculate the kurtosis value ξ(k, θ) of the time sequence

in each frequency bin:

ξ(k, θ) = K( ỹTF(k, θ)), (12)

where ỹTF(k, θ) denotes the time sequence |yTF(k, :, θ)| and

K(·) denotes the kurtosis value of the sequence. Averaging

the whole frequency band, the spatial likelihood function is

obtained as

ρ̃Kurt(θ) =
1

K

K
∑

k=1

ξ(k, θ), (13)

which is further normalized as

ρKurt(θ) = N (ρ̃Kurt(θ)). (14)

D. Source Localization and Time-Frequency Spatial Filtering

The measures discussed in Sections V-B and V-C are

complementary. The kurtosis-based measure can detect the

target sound in extremely low-SNR scenarios. However, when

the ego-noise is nonstationary, the spatial filter tends to

present a high kurtosis when pointing at the ego-noise direc-

tion and extracting the time-varying harmonic components.
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This produces spurious peaks on the spatial likelihood function

and leads to ambiguities on determining the target sound

direction. The histogram-based measure relies mainly on the

spatial information and is robust to the nonstationarity of the

acoustic signal. However, the performance of this measure

degrades in low-SNR scenarios, when the ego-noise masks

the histogram peak from the target sound.

Because of their complementarity, we combine the measures

to improve target sound localization and define a new spatial

likelihood function as:

ρHisK(θ) = αρHist(θ) + (1 − α)ρKurt(θ), (15)

where α ∈ [0, 1].

We additionally exploit the fact that the ego-noise arrives

rarely from the directions inside the noiseless sector, and

propose a DOA weighting scheme to further improve the

robustness to low SNRs. This is achieved by defining a new

spatial likelihood function as

ρwHisK(θ) = β(θ)ρHisK(θ), (16)

where the weighting function β(θ) is:

β(θ) =

{

1, θL ≤ θ ≤ θH

βT , otherwise
(17)

where θL (θH ) is the lower (upper) bound of the noiseless

sector and βT < 1 de-emphasizes the spatial likelihood values

outside the noiseless sector.

We estimate the DOA of the target source as the location

corresponding to the peak of the spatial likelihood function:

θ̂d = arg max
θ∈(−180°,180°]

ρwHisK(θ). (18)

Since the histogram values of the ego-noise in the noiseless

sector are much lower than those in the noisy sector, this DOA

weighting scheme can detect the target sound coming from

the noiseless sector. When the target sound comes from the

noisy sector, the scheme will not change the localization result,

i.e. no improvement in the localization performance. In this

case, the target sound can still be correctly detected if the

SNR is sufficiently high (e.g. > 0 dB).

Similarly to (11), the target sound from direction θ̂d is

extracted as

yTF(k, l, θ̂d ) = wH
TF(k, l, θ̂d)x(k, l). (19)

VI. EXPERIMENTS

A. Experimental Setup

We compare the histogram measure Hist in (7), the kur-

tosis measure Kurt in (14), the combined measure HisK

in (15), and the DOA-weighted measure wHisK in (16).

For each measure, we estimate the DOA and then implement

a spatial filter (18) pointing at the estimated direction. As a

reference, we additionally implement a spatial filter Target

pointing at the target direction, which is assumed to be known.

For all the algorithms, we set the STFT frame length as

1024 with half overlap. The working frequency is between

300 Hz and 3700 Hz at the sampling rate 8000 Hz. We set

σ = 10° in (8), α = 0.33 in (15), and βT = 0.2 in (17).

Based on the observations in Fig. 4, we set the noiseless

sector to be θL = −30° and θH = 30° for Array-C, and set

θL = −60° and θH = 60° for Array-F. The search space

{θ1, · · · , θD} is set as [−180°, 180°] with a step of 2°. This

search space is also used as the histogram bins for Hist.

