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ABSTRACT
We study the uniqueness and robustness of acoustic signatures in the cosmic microwave background

by allowing for the possibility that they are generated by some as yet unknown source of gravitational
perturbations. The acoustic pattern of peak locations and relative heights predicted by the standard inÑa-
tionary cold dark matter model is essentially unique, and its conÐrmation would have deep implications
for the causal structure of the early universe. A generic pattern for isocurvature initial conditions arises
due to backreaction e†ects but is not robust to exotic source behavior inside the horizon. If present, the
acoustic pattern contains unambiguous information on the curvature of the universe even in the general
case. By classifying the behavior of the unknown source, we determine the minimal observations neces-
sary for robust constraints on the curvature. The di†usion damping scale provides an entirely model-
independent cornerstone upon which to build such a measurement. The peak spacing, if regular, supplies
a precision test.
Subject headings : cosmic microwave background È cosmology : theory

1. INTRODUCTION

Cosmic microwave background (CMB) anisotropies
provide a unique window into the early universe through
which we receive information on both the model for struc-
ture formation in the universe (e.g., Bond, &Efstathiou,
White et al. & Steinhardt1992 ; Gorski 1995 ; Ostriker 1995 ;

& Turok et al.Crittenden 1995 ; Albrecht 1996 ; Durrer,
Gangui, & Sakellariadou Gates, & Steb-1996 ; Dodelson,
bins and the background cosmology (e.g., et al.1995) Bond

Sugiyama, & Silk et al.1994 ; Hu, 1996 ; Jungman 1995 ;
& White In the simplest models forSeljak 1994 ; Scott 1995).

structure formation, based on the gravitational instability
of initial density perturbations, the acoustic signature in the
anisotropy power spectrum provides a clean and unam-
biguous means of measuring all of the parameters of a
Friedman-Robertson-Walker cosmology. In particular, it
o†ers a standard ruler with which to make a classical test
for curvature in the universe ZelÏdovich, &(Doroshkevich,
Sunyaev & Gouda1978 ; Sugiyama 1992 ; Kamionkowski,
Spergel & Sugiyama & White However,1994 ; Hu 1996).
structure formation may have proceeded by a more compli-
cated route. Recent investigations have begun to probe the
acoustic signature in texture & Turok(Crittenden 1995 ;

et al. and string et al.Durrer 1996) (Albrecht 1996 ;
et al. models for structure formation. TheirMagueijo 1996)

predictions di†er strongly from the standard inÑationary
case and suggest that perhaps without prior knowledge of
the correct model for structure formation, the information
contained in the acoustic signature cannot be extracted. In
this paper we focus on two general questions : does the
acoustic signature uniquely specify the model for structure
formation? how robust is a measurement of the curvature
to changes in the underlying model?

As discussed in the Appendix, the question of uniqueness
is especially interesting in the case of the standard inÑation-
ary paradigm. InÑation is the unique causal mechanism for
generating correlated curvature perturbations above the
horizon All other causal mechanisms gener-(Liddle 1995).

ate signiÐcant curvature perturbations only near horizon
crossing. We will refer to these alternate possibilities as iso-
curvature models. A unique signature of superhorizon cur-
vature Ñuctuations can be used as a test of inÑation. By
generalizing the external source formalism of Hu & Sugiy-
ama and hereafter and to include(1995a 1995b, HSa HSb)
backreaction e†ects in we Ðnd that a large class of° 2,
isocurvature models carry a distinct acoustic signature that
can be easily distinguished from the inÑationary case, inde-
pendent of the curvature and other cosmological param-
eters. The distinction lies in the gross properties of the
spectrum, not small or subtle shifts in the peaks heights that
require very high resolution measurements to see. As shown
in tell-tale features include the harmonic series of peak° 3,
locations, the alternating relative peak heights due to
baryon drag, and the di†usion damping tail. From this
study, we conclude in that the standard inÑationary° 4
model with big bang nucleosynthesis (BBN) baryon-to-photon
ratio bears an essentially unique signature.

If acoustic oscillations are present in the CMB, as is the
case in all but models with signiÐcant reionization (see, e.g.,

& Bond et al.Peebles 1987 ; Efstathiou 1987 ; Coulson 1994)
or late formation of perturbations Stebbins, &(Ja†e,
Frieman their signature will provide information on1994),
the curvature. The damping tail contains the most robust
information, but its location alone can constrain but not
precisely Ðx the curvature. Additional restrictions such as a
standard recombination history and a near BBN baryon
content are required to make this a sensitive probe of the
curvature. Furthermore, in models where the acoustic sig-
nature is sufficiently regular, the spacing of the peaks pro-
vides a precision test of the curvature even if the baryon
content is anomalously low or somewhat high. It can also
be combined with the damping tail to discriminate against
truly exotic models. In we discuss speciÐcally what regu-° 5,
larities must be observed before the curvature can be unam-
biguously measured if the correct model for structure
formation is not assumed to be known a priori.
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The outline of this paper is as follows. The next section
contains the derivation of our principle results. Their
impact on the features in the angular power spectrum of the
CMB is described in We discuss our main points in °°° 3. 4
and and we present our conclusions in5, ° 6.

