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Abstract: Monitoring and maintaining the health of wind turbine blades has long been one of the chal-
lenges facing the global wind energy industry. Detecting damage to a wind turbine blade is important
for planning blade repair, avoiding aggravated blade damage, and extending the sustainability of
blade operation. This paper firstly introduces the existing wind turbine blade detection methods and
reviews the research progress and trends of monitoring of wind turbine composite blades based on
acoustic signals. Compared with other blade damage detection technologies, acoustic emission (AE)
signal detection technology has the advantage of time lead. It presents the potential to detect leaf
damage by detecting the presence of cracks and growth failures and can also be used to determine
the location of leaf damage sources. The detection technology based on the blade aerodynamic
noise signal has the potential of blade damage detection, as well as the advantages of convenient
sensor installation and real-time and remote signal acquisition. Therefore, this paper focuses on the
review and analysis of wind power blade structural integrity detection and damage source location
technology based on acoustic signals, as well as the automatic detection and classification method of
wind power blade failure mechanisms combined with machine learning algorithm. In addition to
providing a reference for understanding wind power health detection methods based on AE signals
and aerodynamic noise signals, this paper also points out the development trend and prospects of
blade damage detection technology. It has important reference value for the practical application of
non-destructive, remote, and real-time monitoring of wind power blades.

Keywords: acoustic signal; non-destructive testing; wind turbine blades; machine learning

1. Introduction

In recent years, global climate change has become a key issue for all of mankind.
With the continued warming trend, environmental protection actions are imminent. There-
fore, the development of clean energy is an important solution to cope with environmental
changes. Wind power is favored by countries in all regions of the world because of its
zero-carbon-emission advantage. According to the Global Wind Energy Council’s (GWEC)
2022 Global Wind Energy Report [1], wind power capacity is expected to reach 557 GW by
2026. With the rapid growth of installed wind power capacity, the wind power industry
is facing various challenges. Wind turbine operation fault monitoring and maintenance
technology have become key issues restricting the development of the wind power industry.
Ribrant and Bertling [2] investigated the critical failures of wind turbines in Swedish wind
farms and analyzed the percentage of failures and downtime of different components for
maintenance. The China Renewable Energy Professional Committee investigated the oper-
ational quality of wind power and the frequency of failures, as well as the corresponding
repair time (blue and orange dashed lines, respectively, in Figure 1), of wind turbine com-
ponents derived from the survey data. As shown in Figure 1, blades are the components
responsible for the highest frequency of wind turbine failures and associated with the
longest repair time. Therefore, the development of wind turbine blade health detection
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technology has become an urgent need for the wind energy industry. In practice, wind
turbines can only generate maximum power within a specific wind speed distribution
range [3]. However, the actual wind speed will change, requiring timely and accurate regu-
lation of wind turbines. To solve the problem of not always running in sync with factory
mode due to quantization, time delays, and ubiquitous data dropouts, Cheng et al. [4]
designed a Dissipativity-based finite-time asynchronous output feedback control for a
wind turbine system via a hidden Markov model. A simulation example of a wind turbine
system is used to verify the correctness and applicability of the controller.

Figure 1. Frequency of failures and repair time of wind turbine components based on data retrieved
from [5].

At present, the methods used for wind turbine blade health monitoring include acous-
tic emission, vibration detection, strain detection, aerodynamics, machine vision, thermal
and sound-based features, etc. In this review, we analyze different damage detection
techniques for wind turbine blades through a search of the Web of Science core collec-
tion. A search using the terms “wind turbine blade” AND “damage” yielded a total of
1410 articles. We performed an econometric analysis of the statistical data available to
date using Python, as shown in Figure 2, indicating the relative prevalence of major blade
damage detection techniques in the literature. This paper focuses on the application of AE
damage detection and aerodynamic noise damage detection technology in wind turbine
blades. Figure 2b is blade aerodynamic noise and Figure 2c show the research trends of
non-destructive testing (NDT) techniques in recent years.

1.1. Vibration Detection

When the structure of a wind turbine blade is damaged, its structural vibration
response reflects corresponding damage information. Ghoshal et al. [6] achieved damage
detection before a catastrophic failure of the blade by analyzing the blade vibration response.
Abouhnik and Albarbar [7] provided an overview of wind power vibration sources. A new
method using the empirical decomposition feature intensity level (EDFIL) was proposed for
analysis of vibration signals and identification of crack damage. Chen et al. [8] studied the
sensitivity of vibration modes of blades of different sizes to damage recognition and found
that when blade size increased significantly, vibration modes were relatively sensitive
to damage recognition. In order to optimize the disadvantage that the natural vibration
modes are not sensitive to small blade damage, Fremmelev et al. [9] designed an active
monitoring system consisting of an electric shaker and a distributed accelerometer. Fatigue
experiments were also carried out for multiple artificial damages introduced into blades
successively. In addition, machine learning algorithms have been introduced for the
analysis of vibration signals. Dervilis et al. [10] combined an artificial neural network
(ANN) algorithm with vibration response for detection of the structural integrity of wind
turbine blades. Khazasee et al. [11] used a convolutional neural network (CNN) model
to classify vibration data with respect to blade health and fault states. Ogaili et al. [12]
integrated machine learning and finite element analysis methods for wind turbine blade
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damage detection. However, signal-based damage detection is associated with a certain
time lag in vibration, and the damage detection function can be achieved only when
the damage exceeds the rated threshold. The number of vibration-signal-based damage
detection sensors, the signal-to-noise ratio, wind speed, and blade speed are all factors that
limit vibration-signal-based NDT for wind turbine blade fault detection.

(a)

(b) (c)

Figure 2. (a) Prevalence of wind turbine damage detection methods in the literature. The number of
studies published in the literature based on (b) AE detection and (c) aerodynamic noise detection.

1.2. Strain Detection

Fiber Bragg grating (FBG) sensors are commonly used for strain detection. Once the
sensor is subjected to stress or temperature changes, the grating pitch changes, which
affects the wavelength of the reflected light to meet the detection requirements. Li et al. [13]
used FBG sensors to study material strain data from layered fabricated structures and to
obtain information on the performance and structural integrity of wind turbine blades in
harsh environments. Krämer et al. [14] used an FBG network embedded in the composite
structure of a wind turbine blade to measure blade strain data. However, FBG sensors also
have their own limitations in wind turbine blade damage detection, such as uncertainty
of the damage to the material structure caused by the embedded installation method,
the impracticality of a large blade installation, and the difficulty associated with direct
damage detection.

Digital image correlation (DIC) is another strain detection technique used for materials
that calculates the deformation information of two digital images before and after damage,
representing the displacement change in the region. In recent years, some newer DIC tech-
niques have been proposed [15–17], such as a DIC technique using the AC-SURF matching
algorithm for damage detection of rotating blades. However, DIC detection results are eas-
ily disturbed by occlusions. Furthermore, high-accuracy resolution acquisition equipment
and high detection costs are required to improve the accuracy of detection results. On the
other hand, the DIC technique makes it difficult to detect damage to the internal material
of the blade.

1.3. Aerodynamic Detection

Damage causes changes in the aerodynamic parameters of blades relative to struc-
turally healthy blades. Wu et al. [18] investigated the unsteady aerodynamic load response
and strain distribution on blades. Fatigue damage was also predicted using unsteady
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aerodynamic loads, Goodman diagrams, and Miner linear superposition. Wang et al. [19]
combined the finite-element method for kinetic analysis with the use of the vibration
differential curvature for damage diagnosis in order to perform blade damage detection.
Zhang et al. [20] used the estimated values of blade loads, stress analysis, and fatigue crack
evolution to analyze and evaluate blade damage. However, blade dynamics analysis is a
very complex process. Wind shear, tower–blade interaction, aeroelasticity, and rotational
effects may affect damage evaluation results. Furthermore, the blades are easily dam-
aged by the erosion of large solid particles of air, which directly affects the power output.
Lee et al. [21] analyzed the transient three-dimensional computational fluid dynamics
of blade tip suction surface erosion shape and divided it into four grades. However, an
accurate particle flow representation model is crucial to the analysis results. Therefore, con-
ducting particle hydrodynamics analysis should be combined with specific erosion models.

1.4. Visual Inspection

Infrared thermography is a method used to monitor the changes in heat conduction
inside a structure, generating thermal images for the detection of object damage. Dat-
toma et al. [22] examined the material thermal response of wind turbine blades inflicted
with different artificial defects by thermography to verify the reliability of the thermo-
graphic method. Doroshtnasir et al. [23] proposed long-range detection of wind turbine
blade surface defects by minimizing interference. Zhang et al. [24] used the equivalent
source method (ESM) to establish a three-dimensional model based on heat transfer theory
to detect wind turbine blade wing beam caps. In addition to the thermal characteristics
caused by deposits on the blade surface, other inhomogeneous materials can affect the
thermal imaging results. Especially when used for composite wind blade interlayer damage
detection, imaging results may be disturbed by material anisotropy and inhomogeneity,
resulting in significant noise.