B. Data

The recording is made in a room of size 6×5×3m with

reverberation of around 200 ms. The prototype used for the

recording [9] is fixed on a tripod at a height of 1.8 m.

The array consists of eight omnidirectional lavelier micro-

phones. We consider the two specific array placements as

described in Fig. 1. A loudspeaker is placed 3 m away from

the MAV and at a height of 1.3 m, playing speech signals

as the target sound. The ego-noise and the target sound are

recorded separately and then added together at a varying

input SNR from −30 dB to 5 dB, with a step of 5 dB.

The locations of the MAV and the loudspeaker are fixed during

the recording. The speed of the motors is varied during the

recording of the ego-noise. The signals from the array are

sampled simultaneously with a Zoom R24 multi-channel audio

recorder, at a sampling rate of 44.1 kHz (downsampled to

8 kHz before processing).

For each array placement we produce two datasets.

Dataset-1 is produced with recorded ego-noise and simu-

lated speech. The speech is simulated with the image-source

method [35] in a space of size 20×20×4m, with reverberation

time 200 ms. The speech source is placed 10 m away, emitting

sound at a varying DOA from −180° to 180°, with an

interval of 10°. In such a distance the sound arrives at the

microphones similarly to a plane wave. Dataset-2 is produced

under a realistic scenario with the ego-noise and the speech

recorded separately. The speech is recorded at two DOAs

110° and −20°, respectively.

C. Evaluation Measures

We quantify the source localization and sound enhance-

ment performance when the target sound arrives with a

varying DOA θd ∈ [−180°, 180°] and a varying input

SNR ∈ [−30, 5] dB. For each combination of input SNR and

DOA, we implement I = 40 realizations (segments), each

lasting 6 seconds.

The source localization performance is evaluated with a

correct ratio Rc. For a testing segment with a target direction

θd and an estimation θ̂d , the localization is regarded as correct

if the estimation error is sufficiently small, e.g. |θd − θ̂d | < 5°.

Suppose among the I testing segments there are Ic segments

with correct estimation results, the correct ratio is defined as

Rc =
Ic

I
. (20)

The sound enhancement performance is evaluated with

the signal-to-noise ratio (SNR) and signal-to-distortion

ratio (SDR) measures, assuming the target s(n) and the

noise component v(n) at the microphones to be known [36].
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Fig. 6. Intermediate processing results by Hisk and Kurt for a target sound
with DOA 0° and input SNR -10 dB. The ego-noise is recorded with Array-F.
(a)-(b) Time-frequency spectra of the input and enhanced signals. The output
SNR is 11.9 dB. (c) Local DOA estimation results at individual time-frequency
bins. (d) Kurtosis map of the spatial filtering outputs for each frequency
and DOA. (e) Spatial likelihood function by Hist. (f) Spatial likelihood
function by Kurt.

Given a spatial filter w(n), which is a time-domain version of

w(k, l), the spatial filtering procedure is written as

y(n) = w(n) ∗ x(n) =

Lw−1
∑

p=0

w(p)x(n − p)

= ys(n) + yv(n) = w(n) ∗ s(n) + w(n) ∗ v(n), (21)

where ‘∗’ denotes the convolutive filtering procedure and Lw is

the length of the filter w(n); ys(n) and yv(n) are, respectively,

the target and noise components at the output. The SNR is

calculated in target-sound-active periods Ns [36]

SNR = 10 log10

∑

n0∈Ns
y2

s (n0)
∑

n0∈Ns
y2
v (n0)

. (22)

The SNR improvement between the input and output signals

is calculated as

SNRimp = SNRout − SNRin. (23)

The SDR is defined given a reference signal sr (n) and a

processed target signal ys(n):

SDR = 10 log10

∑

n0∈Ns
s2
r (n0)

∑

n0∈Ns
(sr (n0) − ys(n0))2

. (24)

We use the clean target sound at the first microphone as the

reference signal. For each SNRin and DOA, we calculate the

averaged SNRimp and SDR across the I testing segments.