2. PHYSICAL PROCESSES

This section develops the formalism behind our principle
results and illustrates them in a series of concrete examples.
The lessons learned here will be applied in the later sections.
A summary of important conclusions is given in so° 2.9,
that the bulk of this section may be skimmed on a Ðrst
reading.

Acoustic oscillations in the CMB are inevitable if gravita-
tional potential perturbations exist during the period when
the Compton mean free path of a photon scattering o† a
free electron is much less than the horizon scale. In this case,
the photons and electrons are tightly coupled. Since
Coulomb interactions couple the electrons to the baryons,
we refer to the system as a photon-baryon Ñuid. Photon
pressure in the Ñuid resists gravitational compression and
sets up acoustic waves in the system.

Because the properties of the oscillator are determined by
the background, while those of the gravitational forces are
described by the model for the perturbations, the acoustic
signature provides a unique opportunity to probe both the
background cosmology and the model for structure forma-
tion. Here, we explore the evolution of acoustic phenomena
under the inÑuence of an arbitrary source of gravitational
perturbations. This is employed in to determine the° 3
conditions under which signatures such as the peak loca-
tions, relative heights, and damping tail may be considered
robust. These signatures will be observable in the small-
scale CMB anisotropy if the tight coupling condition is
satisÐed during the epoch immediately preceding the last
scattering event. In particular, it holds for the standard
thermal history where recombination and hence last scat-
tering occurs at redshift z

*
D 103.

2.1. Fluid Equations
We start with the fundamental equations describing the

dynamics of a relativistic Ñuid. The physical interpretation
and description of these equations is given below. The evo-
lution of the photons and baryons in a metric perturbed
by density Ñuctuations in the kth normal mode is given in
the Newtonian representation as (see, e.g., Mukhanov,
Feldman, & Brandenberger & Bertschinger1992 ; Ma 1995)
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for the momentum conservation or Euler equations of the
photons and baryons, respectively. Here overdots are deriv-
atives with respect to conformal time g \ / dt/a, R\
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density, and as the Thomson cross section. The Ñuctua-pTtions are deÐned as the isotropic tem-#0\ *T /T \ dc/4perature perturbation, the dipole moment or photon#1bulk velocity, the photon anisotropic stress pertur-%cbation, the baryon energy density perturbation, andd
b

V
bthe baryon velocity. The gravitational sources are ', the

perturbation to the spatial curvature, and (, the Newto-
nian potential. In this gauge, these gravitational pertur-
bations distort the metric as andg00\[a2(1]2(Q) g
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where is the three metric on a surface ofa2(1] 2'Q)c
ij
, c

ijconstant curvature and Q is a plane wave exp (ik Æ x) in a
Ñat geometry or more generally the k-eigenfunction of the
Laplacian The Einstein-Poisson equations(Wilson 1983).
thus relate them to the matter Ñuctuations as (Bardeen
1980)
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where the sum is over particle species, the curvature K \
and the Hubble constant[H02(1 [ )0[ )"), H0\ 100 h

km s~1 Mpc~1. We will assume from now on that the
relevant scales are far under the curvature scale (K/k2] 0).
None of our main results are a†ected by this assumption for
reasonable values of K. Note also that if the anisotropic
stress is negligible, ( \ ['.p

T
%

T
\ ; p

i
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iNow let us examine the physical content of equations (1)
and Photon number conservation relates changes in the(2).
temperature Ñuctuations to the velocity divergence by a
factor of (since number density is related to temperature13by The term represents the dilation e†ect on thencD T 3). '0
wavelength of the photons. Since the curvature pertur-
bation ““ stretches ÏÏ the spatial metric, changes in ' gives rise
to a dilation e†ect of the same origin as the cosmological
redshift. Notice the sign of this e†ect implies that the
photons will always oppose a change in the curvature, a
point that will be very important later. Similar e†ects
govern the baryon continuity equation. Since the fractional
energy and number density Ñuctuations are equal for a non-
relativistic particle, their rate of change is given by the
velocity divergence. The additional e†ect due to the stretch-
ing of the volume from also implies a number density'0
dilution of 3'0 .

The expansion makes particle momenta decay as a~1.
For the photons, this is accounted for by the temperature
redshift ; for the baryons, by expansion drag on the bulk
velocity (the term). Gradients in the potential, k(, gen-a5 /a
erate velocity perturbations by gravitational infall. For the
photons, infall is countered by stress in the Ñuid, both iso-
tropic (pressure) and anisotropic (quadrupole moment). The
baryons, however, are e†ectively pressureless. The photon
and baryon equations are coupled by Compton scattering
(the terms), which exchanges momentum between theq5
Ñuids. Since the momentum density of the Ñuid is pro-
portional to o ] p, conservation relates the scattering terms
by the factor ScatteringR\ (p

b
] o

b
)/(pc ] oc) B 3o

b
/4oc.seeks to equalize the bulk velocities causing adia-#1 \V
bbatic evolution of the density perturbations d5
b
\ 3#0 0.If the scattering is rapid compared with the travel time

across a wavelength, the momentum conservation equation
may be expanded in powers of the Compton mean free(2)

path over the wavelength By eliminating the baryonk/q5 .
velocity, we obtain the tight coupling approximation for the
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evolution of the photons & Yu(Peebles 1970 ; HSa) :
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#1[ '0 ,

#0 1 \ [ R
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a5
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1 ] R

k#0] k( . (4)

The quadrupole term causes viscous%c \O(k/q5 )#1damping and is treated in It is a higher order correc-° 2.8.
tion because scattering tends to isotropize the photons in
the baryon rest frame and suppresses the quadrupole. From
examining one can see that baryons decreaseequation (4),
the efficacy of the pressure and add an expansion drag term
to the momentum equation. The gravitational infall term
remains unaltered since its baryon analog is identical.