Visual inspection is a common engineering damage detection method used for wind
turbine blades. Xiao et al. [25] used an unmanned aircraft to collect images of wind turbine
blades, which they combined with an Alexnet classifier to automatically diagnose blade
surface damage. Gunturi et al. [26] used super-resolution convolutional neural networks to
convert blurred images into high-resolution images in combination with the Yolo-v3 neural
network for wind turbine blade damage pattern recognition. In addition, Mao et al. [27]
proposed a cascaded depth network superior to models such as YOLO-v3 for the automatic
detection of multiple types of surface damage to wind turbine blades. Despite the rich
variety of visual inspection methods and the intuitive presentation of results, irrelevant
obstacle occlusions remain an important limitation of visual detection.

1.5. Other Detection Methods

Other techniques have also been used to study blade damage, in addition to those
listed above. Ultrasonic inspection is a method whereby changes in physical parameters
such as propagation, reflection, and attenuation of ultrasonic waves in materials are used
to detect damage. Bird et al. [28] reviewed the development of ultrasonic techniques
and described a technique for early crack detection in wind turbine blades. However,
ultrasonic detection of damage generally requires contact with the surface of the object
of interest. Therefore, a portable long-distance ultrasonic propagation imaging (LUPI)
system was proposed and used for blade damage identification in operating wind tur-
bines [29]. However, the research of ultrasonic damage detection is limited by the mode of
dispersion and number of wireless for a long time, which becomes a big challenge to the
use of ultrasonic detection. Recently, a suitable error and uncertainty estimation method
has been proposed, as well as the reliability of the defined measurement parameters for
Lamb wave signal processing methods for dispersion evaluation, validation, and help to
determine damage [30]. To further improve the detection accuracy, Duernberger et al. [31]
proposed a damage detection method using a multiaperture (MA) acoustic beamforming
technique enabling a significantly higher detection speed compared to conventional linear
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beams. Therefore, the proposed technique is suitable for real-time monitoring and warning.
Ultrasonic NDT techniques are still subject to signal processing technology limitations,
such as high signal-to-noise ratio requirements for long-range detection, interference from
other signals in wind turbine blade multilayer composites, and high-precision detection
hardware requirements.

Various types of ray inspection have also been applied to blade damage detection.
For example, X-ray technology has been used for detection of blade delamination damage,
bending or impact fatigue damage, leading edge erosion, and rain erosion [32–37]. Recently,
terahertz radiation (T-ray) has received increasing attention for blade inspection. Currently,
T-ray inspection techniques are most often used for composite wind turbine blade impact
damage and wind turbine blade trailing edge cracking damage detection [38–41]. However,
composites consisting of carbon fibers can limit the propagation of T-rays. Therefore, terahertz
inspection techniques are not suitable for detecting defects in carbon fiber composite wind
turbine blades. On the other hand, microwave scanning technology based on open waveguide
sensors is also used to detect blade damage [42]. However, high-frequency microwaves cannot
penetrate the blade structure. Al-Yasiri et al. [43] used UAV to emit electromagnetic waves
below the microwave frequency to detect blade crack damage. Eddy current thermography
with pulsed microwaves can also be used for blade damage detection. This method has the
advantages of a fast detection speed and a relatively wide defect range for identification of
composite blade impact damage, surface cracks, and delamination damage [44–46].

Recently, shearography has been used for wind turbine blade damage detection due
to its applicability to composites and its remarkable sensitivity [47]. Maierhofer et al. [48]
explored the effect of delamination defects on different diameters, depths, and isotropic
fibers using flash and locked thermography. Li et al. [49] proposed a blade damage detection
technique using phase shift and dynamic thermal loading. Recently, a robot that can carry
a shear imaging unit was studied and deployed for the detection of blade damage [50].

Acoustic-signal-based wind turbine blade detection technology has been widely stud-
ied and applied owing to its advantages such as high detection accuracy, remote implemen-
tation capabilty, and easy sensor installation. Blade detection technology based on acoustic
signals can be divided into AE signal and aerodynamic noise signal detection. AE signals
differ significantly from aerodynamic noise signals in terms of their generation principle
and frequency range. An AE signal is an ultra-high-frequency stress wave release pulse
signal caused by material stress changes and crack excitation, with a frequency that usually
exceeds 20 kHz [51]. The aerodynamic noise signal of wind turbine blades is generated by
their interaction with air blowing towards the blades. The frequency is mainly distributed
in the audible range of 200 Hz to 20 kHz [52]. Techniques for blade structural integrity
detection based on AE and aerodynamic noise signals are described in further detail in the
following sections.

According to the existing literature, wind turbine blade structural integrity detection
and damage location detection is an interesting research field. Unlike previous research,
this paper first reviews the research results of acoustic emission signals and aerodynamic
noise signals on wind turbine blade damage in recent years. Then, the application of these
two signals in blade damage detection and damage source location is analyzed. Finally,
the development trend and prospect of wind power blade damage detection technology
are discussed, which will provide reference for understanding blade damage types and
blade damage detection technology. The main contributions are summarized as follows:

1. The traditional analysis methods of AE signals are reviewed, and the monitoring of
leaf damage evolution and damage location by AE signals are analyzed.

2. This paper introduces two types of noise generated by wind turbines. The types of
aerodynamic noise and the possible factors affecting the variation in aerodynamic
noise characteristics are discussed. In particular, the methods and applications of
blade damage monitoring based on aerodynamic noise are reviewed and analyzed.

3. A machine learning algorithm based on acoustic signals (AE, aerodynamic noise) of
blades is analyzed to complete the task of automatic classification of blade damage.
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2. Detection and Source Localization of Wind Turbine Blade Damage Based on
AE Signals
2.1. Detection Method Based on AE Signals

The goal of the AE NDT technique is to discover AE sources through AE sensor
monitoring and obtain as much information as possible using signal processing techniques.
At the same time, certain characteristic information of the AE signal is linked to the changes
in the material in order to achieve the monitoring of the structural health of the material.
In the real environment, AE signals are complicated by their own characteristics, such as
sensor characteristics, material properties, propagation paths, etc. [53]. According to the
characteristics of the received AE signals, the analysis methods used to obtain AE source-
related information are usually divided into two categories [54,55]. The first category is
analysis methods based on analysis of time- and frequency-domain waveforms (including
spectrum and correlation functions) using AE signals; the second category is analysis
methods based on characteristic parameters with simplified waveforms.

2.1.1. Waveform Analysis

Based on AE waveform analysis, we can understand the process characteristics of the
damage occurring in the material. For example, the difference between blade crack damage
and edge damage was observed from the AE waveform time domain, and the edge damage
waveform exhibited significant secondary shock [56]. Other characteristics of the AE signal
have also received attention; for example, Van Damet et al. [57] investigated the different
mode waves of pencil cores excited by in-plane and out-of-plane fractures. The authors
found that stretching waves propagate faster than bending waves. De Souza Rios et al. [58]
studied AE signal waveforms during the aging of three different composite thicknesses and
found that the acoustic wave propagation velocity and attenuation coefficient were changed.
Moreover, microscopic cracks, matrix macroscopic cracks, and fiber fracture damage formed
in the material by adhesive porosity were analyzed in tensile and compression experiments.
The results show that the frequency interval of the waveform varies for the same damage
type due to different loading levels [59].

AE signals are very complex. Variations in wave velocity, attenuation, and damage
frequency range due to different compositions of composite materials (material composition
and material thickness), special geometry, loading methods, and sensor placement may
be the reason for the difference in analysis results. Therefore, frequency-domain and
time–frequency-domain signal processing methods can be used to analyze the propagation
characteristics of AE signals under the influence of different materials or the characteristics
of different failure mechanisms. The frequency-domain waveform analysis method can
obtain the wave patterns of AE signals excited in a specific material and at a specific
location. For example, Fotouhi et al. [60] investigated the frequency range of different
excitation modes causing various forms of damage in composite materials. The results of
Fourier transform (FT) analysis also proved that defects such as wind turbine blade matrix
cracking and fiber fracture correspond to different frequency ranges. Although frequency
domain analysis can be used to observe the frequency components contained in the signal to
distinguish the damage type or the fault damage severity level, analysis of the wind turbine
blade damage evolution process is limited by time sequence development. Unlike time
domain analysis, the time–frequency-domain analysis method can be used to obtain signals
containing frequency components and observe the relevant failure event time series [61–64].
As suggested by a study by Arumugam, waveform comparison and fast Fourier transform
(FFT) can be used to label specific damage signals. Differences in matrix cracking, fiber
debonding, and fracture were analyzed based on numerical differences in acoustic emission
duration, amplitude, and energy-related parameters. Short-time Fourier transform (STFT)
algorithms were obtained for the failure event time series [61].