D. Source Localization Results

Fig. 6 depicts the intermediate processing results by Hist

and Kurt for a target sound arriving with θd = 0° and

SNRin = −10 dB. The ego-noise is recorded with Array-F

while the speech signal is generated by simulation. Fig. 6(a)

depicts the time-frequency spectrum of the input signal at one

Fig. 7. Time-frequency spectra of (a) the stationary ego-noise generated
when the motors are operating with a constant speed and (b) the non-stationary
ego-noise generated when the motors are operating with a time-varying speed.
The recording is made with Array-F.

microphone, where the target sound is severely masked by the

ego-noise. However, as shown in Fig. 6(c), performing local

DOA estimation can still detect the time-frequency bins that

belong to the target sound (i.e. at DOA 0°). Fig. 6(e) depicts

the normalized spatial likelihood ρHist based on the histogram

of local DOA estimates. While the target sound presents a peak

at 0°, the ego-noise also presents a peak at 110° with a higher

spatial likelihood value, thus leading to an erroneous DOA

estimation. Fig. 6(d) depicts the kurtosis map ξ(k, θ), where

a high kurtosis value can be observed at DOAs around 0°.

Fig. 6(f) depicts the normalized spatial likelihood ρKurt by

averaging the kurtosis values across the whole frequency band.

A single peak can be clearly observed at around 0°.

We compare the spatial likelihood functions obtained by the

four measures (Hist, Kurt, HisK and wHisK) for a target

sound in the presence of two types of ego-noise: stationary

and nonstationary, which are obtained when the motors are

operating at a constant and a time-varying speed, respec-

tively. Both types of ego-noise are recorded with Array-F.

Fig. 7 illustrates the time-frequency spectra of the two types

of noise. The simulated target sound arrives with different

DOAs (0° and −150°) and input SNRs (−10 dB and −15 dB).

Note that the two DOAs 0° and −150° belong to the noiseless

and noisy sectors, respectively.

Fig. 8 shows the evaluation results for the station-

ary ego-noise in the upper block. For θd = 0° and

SNRin = −15 dB in Fig. 8(a), Hist gives a wrong estimate at

110° due to the low SNR. The other three measures all give a

correct estimate at 0°. For θd = −150° and SNRin = −15 dB

in Fig. 8(b), Hist gives a wrong estimate at 110° due to

the low SNR. Kurt and HisK both give a correct estimate

at −150°. Although wHisK de-emphasizes the spatial likeli-

hood value in the noisy sector, it still gives a correct estimate

at −150°. For θd = −150° and SNRin = −10 dB in Fig. 8(c),

Hist gives a correct estimate at −150° due to the rise

of the SNR. The other three measures also give a correct

estimate at −150°.
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Fig. 8. Spatial likelihood functions obtained by Hist, Kurt, HisK

and wHisK for different SNRin and θd . The upper block corresponds to
the stationary ego-noise. The lower block corresponds to the non-stationary
ego-noise. (a) and (d) θd = 0° and SNRin = −15 dB. (b) and (e) θd = −150°
and SNRin = −15 dB. (c) and (f) θd = −150° and SNRin = −10 dB.

The lower block of Fig. 8 shows the evaluation results

for the nonstationary ego-noise. For θd = 0° and

SNRin = −15 dB in Fig. 8(d), Hist presents multiple peaks

with the highest one at 0°. Due to the nonstationarity of

the ego-noise, Kurt presents multiple peaks but with the

highest one at 110°. When combining these two, HisK gives a

wrong estimate at 110°. By de-emphasizing the value at 110°,

wHisK gives a correct estimate at 0°. For θd = −150°

and SNRin = −15 dB in Fig. 8(e), Hist gives a correct

estimate at −150° while Kurt gives a wrong estimate at 110°.