2.2. Gravitational Redshift E†ects
Before proceeding with the main task of exploring the

acoustic signatures, let us review how gravitational e†ects
manifest themselves in the CMB & Wolfe As(Sachs 1967).
discussed in these are the ordinary redshift of a photon° 2.1,
climbing out in and out of potential wells and the dilation
e†ect from changes in the spatial metric. If the metric Ñuc-
tuations are generated by the density Ñuctuations in the
photon-baryon system itself, the Poisson equations (eq. [3])
tell us that they are suppressed by a factor of (kg)~2 with
respect to the temperature Ñuctuations inside the horizon.
Thus, the self-gravity of the photon-baryon Ñuctuations
generally only is important outside the horizon kg > 1.
However, this is not necessarily true for metric Ñuctuations
generated by an external source. Gravitational redshift
e†ects can signiÐcantly alter the acoustic signature, and we
must include them in the analysis even on small scales.

Because temperature perturbations are observed only
after the photons have lost energy climbing out of potential
wells (, the ““ e†ective ÏÏ temperature perturbation is given
by It is this quantity that we measure as a tem-#0 ] (.
perature Ñuctuation on the sky. It will be important in the
following sections to consider the e†ective temperature Ñuc-
tuation rather than the intrinsic Ñuctuation The blue-#0.shift from infall into a constant gravitational well is exactly
canceled by the redshift from climbing out. Thus, may#0have a large but unobservable o†set, which is removed in
the e†ective temperature#0] (.

On the other hand, the intrinsic temperature evolves as
above the horizon to oppose changes in the#0 0\ ['0

spatial curvature. Thus, the e†ective temperature obeys the
relation above the horizon. This#0 0] (0 \ (0 [ '0 B [2'0
yields a general description of the gravitational redshift or
Sachs-Wolfe e†ect & Wolfe(Sachs 1967),

[#0 ] (](g, k) \ [#0] (](g
i
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where is some initial epoch at which the Ñuctuations wereg
iformed. In particular, if the initial conditions are iso-

curvature and the initial temperature Ñuctua-'(g
i
, k) \ 0,

tion is also small, then the e†ective temperature becomes
( [ 'B [ 2'. The photons are thus underdense in
potential wells. For adiabatic Ñuctuations, photons are
overdense in potential wells so that the e†ective tem-
perature Ñuctuation is reduced. As we shall see below, in the
radiation-dominated era The change in the#0 ] ( \ 12(.
equation of state through the matter-radiation transition
causes a small decay in the potential (see Appendix, eq.

and brings the e†ective temperature in the matter-[A4])
dominated limit to & Wolfe#0] ( \ 13( (Sachs 1967 ;
HSa).

2.3. Oscillator Equation
In a formalism was developed to calculate theHSa,

response of the photon-baryon Ñuid to metric Ñuctuations
( and ', which are considered external to the Ñuid. Com-
bining the two equations in we obtainequation (4),
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Conceptually, this equation reads : the change in momen-
tum of the photon baryon Ñuid is determined by a com-
petition between the pressure restoring and the
gravitational driving forces. Below the sound horizon,
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photon pressure resists gravitational compression and sets
up acoustic oscillations. Though conceptually useful, this
approach has the practical disadvantage that the photon-
baryon contribution to the metric Ñuctuations must be
already known. In general, it is unknown and we must
break the metric Ñuctuations up into pieces generated by
the photon-baryon Ñuid (cb) and by the external source (s),
e.g., from dark matter, entropy Ñuctuations, defects, etc. The
Poisson equations and the tight coupling condition(eq. [3])
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for adiabatic Ñuctuations in the photon-baryon system
where As we shall see in entropy Ñuctua-d

b
\ 3#0. ° 2.5,

tions are simply described as an externalS \ d
b
[ 3#0source since in the tight coupling limit. Thus,S0 \ 0
represents no loss of essential generality.equation (8)

As implies, the response of the photon-equation (8)
baryon Ñuid is most easily solved in the so-called rest frame
of the Ñuid (see Appendix). Here the temperature pertur-
bation is
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where primes are derivatives with respect to x \ kg with k
Ðxed, and Notice that if asy \ ()c H02)~1@2ak. o#1 o[ o#0 o,
is the case in the oscillatory regime xc

s
Z 1, equation (9)

implies that and the two representa-T\ #0[1]O(x~1)]
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tions become equivalent. In the next few sections, we will
examine the implications of through a numberequation (10)
of examples and approximations.