Waveform analysis not only provides an understanding of the AE characteristics of
the material damage process but can also aid in monitoring material failure. In order to
establish a richer correlation with the damage process, other characteristic parameters must
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also be correlated. Classical characteristic parameters are obtained from waveform analysis
using signal processing techniques in the time or frequency domain.

2.1.2. Parameter Analysis

AE parametric analysis is a widely used method for investigation of AE signals.
Most studies conducted to date have typically used AE parameters such as hit counts,
amplitude, energy, duration, peak frequency, and other parameters to characterize AE
failure mechanisms [65]. AE parameters include those obtained directly from AE sensors
with suitable threshold settings or by selecting a suitable type of transducer (piezoelectric
transducer), such as hit count, amplitude, and energy characteristic parameters. They
also include characteristic parameters obtained using signal processing methods such as
peak frequency.

Takaoka et al. [66] proposed a method to calculate the number of hits for fault determi-
nation. The intensity of the AE signal is measured at various wind speeds and compared
to 32 dB as a threshold for distinguishing between normal and fault states. As shown in
Figure 3, signals with amplitudes exceeding 32 dB are counted. Kim et al. [67] investigated
the relationship between damage and AE signal amplitude distribution of carbon fiber
reinforced polymer (CFRP) composites used for wind turbine blades by loading–unloading
experiments. The experimental results showed that high-amplitude, medium-amplitude,
and low-amplitude AE signals corresponded to three damage mechanisms, namely fiber
fracture, debonding, and matrix cracking, respectively. Yajuan et al. [68] conducted tensile
experiments on wind turbine blade composites containing type I delamination defects.
The changes in characteristic parameters such as amplitude, hit count, and relative energy
of AE signals were investigated, and the damage process and degree of damage to the
composites were analyzed.

Amplitude

Threshold：
(0.2V) (32dB)

Count
Figure 3. Count of AE signals.

Wind turbine blade fault detection can be accomplished using simple acoustic emis-
sion characteristic parameters such as hit times. However, this method is highly susceptible
to the interference of other factors in the environment and cannot provide a clear under-
standing of the differences between the failure modes. Therefore, characteristic parameters
extracted based on the frequency domain or the time–frequency domain are usually used
to analyze the failure events contained in AE signals.

2.2. AE Signal-Based Wind Turbine Blade Damage Detection and Localization
2.2.1. Wind Turbine Blade Damage Detection

Wind turbine blades work for a long time in a field environment with complex con-
ditions, and various harsh environmental factors, such as rain erosion, icing, lightning,
and fatigue, can potentially damage blade materials. Typical manufacturing materials for
wind turbine blades include glass-fiber-reinforced plastics and resins (GFRP), with a small
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proportion comprising wood composite materials [69–72] or other types of composites [73].
Although GFRP has the advantages of high strength, low mass, corrosion resistance, ease of
fabrication, and low cost, weak interlaminar properties are a key factor affecting the lifetime
of large wind turbine blades made with glass-fiber-reinforced composites [74,75]. Typical
damage commonly observed in wind turbine blades is shown in Figure 4, for example,
matrix cracking [76], delamination [77,78], fiber/matrix interface debonding [79], and fiber
fracture [80].

Leading edge erosion

Adhesive joints

Adhesive joints

Delamination

Trailing edge erosion

Fibre breakage

Blade breakage

Skin/web erosion

Figure 4. Types of wind turbine blade damage. Based on data retrieved from [81–86].

Microcracks in the matrix are usually the first damage pattern exhibited by wind
turbine blades. The cause may be long-term erosion damage to the blade caused by a
harsh environment or potential damage caused by humans during manufacturing. Cas-
torrini et al. [87] investigated the sources of blade damage under the influence of different
environmental factors, such as high winds, sand, and rainfall, and determined that rain
erosion is the main form of damage. Fraisse et al. [88] used experiments to simulate the
damage process of rainwater erosion on glass fiber polymer laminates coated with gel
layers. Each impact of the pellets causes a transient stress release in the blade laminate,
which can produce cracks after multiple impacts. This finding may well help explain why
cracks form in blades. It is interesting to note that the initial fatigue time is not easy to detect
obvious damage, but can be regarded as damage accumulation latency. However, the initial
fatigue time did not enable detection of significant damage but could be considered the
damage accumulation latency period. Therefore, the FFT algorithm was used to study
the wave frequency component of the almost invisible damage. The authors found that
the wave frequencies changed significantly from before to after the impact damage [89].
With increased blade operating time, the blade’s latent phase damage accumulated into
visible tiny cracks. These tiny cracks and their further development are the main cause
of blade fatigue damage. Eventually, such damage develops into localized blade damage,
matrix cracking, and even blade fracture. Niezrecki et al. [90] inserted tissue defects of
defined geometry at specified locations in a 1 mm long blade and successfully detected
sprouting cracks via AE cumulative energy release mapping. Li et al. [91] proposed a
tracking algorithm to identify the first crack by sparse reconstruction using Lamb wave
propagation characteristics in composite blades. The method was able to identify and trace
transverse cracks with a length of 7 mm, achieving satisfactory accuracy of 1 mm × 1 mm
in an experimental section of 150 mm × 80 mm. However, this method is only suitable
for damage crack tracking in specified conditions and lacks universality of blade damage
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detection. Jee et al. [92] studied the fatigue damage characteristics of a blade with a length
of 48 m. Analysis of the total impact energy and rise time revealed that the blade damage
steadily increased. Therefore, the rise time can be relied upon to determine the generation
and increase in matrix cracks. Blade holes are also a manifestation of crack expansion;
Pan et al. [93] proposed a new method using sparse Bayesian learning beamforming to
suppress ambient acoustic interference. Numerical simulation results showed that the
inherent frequency of the acoustic emission signal tends to decrease in wind turbine blades
in the presence of holes. To gain a deeper understanding of crack emergence, expansion,
and interaction in the blade laminate, modal acoustic emission (MAE) and peak frequency
methods were used to study the damage and evolution of four different layup composite
laminates. Combining the frequency components and acoustic emission energy, the corre-
sponding surface and internal ply cracking events were analyzed. Other factors affecting
matrix cracking were also studied [94].

Wind turbine blade matrix cracks further evolve into delamination damage. Blade
delamination is a very serious damage problem in glass/epoxy laminated composites,
leading to a reduction in structural strength and stiffness. Saeedifar et al. [95] used cohesive
zone modeling and acoustic emission techniques to understand and predict the onset
and progression of delamination. Ihn et al. [96] analyzed parameter changes during the
evolution of delamination damage by extracting the characteristic parameters associated
with crack expansion. Fremmelev et al. [97] investigated the defect development of 52 m
blades inflicted with different artificial damages by AE signal monitoring. This study
explained the damage propagation around the sensor by measuring the increase in the
number of AE hits. The AE sensors were also compared with other sensors, and it was
found that due to the high attenuation of composite materials, the coverage area of AE
was relatively small. Therefore, this may be a limitation of the application of AE sensors
in large blades. The fatigue damage growth process caused by the blade damage source
was also successfully detected by an acoustic emission sensor [98]. The AE signal was also
found to correlate with delamination growth and channel cracking during fatigue loading.
The experimental results finally confirmed that the further development of blade crack was
stratified defect damage, and the stratified length increased to 0.3 m. In addition to the
focus on the evolution of matrix cracks into delamination failure damage, the number and
location of delamination instances on the interlaminar damage mechanism of the blade
are also of interest. On the one hand, the AE technique was used to investigate the effect
of blade delamination defects on interlaminar damage and acoustic emission response
characteristics. Loading tests on composite specimens with two different delamination
areas initially indicated that the delamination defects located in the middle of the shear
surface had little effect on the cross-sectional load-carrying capacity. However, with an
increase in the delamination defect area, the damage in the high-stress area on both sides of
the deviated shear plane also increased. The AE relative energy, amplitude distribution,
and other parameters were also reported to significantly change [99]. On the other hand,
Zhou et al. [100] monitored the interlaminar shear characteristics of blade delamination in
tensile tests and discussed the damage mechanisms. AE response results were obtained
for four different instances of delamination specimen damage and evolutionary processes.
Because blade delamination damage also affects blade material buckling and post-buckling
activities, Sobhani et al. [101] monitored samples with three different damage types using
AE techniques with Teflon films inserted at the interlaminar interface. Then, the influence
of the number and location of delamination incidents on the evolutionary process of
flexural damage in laminated composites was explored. Wind turbine composite blade
delamination damage studies clearly indicate that threshold parameters need to be set
when using AE parameters (number of impact hits, energy, and amplitude). However,
their values are not uniform and depend on different research experimental settings or
research objectives. The choice of threshold values may have an unavoidable effect on the
accuracy of the experimental results. Therefore, a reasonable threshold value also needs to
be carefully chosen in conjunction with specific experimental scenarios.
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When layered damage occurs in wind power blades, it is usually accompanied by ad-
hesive failure (fiber/matrix interface debonding, bonding joint debonding, etc.). Therefore,
Zhou et al. [102] fabricated adhesive joints of two composite laminates with and without de-
fects. The causes of failure of the adhesive joints were analyzed by monitoring parameters
such as AE relative energy, amplitude distribution, cumulative hits, and duration, with two
stages of damage evolution and failure. In addition, AE was used to monitor the damage
mechanism of the cylinder-shell bonded joints of wind turbine composite blades with
different overlap lengths under torsion experiments, as well as the causes of adhesive joint
damage [103]. Zarouchas et al. [59] carried out tensile and compression experiments on
single-lap bonded joints using the AE technique and determined the ultimate tensile, com-
pressive, and elastic properties of adhesive specimens. The study also correlated the results
of the AE activity frequency analysis with damage events. The results indicate that porous
microcracking, macroscopic cracking, and fiber fracture are the three main mechanisms
of blade damage. More importantly, macroscopic cracking is the main damage mecha-
nism. Blade interfacial failure and hybrid failure were also observed in the experiments.
Sun et al. [104] performed mixed-mode bending experiments on 53 adhesive specimens,
which were set up with precracking with containing adhesions parallel to the interfacial
fibers. A comparison between AE energy curves and AE hit count curves showed that the
former indicated crack sprouting more clearly. Bond joint detachment also accelerates other
structural failures, including buckling in the rear blade edge region and damage between
the shear-resistant web and wing beam cap caused by detachment. Finally, Bak et al. [105]
investigated the three main joint failure modes in composite materials: bonded, riveted,
and hybrid joints. Not only were the AE counts of different damage types counted during
monitoring in relation to the cumulative AE counts, but the main frequency ranges of
different failure events were also obtained using FT processing.