When combining these two, HisK gives a wrong estimate

at 110°. wHisK equally de-emphasizes the peaks at 110°

and −150°, and thus does not change the estimation result,

i.e. giving a wrong estimate at 110°. For θd = −150° and

SNRin = −10 dB in Fig. 8(f), Hist gives a correct estimate

at −150°. Kurt presents multiple peaks at −150° and 110°,

but with the highest one at −150°. Combining the two, HisK

also gives a correct estimate. wHisK de-emphasizes the peaks

at −150° and −110° equally, and thus does not change the

estimation result, i.e. giving a correct estimate at −150°.

Fig. 9 comprehensively compares the localization per-

formance by the four measures for Array-C and Array-F.

Fig. 9. Localization performance in terms of correct ratio for (a) Array-C and
(b) Array-F. The target sound arrives with a varying DOA θd ∈ [−180°, 180°]
and a varying input SNR ∈ {−20,−15,−10} dB.

The simulated target sound arrives with a varying DOA θd ∈

[−180°, 180°] and a varying SNRin ∈ {−20,−15,−10} dB.

The localization correct ratio is computed using 40 test-

ing segments, containing both stationary and nonstationary

ego-noise.

Fig. 9(a) presents the evaluation results for Array-C, whose

noiseless sector is [−30°, 30°]. Hist performs the worst in

low SNRs with SNRin ≤ −15 dB, but might outperform Kurt

when SNRin = −10 dB. HisK performs worse than Kurt

when SNRin = −20 dB, similarly when SNRin = −15 dB,

and better when SNRin = −10 dB. When the target sound

comes from the noiseless sector, wHisK performs obviously

the best with a correct ratio close to 1 for all input SNRs.

When the target sound comes from the noisy sector,

wHisK slightly outperforms HisK for all input SNRs.

Meanwhile, wHisK performs worse than Kurt when

SNRin = −20 dB, similarly when SNRin = −15 dB, and

better when SNRin = −10 dB.

Similar observations can be made for Array-F in Fig. 9(b).

However, Array-F has a wider noiseless sector and thus a

wider area, i.e. [−60°, 60°], with better localization perfor-

mance. When SNRin = −20 dB, Array-F even performs

slightly better than Array-C in the noiseless sector. When

SNRin = −15 dB, Array-F performs similarly as Array-C

in both noiseless and noisy sectors. When SNRin = −10 dB,

Array-F performs similarly as Array-C in the noiseless sector

but performs better in the noisy sector.
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Fig. 10. Average correct ratio versus the parameters α and βT at various
input SNRs −20 dB and −15 dB for (a) Array-C and (b) Array-F.

For all input SNRs, a performance rise is clearly observed

for all algorithms at around 90° (in Fig. 9(a)) or 110°

(in Fig. 9(b)). This is one of the directions that the ego-noise

mainly comes from and detected as the target sound.

As summary of the source localization experiment, Hist

shows degraded performance in low SNRs while Kurt shows

degraded performance in the presence of nonstationary noise.

HisK provides a trade-off between the two, while wHisK

can substantially improve the robustness to low SNRs when

the target sound arrives from the noiseless sector. Array-F has

a wider noiseless sector than Array-C and thus overall better

localization performance.

Finally, we investigate the variation of the localization per-

formance with respect to the two parameters α and βT , which

are used in (15) and (17), respectively. We vary α ∈ [0, 1] with

a 0.05 step and vary βT ∈ [0, 1] with a 0.1 step. For each

pair of α and βT we compute the average correct ratio for

the 36 DOAs of the target sound around the circle. Fig. 10

depicts the variation of the average correct ratio with the two

parameters at various input SNRs (-20 dB and -15 dB) and for

the two array placements (Array-C and Array-F). As shown

in each panel of Fig. 10 (with various array placement and

input SNR), the obtained average correct ratio tends to have

a higher value in the area α ∈ [0.1, 0.4] and βT ∈ [0.1, 0.4],

which is consistent with our default choice in the experiment:

α = 0.33 and βT = 0.2.