2.4. Photon Backreaction at Early T imes
The evolution simpliÐes substantially in theequation (10)

radiation-dominated epoch. Early on, the baryon contribu-
tion is negligible and the Ñuid evolution is dominated by the
response of the photon perturbations to the source. The
resulting photon-baryon density Ñuctuation feeds back into
the metric Ñuctuation. Even though the universe may be
just becoming matter dominated at last scattering, its early
radiation-dominated legacy plays the dominant role. As we
shall see, the processes that Ðx the amplitude of the acoustic
oscillation take e†ect mainly around horizon crossing when
the universe was still radiation dominated for the relevant
Ñuctuations.

It is instructive to consider Ðrst the case in which the
expansion is photon-dominated. This neglects the neutrino
and source contribution to the background energy density
but does not fundamentally alter the results for the early
superhorizon evolution (see In this limit, R] 0,HSb).
y ] x, and the evolution equations become(10)
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If S\ 0, this is simply the Bessel equation. The homoge-
neous solutions are therefore & Sasaki(Kodama 1986)
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with Wronskian 3~1@2. These functions are plotted in
and may be considered as the fundamental or pureFigure 1

modes of the photon-baryon Ñuid. Their limiting behavior
as x ] 0 is and FromT

a
\ x2/9 T

b
\ [31@2/x. equation

the corresponding limits for the Newtonian Ñuctuations(9),
are and 6(3)1@2/x3 and and [6(3)1@2/x3#0\ 1/3 'cb \ 2/3
for the two modes, respectively. As x ] O, they become
cosine and sine waves, respectively, for both the rest frame
and Newtonian temperatures.

Although may easily be solved numerically,equation (11)
GreenÏs method is more illuminating. Constructing the
solution out of the pure modes, we Ðnd

T(x) \A
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a
(x) ]A

b
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FIG. 1.ÈPure modes. In the absence of sources, the growing mode of
the rest frame temperature perturbation matches onto a cosine acoustic
oscillation inside the horizon, whereas the decaying mode matches onto a
sine oscillation. The oscillator response to an external source is con-
structed by Greens method from these homogeneous solutions and trans-
formed into the Newtonian frame with eq. (9).
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where is the initial epoch at which the perturbations, andx
ihence, the constants and are Ðxed. If theA
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photon Ñuctuations are set to zero at then the answerx
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can be read directly o† the source behavior. When T
b
?

source contributions stimulate the mode mainly. AnT
a
, T

aexamination of would imply that all superhorizonFigure 1
e†ects from the source would create a cosine mode.T

aHowever, the initial Ñuctuations could be set up such that
and exactly cancel the inÑuence of the source.A
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This is exactly what occurs in the class of isocurvature
models based on balanced initial conditions.

To see this more clearly, let us express the evolution in
terms of the curvature perturbation generated by the'cb,photon-baryon Ñuid. In the photon-dominated limit,

gives and becomesequation (8) 'cb \ 6T/x2 equation (12)
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the initial conditions in terms of Aside from a decaying#1.
mode, the photons evolve to keep the curvature pertur-
bation constant (cf. and & Steb-eq. [A9] Veeraraghavan
bins Thus, independent of the source behavior, if1990).

and compensation forces'
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'(x > 1)B 0.

While this argument only shows compensation for a
photon-dominated system, the argument applies equally
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well for whatever the dominant dynamical component is
since for x ] 0. The argument does not strictlyd5 P [ '0
apply if the identity of this component, i.e., the equation of
state, changes. For example, pressure Ñuctuations and
hypersurface warping can change the curvature through the
matter-radiation transition even if x > 1. We discuss these
points further in the Appendix and show that densities and
hence temperature Ñuctuations are anticorrelated with the
total curvature outside the horizon for isocurvature initial
conditions (see also eq. [5]).

2.5. Driven Oscillations and Superhorizon E†ects
In this section we will see how superhorizon com-

pensation drives the oscillator and stimulates one of the two
pure modes of Let us start with a simple and concrete° 2.4.
example : the baryon isocurvature case. Here, we begin at
some initial epoch with an entropy Ñuctuation S(x

i
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Tight coupling implies that thed(n
b
/nc) \ d

b
(x

i
)[ 3#0(xi

).
number density Ñuctuation of the photons and baryons,
and hence S, remains constant (see The entropyeq. [1]).
acts as an external source, which from contrib-equation (3)
utes as or, rewriting this in the form ofk2'
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curvature perturbation implied by the source actually
increases as x ] 0. For this model, the e†ective source in

reduces to the simple form:equation (13)
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Now let us assume the isocurvature condition at the initial
epoch or and (see'(x

i
) \ 0, '

bc(xi
) \['

s
(x

i
) #1(xi

) \ 0
also Appendix). By requiring continuity in T and its Ðrst
derivative, the initial partition into pure modes in equation

becomes and(16) A
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yielding a large contribution to the mode. However, letT
aus examine the inÑuence of the source term on the sub-

sequent evolution :

J3
P
xi

x
T

a
(x@)S(x@)dx@ \ [(J3/54)(x2[ x

i
2)A ,

J3
P
xi

x
T

b
(x@)S(x@)dx@ \ (x~1 [ x

i
~1)A , (x > 1) . (21)