The use of fiber-reinforced materials accounts for 30% of the whole blade manufac-
turing materials, in which the main blade beam, shell, and other structures are mainly
used. Therefore, it is necessary to explore the evolution of fiber damage for leaf fabrication,
maintenance, and repair. Ramirez-Jimenez et al. [106] investigated the main failure modes
of fiber fracture, matrix cracking, and fiber debonding using homemade materials with
different fiber orientations. The main frequencies were plotted on the power spectrum by
FFT, and the obtained frequency clusters were defined. Zhou et al. [107] studied the damage
process of composites with unidirectional or multidirectional fiber prebreak defects by the
AE technique. When unidirectional fiber prefracture composites were loaded to about 30%,
significant matrix and interface damage appeared at and near the defect location; when
loaded to about 60%, significant interlaminar shear damage appeared. In contrast, when the
multidirectional fiber prebreak composites were loaded to 60%, significant matrix damage
appeared at the fiber prebreak. Mi et al. [108] conducted uniaxial tensile experiments on
three types of GFRP composites to investigate the relationship between structural failure
and prefiber weaving. The authors found that axial fiber fracture was closely related to
oblique fibers, whereas shear forces caused by oblique fiber interweaving changed the
amplitude, the number of bells, energy, and duration values in the AE signal.

Studies in the literature show that different types of blade damage formed by the
same composite material can be clearly observed through the results of time–frequency
transformation and that their frequencies are distributed in different types of intervals
but that the one-to-one correspondence relationship is not affected. However, due to
the complex composition of blade composite materials, the anisotropy characteristics are
prominent, and the same type of damage frequency interval is a very different phenomenon.
Therefore, individual uniqueness should be considered in the analysis of leaf damage types.
Although frequency-domain analysis can be used to determine the type of damage, its
results are not extensive. Therefore, research on other new key characteristic parameters
may indicate the type of damage.
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2.2.2. Wind Power Blade Damage Source Localization

Wind power generation devices convert mechanical energy into electrical energy; the
blade is the main structure that affects the power generation capacity. In order to improve
the power generation efficiency, lighter and larger blades are used in large numbers [109],
as shown in Figure 5. In recent years, larger blade diameters have been designed and
applied to improve power generation efficiency. Accurate detection of the location of the
damage source is crucial for accurate blade maintenance work.
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Figure 5. Development of large turbines over the years. Based on data retrieved from [72].

Analyzing the linear propagation velocity of the AE signal, as in Figure 6a, and calcu-
lating the AE signal wave velocity using AE1 and AE2 placed at a fixed distance for use
in calculation of the damage source location is a commonly used method for locating the
damage source. Such a method is commonly used to calculate the wave speed by setting
up a pencil core break measurement experiment and calculating the arrival time difference
and distance difference between the two sensors. Linear AE source localization was able to
match the damage better only when the AE signal duration exceeded 200 us [100]. The ac-
curacy of localization using the two-sensor method does not meet the requirements of the
task. Therefore, Liu et al. [110] proposed a time arrival method based on four AE sensors
placed in a square arrangement to locate the main defects within the blade damage area.
The coordinates of the intersection point of two curves formed by two sensors, i.e., the AE
source, were determined. To further improve the accuracy, triangulation was proposed
and applied to damage source localization, as in Figure 6b. Gómez Muñoz et al. [111]
proposed a new method for damage localization in composite materials using three AE
sensors, which localizes the maximum error to less than 9 mm. However, the sensor’s fixed
threshold setting may introduce delayed triggering, loss of low-amplitude information,
or interference by undesired noise. Tang et al. [98] first verified a 45 dB monitoring thresh-
old with only a 7.9% false alarm rate using a pencil core fracture attenuation test on the
blade surface. To further improve the accuracy, the authors selected any three of the four
sensors in the region of interest to form an approximate triangular region. Then, the system
composed of four equations was solved to obtain the damage source coordinates, and the
optimal number of sensors in the monitoring region was provided for calculation.

Ciampa et al. [112] proposed a new AE source localization algorithm based on the
analysis of recorded signals from six sensors. To obtain the initial coordinates of the defect,
the value of the squared mode of the continuous wavelet transform (CWT) was used to
identify the time of arrival (TOA) of the bending Lamb wave (A0) mode and combined with
a global search and a local Newton iteration method related to the backtracking method.
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When the localization error is less than 3 mm in anisotropic composites and less than
2 mm in sandwich panels, the experimental results imply that the study method does not
require knowledge related to the anisotropic group velocity and material thickness of the
waveform. However, the Lamb waves of composite materials excited by forces actually
have two modes—a high-frequency signal (S0) and a low-frequency signal (A0)—which are
influenced by the force of excitation and the angle of the plate surface. Baochun et al. [113]
analyzed and verified the wave velocities of different modes of Lamb waves when the
acting force was perpendicular and parallel to the structural plate and determined that
the Lamb wave (S0) mode was generated by the damage. Furthermore, a new method
was proposed to determine the impact damage based on the Lamb wave (S0) mode and
to determine the location of the damage source using the time arrival difference of a
specific intrinsic mode function in the EMD decomposition of the Lamb wave (S0) mode.
Considering the effect of anisotropic characteristics on the location of the damage source of
composites, Koabaz et al. [114] measured and calculated the envelopes corresponding to
different fiber orientations to extract the energy velocities of the excited modes to calculate
the guided mode velocities. The results show that even when the complex nature of
different propagation directions of anisotropic composite plates is considered, the vibration
source points can still be correctly predicted.
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Figure 6. Acoustic emission source location. (a) Linear location of the AE source; (b) acoustic emission
source plane location.

Linear or planar localization still uses the forced assumption of constant wave ve-
locity in all directions for homogeneous materials, which can be limiting for anisotropic
and non-homogeneous composites. Furthermore, anisotropy can lead to complex scat-
tering phenomena, which complicate wave propagation. Moreover, geometrical features
such as holes, curvature, and thickness variations can affect the signal propagation path.
Zhang et al. [115] investigated the effects of multimodal effects and dispersion phenomena
on wave velocity determination when AE waves propagate in a wind turbine blade thin-
plate structure. Rumsey et al. [116] carried out fatigue damage testing on wind turbine
blade composites; the results of their study show that acoustic emission waves are highly
anisotropic and decay rapidly in energy during propagation. Sause et al. [117] studied the
effect of test sources (such as pencil lead breakage and piezoelectric pulse generators) on
the source sensor distance and analyzed the effect of dispersion and attenuation effects
on the acoustic emission characteristics during the propagation of Lamb waves. Con-
sidering objective interference factors, a new precise positioning method was proposed.
First, the time-frequency results processed by Hilbert–Huang transform were used for
material anisotropy sound velocity compensation, and initial localization was performed
using the four-point circular arc method. Then, the parameters of the probabilistic neural
network were optimized using the chaos algorithm in the fish swarm algorithm and the
improved Drosophila optimization algorithm to further improve the localization accu-



Sensors 2023, 23, 4987 13 of 32

racy [118]. Based on the time-of-arrival method used to calculate the AE source location,
the node recording start time or threshold selection can more or less affect the accuracy of
the results. Kirikera et al. [119,120] proposed the use of a structural neural system (SNS) for
damage detection and localization of a test blade with a length of 9 m. The most important
feature of this system is the selection of the first-wave arrival time to localize the damage,
avoiding the interference of wave propagation type.