E. Sound Enhancement Results

We estimate the DOA of the target sound with the con-

sidered source localization algorithms and then implement a

time-frequency spatial filter pointing at the estimated direction.

Fig. 11 compares the noise reduction performance for the

two array placements by polar-plotting the SNR improvement

with respect to a varying target DOA θd ∈ [−180°, 180°] at

different SNRin ∈ {−20,−15,−10} dB (Dataset-1).

In Fig. 11(a), Target constructs the spatial filter by

assuming the target direction to be known and thus provides

a benchmark for all noise reduction algorithms. For both

array placements, the spatial filter responds non-uniformly

to a varying target direction θd . Array-C obtains a higher

SNR improvement for directions inside the noiseless sector,

i.e. θ ∈ [−30°, 30°], than directions outside.Similarly, Array-F

obtains a higher SNR improvement for θ ∈ [−60°, 60°].

Array-F obtains an even higher SNR improvement than

Array-C in the noiseless sector. This is because, as observed

in Fig. 4, Array-F has a slightly lower ego-noise histogram

value in the noiseless sector than Array-C.

In Fig. 11(b), Hist almost shows no SNR improve-

ment when SNRin ≤ −15 dB, because it cannot estimate

the target direction correctly. Interestingly, an obvious SNR

improvement is observed at 90° for Array-C and at 110°

for Array-F. This is one of the directions that the ego-noise

comes from. When the target sound comes from this direction,

its DOA can be correctly detected (see Fig. 9). However,

the spatial filter would extract both the target sound and

the ego-noise, achieving a quite limited SNR improvement.

When SNRin = −10 dB, Hist achieves a higher localization

accuracy for all directions and thus a higher SNR improve-

ment. However, its performance is still worse than Target.

Array-C and Array-F perform similarly in this case.

In Fig. 11(c), Kurt achieves higher SNR improvement than

Hist when SNRin ≤ −15 dB, because Kurt can better local-

ize the target sound. However, due to localization errors, Kurt

still performs worse than Target. When SNRin = −10 dB,

the performance of Kurt improves significantly as the local-

ization accuracy rises. Array-F achieves a localization correct

ratio close to 1 (Fig. 9(b)) and thus performs similarly to

Target. Array-C achieves a localization correct ratio lower

than 1 (Fig. 9(a)) and thus performs slightly worse than

Target.

In Fig. 11(d), HisK, as a combination of Hist and Kurt,

performs similarly to Hist when SNRin = −20 dB and

performs similarly to Kurt when SNRin ≥ −15 dB.

In Fig. 11(e), the polar curve of the SNR improve-

ment by wHisK looks very interesting especially when

SNRin ≤ −15 dB. The performance of wHisK varies consid-

erably between noisy and noiseless sectors. In the noiseless

sector, wHisK achieves a localization correct ratio close to 1

(Fig. 9) and thus performs similarly to Target for all input

SNRs. In the noisy sector, wHisK performs similarly as

HisK: it cannot localize the target sound correctly and only

improves the SNR limitedly. Array-F has a wider noiseless

sector and thus overall better sound enhancement performance.

Especially, when SNRin = −20 dB, Array-F achieves a higher

localization correct ratio than Array-C in the noiseless sector

(Fig. 9), and thus also achieves a higher SNR improvement

than Array-C. When SNRin = −10 dB, wHisK performs

similarly to Target for Array-F and slightly worse for

Array-C.

As summary of the simulated experiment, the observations

made in Fig. 11 verify wHisK as a promising method for MAV

sound processing in extremely low-SNR scenarios. When

SNRin = −10 dB, the four algorithms Hist, Kurt, HisK
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Fig. 11. Polar plots of SNR improvement with respect to a varying DOA of the target sound with input SNRs −20 dB, −15 dB and −10 dB. Five algorithms
are considered. (a) Target. (b) Hist. (c) Kurt. (d) HisK. (e) wHisK. The radius of the polar plot denotes the SNR improvement in dB.

and wHisK perform similarly. When SNRin ≤ −15 dB,

wHisK significantly outperforms the other three algorithms

if the target sound arrives from the noiseless sector. With

an appropriate array placement, the sound enhancement per-

formance can be further optimized. For instance, Array-F

outperforms Array-C with a wider noiseless sector and also

a higher SNR improvement inside this sector.