Thus, as the evolution progresses, the initially large T
acontribution drops precipitously, leaving mainly the orT

bsine mode at subhorizon scales Fundamentally, thisx Z 1.
is due to the feedback e†ect of the photonsequation (17) :
oppose any change to the net curvature and evolve to main-
tain the isocurvature condition. In we show theFigure 2,
time evolution of T, the source curvature, and the total
curvature in the baryon isocurvature model. By comparing
' to notice that the feedback e†ect is only important'

s
,

outside the horizon. Another interesting quantity is the
ratio of the to amplitude shown in In thisT

a
T

b
Figure 2b.

case, the mode essentially disappears after horizonT
acrossing leaving the acoustic perturbation in a pure sine

mode (p \ [1.0, heavy line). In fact, the integral in equation
takes on a simple asymptotic form(16) (HSb) :

lim
x?=

A
a
(x) \ 0 ,
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x?=

A
b
(x) \ A/J3 . (22)

We also show in the behavior when the source isFigure 2b
generalized to Again, the initially large'

s
\ [(

s
\ Axp.

mode is reduced as the superhorizon scale evolutionT
aprogresses.
Even if the source has some superhorizon scale feature,

i.e., a maximum at x > 1, its e†ect is mainly canceled out.
From notice that the photons always attemptequation (18),
to counter the source. The photon Ñuctuations would track
the rise and fall of a feature leaving an e†ect only from the
boundary conditions. Below the horizon, however, com-
pensation cannot occur due to the intervention of photon
pressure.

How then does one obtain strong contributions to theT
acosine mode? If superhorizon Ñuctuations are not fully

FIG. 2.ÈCompensation and isocurvature Ñuctuations. (a) Baryon isocurvature model Outside the horizon backreaction from the('
s
P x~1). x [ 1,

photons cancels the contribution of the source to the curvature Ñuctuation. Inside the horizon, pressure prevents signiÐcant metric contributions from the
photon-baryon Ñuid and (b) For source functions the ratio of to amplitudes decreases due to feedback. This leaves the acoustic'] '

s
. '

s
P xp, T

a
T

boscillation mainly in the sine mode at x ? 1.
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compensated, implies a large amplitude inequation (16) T
a
.

This adiabatic component implies superhorizon curvature
perturbations initially : The simplest example is'(x

i
) D 0.

the case of and In this case is'
s
\ 0 'cb(xi

) D 0. Figure 3,
contrasted with the baryon isocurvature case. Let us use
these examples to gain further intuition about the feedback
mechanism.

From we see that in the isocurvature case, com-Figure 3,
pensation prevents a large curvature Ñuctuation from
appearing outside of the horizon regardless of the source.
However, photon pressure, which becomes important
around sound horizon crossing, resists the accompanying
rarefaction of the photon Ñuid due to dilation. At this point,
the Ñuid turns around and begins falling into the potential
wells of the source enhancing the curvature Ñuctuation by
its self-gravity. Note the increase in the amplitude of the
oscillation between the negative maximum and the positive
maximum. As the photons resist further compression at the
positive maximum, the self-gravity contribution to the
potential Ñuctuation decays. This leaves the photon-baryon
Ñuid in a highly compressed state and increases the ampli-
tude of the acoustic oscillation. Thus, the self-gravity of the
photon-baryon Ñuid essentially drives the oscillator. It pro-
vides a kick at each of the Ðrst two turning points to
enhance the oscillation.

A similar analysis applies to adiabatic Ñuctuations. Here
the initial curvature Ñuctuation is kept constant outside the
horizon by photon backreaction. From recall that the° 2.1
intrinsic temperature Ñuctuation and gravitational poten-
tial partially cancel in the e†ective temperature. From the
x > 1 limit of Atequation (14), #0] (cb\ 12(cb \ 0.
horizon crossing, the Ñuid begins to compress itself due to
its self-gravity and the e†ective temperature reverses sign.
As pressure begins to stop the compression, the potential
decays. Again the Ñuid is left in a highly compressed state,
and self-gravity acts as a driving term. The dilation due to '
(see discussion following doubles the e†ect of infalleq. [3])
from (, so that the end amplitude is 12(cb(xi

) [ 2(cb(xi
) B

[(3/2)(cb.

FIG. 3.ÈDriven oscillations. The self-gravity of the photon-baryon
Ñuid drives a cosine oscillation for adiabatic initial conditions (thin lines)
and a sine oscillation (thick lines) for isocurvature initial conditions. The
adiabatic model has and The isocurvature model is'

s
(x

i
) \ 0 'cb(xi

) D 0.
the baryonic model of The dashed lines show the full potential, theeq. (19).
solid lines show the e†ective temperature. In both cases the amplitude in

increase during the Ðrst few oscillations, as described in#0] ( ° 2.5.

A di†erence in phase between the two modes arises since
gravitational infall that initiates the chain of events leading
to the adiabatic acoustic mode only takes e†ect inside the
horizon, whereas the dilation e†ect that begins the iso-
curvature chain of events is already occurring outside the
horizon. The end result is that the self-gravity of the
photon-baryon Ñuid drives a cosine oscillation for adiabatic
initial conditions and a sine mode for isocurvature initial
conditions. This is not the most general case, however, since
self-gravity and thus the initial conditions only dominate
the behavior around or before horizon crossing. We con-
sider the behavior after horizon crossing in the next section.