A class of methods that can be outlined as a map comparison was applied to sound
source localization. Eaton et al. [121] proposed a new method for AE source localization
of composites applicable to anisotropy, namely Delta T mapping, as shown in Figure 7.
By using each sensor to record the ∆T value of the real AE time and superimposing the
constant line equivalent to the real event on the sensor recognition map to obtain a contour
map, we can find the convergence point, namely the location of the sound source. This
method significantly outperforms the traditional TOA localization method in terms of training
time and localization accuracy. To further improve the localization accuracy, a new Delta T
mapping and parametric correction technique (PCT)-based was proposed for damage source
localization [122]. The results showed that the method improved the positional accuracy of
matrix cracking and delamination identification. Han et al. [123,124] successively proposed a
damage index-based database mapping source localization algorithm and an energy profile
mapping-based localization algorithm. They found that the AE events coincided with the
blade stress distribution and damage location. However, this method is affected by geometric
variations at the bond edge, which is 1000–1500 mm from the blade root. Maillet et al. [125]
proposed a new waveform-based procedure to select AE events generated by damage and
automatically generate energy ratio versus position maps for damage event localization using
the Akaike information criterion (AIC) technique for accurate localization.

Finally, recent studies in the literature have focused on AE signal acquisition meth-
ods and the ability of feature parameters to behave differently under different failure
mechanisms. Bouzid et al. [126] used in situ wireless structural health monitoring (SHM)
techniques combined with low sampling rates to perform localization of features extracted
from mixed AE signals. The AE signals were subjected to relevant signal processing tech-
niques to obtain parameters for different types of associated feature damage. However, it
was stated whether parameter selection is the best characterization of the relevant study
content. To obtain a clear understanding of the information contained in the feature pa-
rameters and their impact on the interpretation of damage accumulation, Xu et al. [127]
used three algorithms to evaluate the dynamic characteristics of 15 conventional parame-
ters recorded for the AE of bonded composite single-lap bonded joints with static tensile
loading. The results of their study indicate that different AE features do exhibit different
functionalities, including feature parameters applicable to the identification of different
types of damage patterns, the best description of the damage process, and those in between.
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Figure 7. Layout of 300 mm “Delta T mapping” grid sensors.



Sensors 2023, 23, 4987 14 of 32

2.3. The Advantages and Disadvantages of AE Signal-Based Wind Turbine Blade Defect
Detection Technology
2.3.1. Advantages of AE Detection

(a) AE structural integrity inspection can be performed without damaging the original
structure of the material being inspected and is a reliable passive, nondestructive testing
method. (b) AE inspection technology has real-time capability and is highly sensitive to any
acoustic process or mechanism. (c) AE technology can detect damage earlier than vibration
inspection technology in structural integrity inspection and has the advantage of early
warning. (d) AE technology can locate the damage area while detecting structural integrity.

2.3.2. Disadvantages of AE Detection

(a) AE signals are usually released in the form of acoustic waves when structural
damage such as cracks occurs within the material, so not all types of damage produce
strong detectable signals. (b) Many extraneous external noise sources can cause interference
at the actual AE inspection site. (c) The anisotropic nature of the composite material itself
causes the AE signal to decay rapidly in energy as it propagates, requiring a large number
of sensors and an inconvenient installation procedure. (d) AE inspection systems require
fast real-time data collection, a large amount of data, and, therefore, high inspection costs.
(e) AE technology relies on material surface wave detection; high sensitivity and a high
acquisition rate of AE sensors are required.

3. Wind Turbine Blade Defect Detection Based on Aerodynamic Noise Signal Analysis
3.1. Introduction of Wind Power Blade Aerodynamic Noise

Wind power noise is divided into mechanical noise and aerodynamic noise. Mechani-
cal noise is generated by the internal parts of the wind turbine nacelle (such as high-speed
gearboxes, generators, and yaws). On the other hand, aerodynamic noise can be explained
as being generated by the interaction of the cyclically rotating blades with the air blowing
towards them. Aerodynamic noise is the main noise source of wind power and can be clas-
sified into three types: low-frequency noise (periodic blade rotation noise), turbulence noise
(Figure 8a,b), and trailing edge noise (aerodynamic noise). Among them, low-frequency
noise is usually independent of blade surface damage. The blade surface characteristics
and trailing edge shape are the key factors affecting inflow turbulence noise and trailing
edge noise changes [128].

wind turbine blade
big 

vortexes

Small nest flow

(a)

turbulent boundary

wind turbine blade wake

(b)

Figure 8. Main aerodynamic noise types of wind turbine blades. (a) Turbulent noise; (b) turbulent
boundary layer noise.

Wind power blade trailing edge cracking (TEC) is generally an early blade health
problem. Zhang et al. [129] proposed a prediction method combining computational fluid
dynamics (CFD) simulations and semiempirical models. An airfoil cross-sectional anal-
ysis of the blade trailing edge with and without a 3 mm gap crack defect successfully
explained that blade trailing edge cracking is the cause of the accompanying acoustically
sharp “whistling sound”. Genescà et al. [130] analyzed the differences between the noise
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signals of rotor blades with three different surface treatments using a linear microphone
array. They found that the blade surface shedding sound pressure level was the highest.
To determine whether the material had been damaged, Jüngert [131] used microphones to
record the sound of repeated excitation of the blade by a hammer and compared it before
and after. Subsequently, to avoid errors due to technical changes in the tapping operation
by technicians, a new method was proposed using instrumented percussion equipment
to generate a fixed, controllable signal combined with a local acoustic resonance spec-
trum [132]. In addition, Ramachandran et al. [133] studied wind power mechanical noise
and aerodynamic noise using an advanced deconvolution-based beamforming algorithm.
As shown in Figure 9, the frequency distribution ranges of both noises were observed,
and the noise of the blades was determined to be mainly influenced by trailing edge noise.

Mechanical noise from the nacelle; both air-borne and 
strcture-borne noise
Frequency:0-500Hz

Aerodynamic noise from the blades around the 
mid-span of the blade length
Frequency:500-1000Hz

A tonal noise is introdced diring the operation the yaw dirve
Frequency:1100Hz

A Dominant mechanical noise from nacelle + Aeroduynamic noise 
fromthe blades
Frequency:1000-1500Hz

Tonal noise from the cooling fans
Frequency:4000Hz

Predominatly aerodynamic noise from blades closer to 
the tip of the blades
Frequency:1500-8000Hz

Low amplitude noise from surrounding
Frequency:8000-10000Hz

Figure 9. Noise frequency distribution of a wind turbine. Based on data retrieved from [133].

3.2. Wind Turbine Blade Damage Detection Based on Beamforming or Acoustic Transmission
Parameter Variation

Beamforming is a method of processing data received from a microphone array to pro-
duce a visual image representing the radiation pattern of the sound source and the relative
intensity of the sound source. Usually, microphones can map the received array to a plane
after processing to show the location of the sound source distribution. Microphone arrays
used to locate motion sources can effectively distinguish aerodynamic noise distributed at
different locations of wind turbine blades and are promising for wind turbine blade damage
detection [134–137]. Aizawa and Poozesh et al. [138,139] investigated phased array beam
formation and two beam formation algorithms (CLEAN and CLPSR) for wind turbine
blade damage detection. The experimental results show that the CLEAN-based algorithm
can identify the maximum source. In contrast, CLPSR is more effective in locating sources
generated by damage alone. The CLPSR algorithm also has the potential to evaluate the
fault size based on the sound pressure level (SPL) of the fault emission.

The development of beamforming in wind turbine blade damage detection is sub-
ject to two key limitations. On the one hand, conventional beamforming wind power,
although available for blade damage detection, is limited by spatial resolution, severe
side flap contamination, and computational timeliness. In order to improve the spatial
resolution and accuracy, Sun et al. [140,141] proposed a new algorithm for sparsity-based
acoustic field reconstruction and regularized the acoustic problem using the generalized



Sensors 2023, 23, 4987 16 of 32

minimax-concave (GMC) penalty function. In addition, the experiment investigates the per-
formance capability of different acoustic parameters on blade identification under specific
measurement conditions. The results show that a reasonable matching of key parameters
or measurement conditions can improve recognition accuracy and provide a method to
determine the parameters. Finally, the experiments also revealed the potential influence of
damage on the acoustic field. Another adaptive compressive beamforming method based
on a generalized minimal–maximum concave penalty function was used to reconstruct the
sound to identify blade damage [142]. Figure 10 shows the composition of the beamforming
hardware acquisition system and the results of the beamforming algorithm for blade dam-
age identification. On the other hand, although increasing the number of channels improves
the accuracy of beamforming detection, it also increases the cost. A sparse sensor array
optimization method for composite wind turbine blades was proposed, and an improved
redundant second-generation wavelet transform (IRSGWT) algorithm based on domain
coefficients was used to denoise weak signals and validated with simulated damage on
wind turbine blade laminates [143].