Finally, we compare the performance of wHisK and

Target with a real-recorded target sound coming from

110° and −20°, respectively (Dataset-2). Fig. 12 depicts the

SNR improvement and SDR obtained by the two algorithms

when the input SNR varies from −30 dB to 5 dB.

For both array placements, Target always achieves

higher SNR improvement than wHisK, especially when

SNRin ≤ −15 dB. The difference becomes bigger as SNRin

decreases. When θd = 110°, the target sound comes from

the noisy sector for both array placements. Target performs

similarly for Array-C and Array-F when SNRin ≥ −10 dB, but

performs slightly better for Array-C when SNRin ≤ −15 dB.

wHisK performs similarly for the two array placements when

SNRin ≥ −10 dB, but performs slightly better for Array-F

when SNRin ≤ −15 dB. When θd = −20°, the target sound

comes from the noiseless sector for both array placements.

Target performs similarly for Array-C and Array-F when

SNRin ≥ −20 dB, and performs slightly better for Array-F

when SNRin ≤ −25 dB. wHisK performs similarly for the

two array placements when SNRin ≥ −15 dB, and performs

significantly better for Array-F when SNRin ≤ −20 dB.

The SDR obtained by the two algorithms improves slowly

with increasing input SNR. For θd = 110°, Target slightly

outperforms wHisK. The two algorithms both perform slightly

better for Array-F. For θd = −20°, Target and wHisK

perform almost equally for the two array placements.

As summary of the real-recorded experiment, wHisK per-

forms better for Array-F, especially when the target sound

comes from the noiseless sector and when the input SNR is

low, e.g. ≤ −15 dB. The time-frequency spatial filtering how-

ever distorts the target sound, as verified by the SDR between

0 dB and 5 dB.

F. Comparison With the State of the Art

We compare the source localization and sound enhancement

performance of the proposed method with state-of-the-art

algorithms. For source localization, we consider the pro-

posed algorithm wHisK, SRP-PHAT and GEVD-MUSIC [21].

These three algorithms compute a spatial likelihood function

and estimate the source location as the one that maximizes

the spatial likelihood function, similarly to (18). For sound

enhancement, we consider the proposed algorithm wHisK,

fixed beamforming (FB) [24], and BSS [12]. wHisK enhances

the direction it estimates while FB assumes the direction of

the target sound to be known.
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Fig. 12. Sound enhancement performance in terms of SNR improvement
and SDR by Target and wHisK. The target sound is real-recorded with
DOAs 110° and −20°. The input SNR varies from −30 dB to 5 dB.

We first compare the source localization and sound enhance-

ment performance of the considered algorithms for a simulated

target sound with a DOA varying from −180° to 180° with

an interval of 10°, and at two input SNRs -20 dB and -10 dB

(Dataset-1). The recording is made with Array-F. Fig. 13

depicts the correct ratio (source localization) and the SNR

improvement (sound enhancement) obtained by the consid-

ered algorithms. For the source localization performance

shown in Fig. 13(a), wHisK obviously outperforms MUSIC

and SRP for both input SNRs. When SNRin = −20 dB,

wHisK achieves high correct ratios inside the noiseless sector

[−60°, 60°], and low correct ratios inside the noisy sector.

MUSIC and SRP fail when SNRin = −20 dB, with correct

ratios close to 0 for most target DOAs. An exceptional peak

is observed for SRP around 110°. This is because that an

ego-noise is dominant at this direction and is detected as the

target sound. When SNRin = −10 dB, wHisK can detect the

target sound with correct ratios close to 1 for all target DOAs.