2.6. Forced Oscillations and Subhorizon E†ects
If the source is still e†ective inside the horizon '

s
(x [

more complicated behavior can result since1) º'
s
(x \ 1),

the regulatory mechanism of photon feedback is ine†ective.
This is the case of so-called ““ active perturbations ÏÏ

et al. The general Greens function solution(Magueijo 1996).
can be rewritten as

T(x) \ [A
a
2(x)]A

b
2(x)]1@2

] sin Mx/J3 ] tan~1 [A
a
(x)/A

b
(x)]N , (23)

for x ? 1. The phase of the acoustic wave is in general time
dependent for subhorizon e†ects. Furthermore, we cannot
ignore the gravitational redshift of the photons climbing out
of the potential even inside the horizon (see The° 2.2).
e†ective temperature is if x ? 1. In#0] ( BT] (

we plot an example based on a broken power-lawFigure 4,
source of the form

'
s
\ 1

(ax)~p1 ] xp2
. (24)

Here and a \ 0.01 such that the source peaksp1 \ 3, p2\ 1
well below the horizon scale. Initial conditions do not play
a major role here since the Ñuctuation is generated inside
the horizon. By considering only the e†ective temperature

FIG. 4.ÈForced oscillations. Inside the horizon, the regulatory e†ects
of photon-baryon self-gravity become ine†ective. A source that peaks at
x \ kg ? 1 can produce complicated forced oscillations in the Ñuid. The
intrinsic temperature Ñuctuation su†ers a large unobservableTB#0o†set (bottom panel), which is removed by the redshift in the e†ective[(

stemperature (top panel). Notice that the fundamental period#0] ( kr
s
\

2n or x ^ 10.9 is still clearly apparent for this slowly varying source.
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we remove the large unobservable o†set from#0] (,
gravitational blueshift in T (see Note that it is impor-° 2.2).
tant to include the Sachs-Wolfe contribution to obtain a
reliable measure of the temperature anisotropy at last scat-
tering. This is especially true when the anisotropies are
““ sourced ÏÏ such that metric Ñuctuations remain substantial
inside the horizon, as in some defect models. Neglecting this
e†ect, for example by use of the oft-employed synchronous-
gauge photon density, can lead to erroneous conclusions
about the shape of the CMB anisotropy power spectrum.
Should the potentials have signiÐcant time variability after
last scattering, it is also necessary to include the ISW e†ect
since this can lead to signiÐcant distortions of the peaks,
notably the Ðrst peak.

Even this smooth, well-behaved source leads to compli-
cated structure in the acoustic oscillation. Furthermore,
after the source turns o† and and become constantA

a
A

bin time, the oscillator is left with a phase shift described by
that does not necessarily correspond to one ofequation (23)

the pure modes. It is important to note that even in this
case, the temperature perturbation is anticorrelated with the
source Ñuctuation immediately after horizon crossing. This
is due to compensation from feedback around horizon
crossing and will be important for the question of robust
distinctions between models. We have found that this anti-
correlation persists even if the source changes sign outside
the horizon or near horizon crossing.

It is of course impossible to quantify all the possibilities
that arise from the arbitrary action of a source well inside
the horizon. However, illustrates two generalFigure 4
points. Large metric and correspondingly even larger
density Ñuctuations are required for subhorizon forcing to
dominate over driving e†ects at horizon crossing. Compare
the vertical scales of the upper and lower panels of Figure 4.
There are two e†ects that make forcing around horizon
crossing easier than well inside the horizon. The Ðrst is that
for x ? 1 a large metric perturbation requires a very large
density perturbation, since the Poisson equation (eq. [3])
gives Also, from the Euler equation,'

s
\ (o

s
/o

T
)O(d

s
/x2).

pressure perturbations are more important than metric per-
turbations at large x, once the artiÐcial o†set due to the k(
term has been removed by considering the e†ective tem-
perature. From the e†ective temperatureequation (6),
evolves according to

(#0] ()A ] 13(#0] () \ (A [ 'A . (25)

The source is thus B [2'A, and if constant, produces a
temperature shift of 6'A. Exotic spectra of this type require
extreme conditions. More plausible is a model whose forced
e†ects dominate only around x B 1, where feedback e†ects
still play some role. As we shall see in this has conse-° 3.2,
quences for the coherence of the resulting oscillations.

The second point is that in spite of the gravitational
forcing the natural period of the oscillation, here
x \ 2(3)1@2n is still apparent in the harmonic structure. If
the source 'A is slowly varying in time, so is the phase shift.
In the spacing between the peaks is still regularFigure 4,
and corresponds to the natural period despite the slowly
varying o†set. Thus, this acoustic signature is only lost if the
metric Ñuctuations are both extremely large and rapidly
varying inside the horizon.

If such an exotic spectrum is measured in the CMB, we
would have concrete evidence that the mechanism
responsible for structure formation requires new physics.

Until the spectrum is measured, however, we can only con-
sider the broader implications. The possibility of driven
subhorizon e†ects raises two questions that we will address
in °° and Are there any unique signatures of the pure4 5.
cases that distinguish them from these more exotic sce-
narios? How does the existence of such exotic models a†ect
our ability to measure quantities such as the curvature of
the universe? To help answer these questions, we need to
understand two additional acoustic e†ects that can provide
clues to unraveling the spectrum.