(a) (b)

Figure 10. Beamforming algorithm system and results. (a) Experimental setup for blade damage
identification; (b) acoustic maps of healthy blades and blades with cracks [142].

In addition, considering that only monitoring the structural state of the blade cannot
meet the demand in practical applications, a reliable early warning mechanism is also
needed to satisfy the optimal maintenance time of the blade. Li. [144] designed and devel-
oped a nondestructive detection system based on acoustic signal fusion using the minimum
variance distortion-free response (MVDR) beamforming technique to enhance weak sig-
nals and suppress interfering signals and introduced two early warning measurements to
improve the early warning robustness of the system.

Acoustic transmission loss variation is a typical manifestation of wind turbine blade
damage. The aim of the method based on acoustic transmission parameter variation is
to study and measure the acoustic parameter variation in the external and internal air
domains of the wind turbine blade cavity, as shown in Figure 11. Based on the acoustic
transmission characteristics of the noise generated by acoustic excitation when air flowing
through the blade enters the cavity structure, Beale et al. [145] investigated the influence of
different damage locations and damage degrees on the detection performance of the blade
section in a wind tunnel. The effects of various damage locations and damage levels on
the blade cross section in the wind tunnel on the detection performance were investigated.
The authors confirmed that the proposed method can detect hole-type damage with a
diameter of 0.32 cm and crack damage with a length of 1.27 cm.
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Figure 11. Passive detection method based on aerodynamic noise.

Traylor et al. [146] proposed a generic computational method capable of predicting the
sound pressure distribution within the blade cavity affected by noise generated by high-
frequency flow and conducted an example study on a 5 MW wind turbine blade model.
The results show that the proposed method can successfully detect damage in the front
half of the blade cavity at the root position of the wind turbine blade. Moreover, the signal
frequency variation can not only indicate the type of damage that has occurred but also
possibly be used for location determination. An active damage detection method relying
on the detectability of sound propagation changes at the boundary of the structural cavity
was studied for the measured sound pressure response outside the cavity of wind turbine
blades. Experiments were also conducted to explore the effects of the blade damage level,
microphone placement, and other conditions on the detection performance. This study
proves the feasibility of the active acoustic damage detection method in cavity structural
integrity and full-size wind turbine blade damage identification [147]. Inalpolat et al. [148]
proposed a damage detection method combining active and passive approaches by taking
advantage of the property that blade structural deformation or damage can cause loss
in the transmission process of blade sound into or out of the cavity. Four progressively
complex experiments were conducted, investigating the combined cavity, blade section,
field turbine blade, and turbine fatigue damage. The results show that active–passive
detection is feasible for identification of blade crack or hole-type damage. The active–
passive detection process is shown in Figure 12; both microphones and loudspeakers are
installed in the wind turbine blade cavity, and the loudspeakers can provide sound sources
during active detection. The low number of pneumatic noise sensors required for this
method is one of the advantages of noise-based detection wind turbine blade technology,
and the technique of using wireless sensing methods to detect surface damage to blades
was investigated [149]. Moreover, Barber et al. [150] proposed a cost-effective MEMS-based
acoustic wireless measurement system.

Holes /cracks

Wind flow

Loudspeaker
Mic

Mic on the ground

Figure 12. Active and passive detection method based on aerodynamic noise.

To optimize the acoustic-based wind turbine blade health inspection system and guide
the inspection method, the effects of damage location, damage size, sound source location,
and microphone location on the detection rate using structural–acoustic coupling were
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investigated in [151]. Traylor et al. [152] proposed a blade aerodynamic reduced-order
acoustic–structural coupling modeling approach for the study and analysis of five damage
locations and four damage sizes at specific acoustic frequencies (1, 5, and 10 kHz) with
respect to a healthy baseline. The results show that the SPL increased by more than 3 dB in
22 of 36 anterior cavity damage cases, whereas only 6 of 24 cases in the posterior cavity
increased by more than 3 dB. On the other hand, the experiments also revealed SPL, damage
location, damage size, and frequency as key factors affecting the success of identification.

3.3. Wind Turbine Blade Damage Detection Based on Other Acoustic Methods

Changes in the acoustic cavity response function of wind turbine blades are also a form
of damage manifestation. Two damage detection methods using passive reconstruction
of the impulse response function or Green’s function of the existing noise mechanism in
the structure are used for blade damage studies and have been demonstrated in marine
acoustics. Tippmann [153] studied the reconstruction of forward and backward time-
domain Green’s functions between any two detection points on a structure using the
derivatives of the mean of the coefficients of the mutual correlation function for blade
damage detection. In addition, the diffusion field of the aerodynamic noise around the
blades of an operating wind turbine can be calculated by reconstructing different types
of Green functions [154,155] to detect damage to wind turbine blades. Another sparse
array imaging technique (matched field processing) based on acoustic fields providing
unique information on structural modal wave propagation was used to reconstruct impulse
response functions in ambient noise to detect blade structural damage [156]. Detection
techniques combining Green’s function and the impulse response function have also been
investigated for blade damage detection and spatial localization to identify structural
sources [157,158].

3.4. The Advantages and Disadvantages of Wind Turbine Blade Defect Detection Technology Based
on Aerodynamic Noise Signals
3.4.1. Advantages of Aerodynamic Noise Detection

(a) It is based on blade aerodynamic noise damage detection, without unit outage, non-
contact, and continuous detection; (b) Aerodynamic noise is easy to collect and difficult
to mask; (c) Aerodynamic noise acquisition methods are abundant, sensor placement
is simple, and detection cost is low; (d) Aerodynamic noise has the potential to detect
structural integrity and the location of blade damage and can successfully detect aperture
damage as small as 0.32 cm in diameter (even holes as small as 0.16 cm in diameter
combined with data-driven algorithms) and crack damage as long as 1.27 cm; (e) Due to
different damage types of blades, the natural frequency of radiated noise changes and has
the potential ability to identify damage types.

3.4.2. Disadvantages of Aerodynamic Noise Detection

(a) Blade aerodynamic noise contains a large number of frequency components with a
wide frequency distribution range. The main frequency distribution has no obvious rule,
and the distribution is random; (b) Wind power blades work under adverse conditions.
When the wind speed is too high, the background noise is increased, and interference is
obvious; (c) No unified standard specification has been established for the installation posi-
tion of acoustic acquisition sensors in the process of blade aerodynamic noise acquisition;
(d) The developmental process of leaf damage is uncertain, and the relevant acoustic signal
damage characteristics are not fully understood; (e) Due to a lack of aerodynamic noise
data, data-driven combination is relatively difficult.
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4. Machine Learning Combined with Acoustic Signals for Wind Turbine Blade
Damage Detection
4.1. Machine Learning

The concept of machine learning was first introduced in 1959 [159]. The concept has
taken 60 years to develop and is widely used in various industries, such as computer vision,
natural language processing, and biometric recognition. Machine learning also covers the
field of deep learning that is being studied today. Machine learning methods can usually
be divided into two categories: supervised learning and unsupervised learning. No matter
which type of method, feature extraction and model selection have a decisive impact on
the final recognition effect. Key feature extraction can determine the upper limit of the
recognition effect, whereas selection of the appropriate model enables the result to approach
the upper limit. Past case studies have demonstrated the effectiveness of machine learning
algorithms in solving difficult problems in the area of damage identification, as well as the
potential for fault detection in some parts of wind turbines [160,161].

4.2. Wind Power Blade Damage Identification Based on AE Signal Combined with Machine
Learning Algorithm

In Section 2 of this paper, we reviewed the traditional AE signal analysis methods,
which are promising technologies for health monitoring of composite structures. However,
traditional analysis methods are difficult to automatically interpret and distinguish AE
data failure modes. Solving AE data fault classification and identification is actually also a
pattern recognition problem. Therefore, the combination of AE signals with appropriate
machine learning algorithms can be an appropriate solution to the damage identification
problem. In [162], the authors applied “NOESIS” pattern recognition and neural network
software to perform unsupervised analysis of AE data. The separation of categories, which
is not possible with traditional AE analysis methods, was successfully achieved. In the
following section, we present common algorithms for wind turbine blade health monitoring
that combine machine learning with AE signals.