MUSIC and SRP achieve higher correct ratios as the input

SNR increases, but still much lower than those by wHisK.

For the sound enhancement performance shown

in Fig. 13(b), wHisK achieves a much higher SNR

improvement in the noiseless sector [−60°, 60°] than in the

noisy sector when SNRin = −20 dB. The performance of

BSS remains stable as the target DOA varies. wHisK clearly

outperforms BSS in the noiseless sector, and but performs

worse than BSS in the noisy sector. When SNRin = −10 dB,

wHisK achieves a slightly higher SNR improvement in the

noiseless sector than in the noisy sector. wHisK performs

slightly better than BSS for most target DOAs. For both input

SNRs, FB performs significantly worse than wHisK and BSS,

improving the SNR limitedly for most target DOAs.

We then compare the source localization and sound

enhancement performance of the considered algorithms for a

real-recorded target sound coming from −20° with a varying

input SNR from -30 dB to 5 dB with an interval of 5 dB

(Dataset-2). The recording is made with Array-F. Fig. 14

shows the experimental results in terms of source localization

Fig. 13. Source localization and sound enhancement performance by
the considered algorithms for a simulated target sound with a varying
DOA θd ∈ [−180, 180] at various input SNRs (-20 dB and -10 dB).
The recording is made with Array-F. (a) Source localization performance in
terms of correct ratio. (b) Sound enhancement performance in terms of SNR
improvement.

Fig. 14. Source localization and sound enhancement performance
by the considered algorithms for a real-recorded target sound coming
from −20°. The recording is made with Array-F. The input SNR varies from
−30 dB to 5 dB. (a) Source localization performance in terms of correct ratio.
(b) and (c) Sound enhancement performance in terms of SNR improvement
and SDR, respectively.

and sound enhancement. In Fig. 14(a) wHisK significantly

outperforms GEVD-MUSIC and SRP-PHAT in all test-

ing scenarios. GEVD-MUSIC outperforms SRP-PHAT when

−15dB ≤ SNRin ≤ 0dB, while SRP-PHAT performs better

in high SNRs with SNRin ≥ 5 dB. The poor performance

of GEVD-MUSIC is mainly due to the inaccurate estimate of

the noise correlation matrix and the lack of calibration of the

microphones [13]. In Fig. 14(b) wHisK significantly outper-

forms BSS in low-SNR scenarios with SNRin ≤ −15 dB,

while BSS performs slightly better in high-SNR scenarios.

The fixed beamformer only improves the SNR limitedly and

the improvement remains constant with respect to the varying

input SNR. In Fig. 14(c) wHisK achieves higher SDR than

BSS in low-SNR scenarios with SNRin ≤ −20 dB, while BSS

achieves slightly higher SDR in high-SNR scenarios.
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VII. CONCLUSION

We proposed a time-frequency processing method to

localize and enhance a target sound captured by an MAV

by exploiting the spectral and spatial characteristics of the

ego-noise. The spatial filter presents a high directivity towards

a noiseless sector even in extremely low-SNR scenarios.

The proposed method significantly outperforms the competing

source localization algorithms. The proposed method also

outperforms the competing sound enhancement algorithms

especially in low-SNR scenarios. We also showed how to

further widen noiseless sectors and to achieve higher SNR

improvement with different positionings of the array.

The benefits of the proposed method increase when the

MAV turns its looking direction [37] so that the target sound

comes from a noiseless sector. Moreover, multiple arrays could

be used to further widen the noiseless sector. For instance,

mounting one array at the front and one at the back side of the

MAV would enable the perception of sounds coming from both

sides of the MAV. In addition, since the direction of the motor

noise remains unchanged with respect to the microphone array,

how to exploit this information to further improve the source

localization performance is an interesting future research topic.

Future work includes extending the proposed algorithm to

real 3D environments with natural wind and multiple sound

sources.
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