2.7. Baryon Drag
Up until this point, we have neglected the e†ect of the

baryons in the photon-baryon Ñuid. This is appropriate for
the early evolution and reveals the qualitative structure of
the acoustic signal even at recombination since R(g

*
) \

Nevertheless, there is an3o
b
/4oc o gR B 31.5)

b
h2D 30%.

important acoustic signature associated with the baryons if
is near or greater than this BBN value and)

b
h2 (HSa, Hu

& Sugiyama hereafter To include its e†ects1996, HSc).
properly, we must solve the full However, it isequation (10).
instructive to examine the qualitative origin of the e†ect
Ðrst. tells us that the baryons contribute to theEquation (6)
inertial and gravitational mass of the Ñuid. Thus, with a
higher baryon content, gravity can compress the Ñuid more
strongly inside the potential well ( \ 0. In the limit that
x ? 1 and we observe for only a time short compared with
changes in R and the source, the solution to the oscillator

isequation (6)

#0] ( \ C1 cos (kr
s
) ] C2 sin (kr

s
) [ R( . (26)

The last term represents the baryon drag on the photons
and displaces the zero point of the oscillation. Since
[R( [ 0 inside a potential well, it enhances the compres-
sion and suppresses the rarefaction stage of the acoustic
oscillation in the potential well. The crucial point is that the
presence of baryons allows us to distinguish between the
two stages from the observable rms deviation o#0] ( o.

shows an example based on the source inFigure 5 equation
with and a \ 0.05. Here we take the(24) p1 \ 2, p2\ 1

k-spectrum at recombination for a baryon content of
where)

b
h2\ 0, 0.0125, 0.25, R

*
\ R(g

*
) \ 0, 0.38, 7.6.

The neutrino and CDM densities have been set to zero for
simplicity. Notice that if baryon drag is signiÐcant but not
dominant (middle panel) then it will modulate the peaks into
a pattern of alternating peak heights. If it dominates (bottom
panel), the rms Ñuctuations no longer possess zero crossings
but oscillate around some large d.c. o†set. Either pattern is
quite distinctive and, as we shall see, can separate the adia-
batic from isocurvature scenarios in all cases save those
with at last scattering.oR( o> o #0] ( o

2.8. Photon Di†usion
Finally, photon di†usion leaves a robust signature by

providing a cuto† scale to the acoustic oscillations that is
independent of the source Ñuctuation. As the di†usion
length passes the wavelength, acoustic oscillations are expo-
nentially damped (see Physi-Silk 1969 ; Weinberg 1972).
cally, this occurs since di†usion erases temperature
di†erences across a wavelength and causes viscosity (or
anisotropic stress) in the Ñuid. Anisotropic stress, or the
quadrupole, is generated from the free streaming of a dipole
Ñuctuation As photons from crests and troughs of the#1.
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FIG. 5.ÈBaryon drag and relative peak heights. Baryons displace the
zero point of the oscillation by [R(. For a near BBN baryon content
(center panel), the displacement is smaller than the oscillation itself leading
to alternating peak heights in the rms. For a much larger baryon content,
the photons oscillate around a strongly displaced zero point.

original velocity perturbation meet, their Doppler shifts
create a quadrupole temperature pattern. This transfer of
power from the dipole to the quadrupole is but a manifesta-
tion of a general tendency. Streaming transfers power to
higher angular moments since the original temperature Ñuc-
tuation subtends a smaller and smaller angle as seen by a
distant observer. However, in the tight coupling limit,
streaming is collisionally suppressed by the factor (theq5 /k
optical depth through a wavelength) such that in the tight
coupling limit, the anisotropic stress is approximately (see

eq. [A8])HSc,

%c \ 85(k/q5 ) f 2~1#1 , (27)

where Other approximations com-f2\ 34 (Kaiser 1983).
monly employed are for unpolarized radiationf2\ 9/10

and for further neglecting the(Chibisov 1972) f2\ 1
angular dependence of Compton scattering (Weinberg

From it is natural to try a solu-1972 ; HSa). equation (26),
tion of the form exp i / udg for both and[#0] (1]R)(]

Heat conduction, proportional to is described#1. V
b
[ #1,by iterating the baryon Euler to second order,equation (2)

V
b
[ #1\ [q5 ~1R[iu#1[ k(][ q5~2R2u2#1 . (28)

Here we have ignored changes on the order of an expansion
time compared with those at the oscillation period. Com-
bining equations and in the photon Euler(27) (28) equation

we obtain the dispersion relation(2),

u\ ^kc
s
] i

1
6

k2q5~1
C R2
(1 ] R)2] 4

5
f 2~1 1

1 ] R
D

, (29)

recalling that the sound speed Itc
s
\ [3(1 ] R)]~1@2.

follows that acoustic oscillations are damped as (HSc)

#0 ] ( \ [#Œ 0] (]e~*k@kD(g)+2 ] R((e~*k@kD(g)+2 [ 1) ,

(30)

where is the acoustic signal described by#Œ 0 equation (4)
and the damping wavenumber is

k
D
~2\ 1

6
P

dg
1
q5

R2] 4f 2~1(1 ] R)/5
(1 ] R)2 . (31)