4.2.1. Clustering Algorithms

Clustering algorithms can be summarized as dividing similar data into the same group
while maintaining distinct differences between groups. Pattern recognition can be defined
as the discovery of potential patterns in data to aid in classification and a better under-
standing of data distribution patterns. Liu et al. [110] used a one-round cross-validation
approach for dataset partitioning of AE data and used a bipartite k-means clustering
approach in combination with defect localization information to complete the damage
analysis. Nair et al. [163] used the complete link algorithm and the PCA algorithm to select
a data feature set in combination with the k-means algorithm to correlate the data results
with the associated fault damage. Zhang et al. [164] proposed a feature selection method by
calculating the temporal signal density of damage patterns for feature selection and using
the k-means algorithm to identify damage patterns in tensile experiments on glass fiber
composites containing delamination defects. Tang, Tang, et al. [165] collected 21-day fatigue
load AE data of a 45.7 m blade and used the k-means algorithm to identify AE activity for
different fracture mechanisms and found four modes of fiber failure: matrix cracking, fiber
matrix debonding, and delamination (interlaminar failure). They also evaluated the influ-
ence of k-value selection on damage clustering results using the silhouette index and the
Calinski–Harabasz index and found that k = 4 was the optimal value. K-means clustering
is an unsupervised algorithm used to determine the uncertain origin of unknown events.
Therefore, the k value and initial clustering center should be determined first when using
this method. The choice of k value has a considerable influence on the running time and
results of the whole model. The fuzzy c-means (FCM) clustering algorithm was proposed
later than the k-means algorithm. The FCM algorithm introduces “fuzziness” treatment
to the model, which is an improvement of the k-means clustering algorithm. Marec [166]
extracted AE signal features using CWT and discrete wavelet transform (DWT) algorithms
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and studied typical damage AE signals, such as matrix cracking and fiber damage, using a
combination of PCA and FCM unsupervised clustering model algorithms. Azadi et al. [62]
used wavelet packet transform (WPT) and FCM to study failure mechanisms such as matrix
cracking, fiber fracture, and fiber detachment from the matrix of composite materials under
different tensile loading rates and found that the method was effective in identifying the
debonding failure mechanisms. Mohammadi et al. [167] used AE in combination with
wavelet and FCM clustering methods to identify the damage mechanisms of standard
open-hole tensile (OHT) laminates, and their single-step processing algorithm was also
compared with finite-element calculation methods, proving the effectiveness of the method.

In recent years, many new clustering algorithms have been combined with AE signals
for wind turbine blade damage identification. Ramasso et al. [168] proposed a cluster
fusion pattern recognition algorithm that automatically selects multiple feature subsets
using damage sequence entropy, estimates the optimal number of clusters to represent the
AE data stream structure, and provides the cumulative load threshold interval required to
activate specific damage. Experimental results show that the algorithm is able to cope with
damage sensitivity while capturing damage dynamics and onset points. Xu et al. proposed
fast search and find of density peaks (CFSFDP) to achieve damage pattern identification for
interface debonding, matrix cracking, and fiber fracture and to determine other reasonable
acoustic emission features by combining Laplace scoring with the correlation coefficient
evaluation index. Subsequently, they explored a pattern recognition method without signal
denoising, the CFSFDP method of WPD, and applied it to the pattern recognition and
outlier detection of 59.5 m long composite wind turbine blades. A clustering algorithm
based on Shannon entropy combined with WPD was also proposed and validated on
non-aging and hygrothermal aging specimen damage patterns [169–171]. Compared with
CFSFDP clustering, k-means clustering results change significantly with changes in the
number of clusters when selecting clusters, which may lead to differences in clustering
results between the two algorithms. Ech-Chouda et al. [172] developed the incremental
clustering (IC) algorithm for identifying and analyzing the types of unidirectional ply
GFRP damage mechanisms. IC has more advantages than k-means methods in classifying
AE signals such as matrix cracking, fiber breakage, and delamination and in building a
learning database. AE clustering based on k-means classification shows the existence of
four fully separable clusters without any overlap. The IC algorithm clustering algorithm is
not only suitable for four separable clusters, but the overlap between clusters also shows
the physical properties and states of AE signals.

The combination of the above AE signals with clustering shows that AE signals of
leaf damage can be divided into four distinct classes, namely matrix cracking, fiber matrix
degluing, fiber fracture, and delamination.

4.2.2. Classification Algorithms

A classification algorithm can be generalized as a guided learning process to make
predictions for a single individual in a known total number of categories. Zhang and
Jia et al. [173,174] used BP neural network models to study leaf defect damage identifica-
tion, the former using the combination of variational modular decomposition (VMD) and
energy entropy to construct feature vectors and the latter using feature clustering with
dimensionality reduction processing. Experimental results show that both methods can
achieve 90% accuracy in leaf damage identification. Wirtz et al. [175] proposed a pattern
recognition method based on STFT feature extraction and support vector machine (SVM)
classification, using probabilistic estimation to evaluate the reliability of SVM models
under damage evolution and variable loading conditions and analyzing the temporal
data compression rate of STFT, as well as the tradeoff limit between time and frequency
resolution. Jiang et al. [176] proposed a wind turbine blade damage diagnosis method
based on a combination of complete noise-assisted total empirical modal decomposition
(CEEMDAN) and SVM, which achieved 96.7% accuracy in blade defect identification.
Loutas et al. [177] proposed an innovative data-driven framework, the non-homogeneous
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hidden semi-Markov model (NHHSMM), with multistate degradation and the RULE func-
tion to reduce fluctuation. They found that the confidence intervals of the model approach
zero over time with an effect of increasing data.

The deep learning model (Figure 13) has excellent automatic mining capability in
image training, due to which the AE signal waveform can also be used as a training sample.
Guo et al. [178] proposed a deep learning method for detection of fiber breakage, matrix
cracking, and delamination, namely the InceptionTime model. The model contains five
inception modules to reduce overfitting of small datasets and filtering of different lengths.
In addition, parallel MaxPooling is used to stabilize the model to avoid small interference.
The model achieves 99% correct classification with high accuracy on both raw AE time series
and frequency-domain series data training and 100% correct classification in matrix crack-
ing mode. The advantages of this research method include not only excellent classification
performance but also the ability to solve the AE data imbalance problem. Barile et al. [179]
trained image-based AE waveform classification using a convolutional neural network
(CNN) with four different modes of AE waveforms obtained from Mel-scale spectral repre-
sentation as the training and test sets. The model comprises nine hidden layers and uses
ReLu activation functions instead of sigmoid and tanh functions, which were commonly
used in the past. The results show that the overall prediction accuracy of the model can
reach 97.9%, and the prediction accuracy of fiber fracture and stratified damage can reach
100%. However, many existing algorithms may be deceived by indirectly propagated AE
modulated by reflected boundaries within the structure. Haile et al. [180] converted time
series data into spectral time feature images and input the CNN model constructed by six
hidden layers to perform the classification task. In addition, the sensitivity of the model to
image occlusion was studied, and the generated heat map further confirms the importance
of the initial pulse as the distinguishing feature of the direct propagation waveform. Finally,
the training results of time series data prove that a CNN is superior to long short-term
memory (LSTM) in terms of performance. Sikdar et al. [181] proposed a deep learning
framework for neural networks combined with image enhancement techniques to generate
training datasets, process AE signals using CWT, and extract discrete damage features from
scale map images. Wind turbine blade damage accumulation can affect the distortion of
the AE signal in the time or frequency domain waveform. M. Kharrat et al. [182] proposed
an improved algorithm to guide the evolution of damage features and showed that both
time and frequency domains distorted with damage accumulation, which, in turn, led to
important changes in the AE features used in data classification.
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Figure 13. Convolutional neural network structure.

Past studies on AE signals combined with data-driven algorithms have shown that the
results obtained by deep learning algorithms are usually superior to the detection results
of machine learning methods. The possible reason for this difference is that deep learning
algorithms can learn advanced features from data. However, deep learning requires a large
number of training samples, which may be one of the key difficulties limiting the practical
application of deep learning in leaf damage detection. In the long run, acoustic emission
signals combined with deep learning algorithms are expected to become one of the main
technologies used to solve the problem of automatic blade damage recognition.
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4.3. Wind Turbine Blade Damage Identification Based on Aerodynamic Noise Combined with a
Machine Learning Algorithm

The aerodynamic noise signal radiated by wind turbine blades carries blade mass
health information. The related methods based on blade aerodynamic noise signal damage
detection were reviewed in Section 3 of this paper. Although the traditional methods can
detect damage, damage refinement and automatic classification are difficult. For example,
beamforming algorithms can detect damage based on aerodynamic noise radiation at
different locations, but it is difficult to determine the damage type or estimate the damage
size. However, using appropriate data processing techniques makes it possible to classify
and identify damage with different properties. In the following section, we introduce
research on commonly used aerodynamic noise signal processing techniques combined
with machine learning for wind turbine blade damage detection, as shown in Figure 14,
which shows the whole process of wind turbine blade aerodynamic noise acquisition,
preprocessing processing, fault feature extraction, and damage identification combined
with a machine learning algorithm.

Blade aerodynamic 
noise signal

Sound capture 
sensors Coaxial cable Coaxial cable

PC terminal
process

Time domain 
aerodynamic noise 

signals
Feature extractionNeural network 

identification
Rwsults output

Figure 14. Machine learning diagnosis of blade damage based on aerodynamic noise signal combination.

4.3.1. Aerodynamic Noise Feature Extraction

Feature extraction is a data preprocessing process, as the original signal contains a large
amount of redundant information that may not actually be relevant to the recognition task.
Therefore, feature extraction is crucial for machine learning, and choosing an appropriate
feature extraction processing algorithm can improve the upper limit capability of the model.
In this section, we introduce the commonly used feature extraction algorithms and common
machine learning models for wind turbine blade aerodynamic noise signals.

After damage occurs on the blade surface, the aerodynamic audio signal generated by
the blade rotation process in air differs from the normal blade sound signal and is related
to the type of blade damage. Solimine et al. [183] used a microphone placed inside the
blade to capture the trend, variation, and peak of the blade cavity sound pressure; extracted
the short-time energy, excess zero rate, and linearly predicted cepstrum coefficients; and
input them into a training model after reducing the feature space dimension with low
correlation using the PCA technique. Han et al. [52] first used a 1/6 octave to carve out
the noise signal differences, combined with PCA to remove redundant information of
energy features and feature dimensionality reduction to obtain key damage features; the
accuracy of experimental classification results reached more than 98%. Hu et al. [184]
analyzed the blade abnormal state using the collected wind power audio data, used FFT
as a filtering tool for sound data, and obtained 264 key features from 1365 features in
the time and frequency domains using a multiclassification logistic regression model.
In addition, the authors explored the “whistling” sound and analyzed the possible causes.
Kuo et al. [185] investigated the extraction of audio features by reconstructing audio
files from eight different frequency ranges using DWT and employing missing value
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replacement. The damage detection method proposed in this experiment not only achieves
better results in wind turbine blade damage detection but also has better generalization
capability. When the sensor collects the blade aerodynamic noise, other noises in the
environment are mixed with the blade noise to be collected; therefore, in order to improve
the signal-to-noise ratio of the sound signal related to the blade damage, these noises
that are mixed and collected unrelated to the blade damage should be screened and
removed to the greatest extent possible. Peng et al. [186] analyzed the frequency band range
and aerodynamic noise characteristics of both ambient noise and aerodynamic noise and
proposed a noise reduction method and feature extraction method for wind turbine blade
sound signals based on improved EMD and composite mean squared error. Compared
with the traditional noise reduction method (EMD + relative entropy denoising method),
the newly proposed method is widely applicable to different types of noise. The new
method is widely applicable to sound denoising with different signal-to-noise ratios.

Mel-scale frequency cepstral coefficients (MFCCs) represent the most commonly used
method for speech signal processing in recent decades. By proposing MFCC features for
sound signals, Liu et al. [187] achieved 94.8% recognition accuracy; the field verification
experimental results were also consistent with the wind turbine blade variation law. Zhang
and Jiang [188] proposed a method to collect sound signals using sensors installed below
wind towers and extract MFCC features from the noise-reduced data after high-pass
filtering. The experimental results show that the 1, 2, 4, 6, and 8 dimensions of the
12-dimensional MFCC features were more obvious in distinguishing the faulty samples
from the normal ones. Solimine and Inalpolat [189] set up simulated damage in the form
of penetrating holes and cracks at three different locations (the leading edge of the front
cavity, the side of the front cavity, and the side of the back cavity) and compared the MFCC,
GTCC, LFCC40, and LFCC80 feature sets, finding that the LFCC40 and LFCC80 feature sets
provided the highest detection accuracy in both hole-type and crack-damage-type damage
and significantly outperformed the common MFCC feature set. If a damage location is
given, a hole-type damage of 0.16 cm can be detected 100% of the time, and the accuracy of
detecting cracks with a minimum length of 1.27 cm can reach 97%. The literature referenced
above shows that the same signal processing method may achieve different results due to
the location of the acquisition sensor or the radiated noise at different damage locations on
the blade. Therefore, it is worth exploring the processing methods for aerodynamic noise
of blades with high generalization ability. In addition, a low-frequency noise extraction
method based on the spline envelope method and improved local mean decomposition
was proposed to address the fact that the main components of blade aerodynamic noise
are easily distorted in the modulation process [190]. The method was also successfully
validated in real noise fields.

The radiated aerodynamic noise of wind power blades contains information about
blade health state, but other environmental noise signals are inevitably saved when the
blade aerodynamic noise is collected. Uncertain factors such as the location of the acqui-
sition sensor, the location of blade damage, and the type of blade damage may affect the
data quality. Therefore, the collected aerodynamic noise signals have a random frequency
distribution and complex components and are difficult to analyze, resulting in differences
in the performance of analysis results.

4.3.2. Blade Damage Recognition Model

Zou et al. [191] used the k-means algorithm to separate a speech spectrogram into
two classes when obtaining wind turbine blade aerodynamic noise data, separating the
blade sweeping audio and quiet audio and inputting the sample data into the model for
training after performing 0 and 1 sample sequence labeling. Dong [192] proposed the
use of the DBSCAN density-based clustering algorithm, which not only does not require
specification of the number of clusters for clustering but also allows for discovery of
arbitrary shape clusters. The study was conducted by constructing a posterior number of
sound signal features to input into the training model, obtaining a recognition accuracy
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of 94%. The method can discover the noise points in the signal, which is beneficial to the
noise-containing frequency filtering process.

Regan et al. [193] investigated wind turbine blade damage (holes and edge cracks) by
collecting data from laboratory-scale wind power models and using linear regression and
SVM. The best characteristics of blade defect identification performance under multiple-
excitation or single-excitation conditions were also discussed in the study. The results
showed that the accuracy of wind turbine blade damage identification exceeded 98%.
Ciaburro et al. [194] used the Boruta algorithm to select the most sensitive predictor of
damage and trained it using the SVM model. The results showed that the accuracy of the
SVM model could reach 91.8%. Liu et al. [195] proposed a new ITD-PCA-SVM classifier
with a higher recognition rate and demonstrated a significant difference in the frequency
bands of the damage signal. Chen et al. proposed an improved incremental bounded SVDD
(IBSVDD) model for blade damage identification and found that the model performed
best in training and improved prediction accuracy compared to other models (ISVDD and
NISVDD). Recently, blade drainage hole health status has received attention. The newly
proposed AR-ISVM model can retain most of the information through only a small part of
the original sample. The method not only has a shorter training time than other incremental
SVM classifiers but also has higher accuracy and F1 values than other classifiers (e.g.,
random forest, k-nearest neighbor, and XGBoost models) [196,197].

An acoustic monitoring model that combines DWT extracted features with a deep
neural network (DNN) was proposed and applied to blade damage research. The method
not only achieves satisfactory results in wind turbine blade damage detection but also
has a positive generalization capability. For example, four different types of machine data
were tested for wind turbines, pumps, sliders, and valves [185]. Yang et al. [198] used an
Adaboost model to monitor the stratified regions of wind turbine blades in combination
with a random forest model to classify the collected data. The model was experimentally
compared in defect detection and region classification and achieved 88.57% accuracy in
stratification identification and 78.33% accuracy in region classification. Tsai and Wang [199]
proposed a novel hybrid CNN model for blade surface damage detection based on acoustic
signals, which is a hybrid model introducing a masking module and a residual classifier
with the functions of suppressing redundant information and quantifying the differences
between masked and standard acoustic spectrograms. The model achieved excellent
performance in terms of accuracy, precision, recall, and F1 score in the test set.

5. Summary and Prospects

Long-term wind power blade operation in harsh field environments using an efficient
and convenient structural integrity monitoring method can provide a scientific reference
for maintenance work timing. On the one hand, the working life of wind turbine blades can
be extended, in addition to saving on maintenance costs. On the other hand, if the blade is
damaged, maintenance is not timely, which can lead to greater disaster occurrence. In this
paper, we reviewed existing technology used for wind turbine blade health monitoring,
mainly focusing on the progress of wind turbine blade health monitoring technology based
on acoustic signals (acoustic emission signals and aerodynamic noise signals) in recent
years. We reviewed research on traditional methods of structural health monitoring based
on acoustic signals in damage identification and damage location determination of wind
turbine blades. The existing literature on the automatic identification and classification of
blade damage based on acoustic signals combined with machine learning algorithms was
also investigated, and the research progress was analyzed in depth. Possible directions for
future wind turbine blade failure event detection technology are discussed below.

With wind power generation gradually trending towards more remote fields and deep-
sea applications, blade size is rapidly increasing. The demand for remote, nondestructive,
real-time, comprehensive, and accurate wind turbine blade health inspection is the main
development trend of future wind turbine blade damage detection technology. This paper
can serve as a reference for understanding damage detection based on acoustic emission
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signals or aerodynamic noise, as well as damage source location determination, which is
important to further promote practical research and grasp the research development trend
in this area.
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