To order of magnitude, the di†usion length is the geometric
mean of the Compton mean free path and the horizonq5~1
g, as expected of a random walk. Aside from the residual
baryon drag e†ect, photon di†usion leaves a distinctive
damping signal in the CMB that is only dependent on the
cosmological background. Because the damping is expo-
nential, no oscillations survive at regardless of thek ? k

Dsource.
One complication arises however. As recombination

progresses, the ionization fraction and hence the di†erential
optical depth decreases. The corresponding increase in theq5
damping length can still be approximated in the tight coup-
ling limit if In this case, the di†usionq5 /k

D
(g

*
)D k

D
g
*

? 1.
length passes the wavelength while tight coupling holds and
the damping can be calculated semianalytically from the
known ionization history (see If this condition is notHSc).
satisÐed, as is the case for extremely low or reionized)

b
h2

models with a long Compton mean free path at recombi-
nation, the damping must be calibrated numerically (Hu &
White, in preparation).

2.9. Summary
In summary, then, we have shown that the evolution of

Ñuctuations acts to resist changes in the spatial curvature
whenever the pressure can be neglected (outside the
horizon). Schematically, this is because the radiation or
matter in a growing curvature perturbation redshifts faster
than average (cf. cosmological redshift, as in reducing° 2.1)
the local energy density and hence stabilizing the curvature
perturbation. It is also a consequence of causality as shown
in the Appendix.

The behavior of the acoustic oscillations due to sources
outside the horizon thus depends only on the initial condi-
tions : whether or not there are initial uncompensated cur-
vature perturbations. The compensation by the radiation
also implies that the self-gravity of the photons produces an
important feedback mechanism. The result is that sources
arising before or near horizon crossing stimulate either the
cosine or the sine mode of the oscillation, not an arbitrary
admixture.

The fact that the compensation mechanism leads to
rarefactions in the photon density at horizon crossing for
isocurvature Ñuctuations but compressions for adiabatic
Ñuctuations inside the potential well is an extremely robust
conclusion. Of crucial importance is that it leads to an
observable e†ect in models with of a few percent or)

b
h2

greater due to the drag induced by the baryons. Photon
di†usion also leaves a distinct damping tail that is entirely
independent of the model for the Ñuctuations but sensitive
to the thermal history.

3. ACOUSTIC SIGNATURES

Having studied the acoustic oscillations in the last
section, let us now consider what signatures the e†ects sum-
marized in leave in the angular power spectrum of° 2.9
CMB anisotropies. Acoustic oscillations are frozen in at last
scattering when the Compton optical depth to theg

*present drops below unity. The evolutionary properties of
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the acoustic phenomena before last scattering inÑuence the
peak locations, heights, and damping tail. These will be
used in the next sections to devise tests of the model for
structure formation and the background cosmology.

3.1. Peak L ocations for Driven Oscillations
At last scattering, each k-mode is caught at a di†erent

phase in its oscillation. Of course, one can adjust the magni-
tudes in k by choosing di†erent relative weights for the
k-modes at the initial conditions. We assume that any such
weighting is not in itself oscillatory in k. Under this single
assumption, the acoustic pattern of peaks is robust to the
details of the model even though their absolute heights are
not. These oscillations on the last scattering surface are
viewed today as anisotropies on the sky. Thus, the k-space
power spectrum is projected onto an angular power spec-
trum. The angular correlation function is broken up into l
Legendre moments, which represent the power on the scale
h D l~1. The power spectrum is usually denoted as

where is the ensemble average of the squaredl(l ] 1)C
l
, C

lmultipole coefficients.
As we shall see in (see since the projection of° 5 eq. [39]),

k onto l is highly dependent on the curvature, knowledge of
the physical scale of acoustic features allows a sensitive
probe of the curvature. The physical scale of the peaks is
related to the sound horizon as R] 0,r

s
\ / c

s
dg B g/31@2

or more generally,

r
s
\ 2

J3
()0H02)~1@2

Saeq
Req

ln
J1 ] R] JR] Req

1 ] JReq
,

(32)

assuming the universe was radiation dominated before aeq.The exact relation of the peak scale to the sound horizon
depends on the nature of the Ñuctuations and supplies a test
of the model (see Let us now examine this relationship° 5.6).
more carefully.

Once the source becomes ine†ective the par-o#0 o? o '
s
o,

tition into pure mode amplitudes and ofA
a

A
b

° 2.4
becomes time independent and the acoustic oscillations
settle into a pure sinusoidal form, sin /(g, k), with phase

/\ kr
s
] tan~1 (A

a
/A

b
) . (33)

For sources that peak before horizon crossing, backreaction
e†ects create a two-state system (see If the Ñuctua-° 2.5).
tions are not perfectly compensated at the initial conditions,

Compensation tends to create a situation whereA
a
?A

b
.

A
b
[A

a
.

Robust predictions arise for the location of the peaks in
the k or l space power spectra. Since the phase is dependent
only on the nature of the initial Ñuctuation, not on the
detailed behavior or the source in time or k, all such models
give deÐnite predictions for the peak locations :

/(k
m
) \ (m[ 1/2)n , (34)

for integer m. Furthermore, the harmonic series of peak
locations is independent of the background quantities that
Ðx the sound horizon and the angle it subtends on the sky.
The generic adiabatic prediction is that peak locations
follow a 1 :2 :3. . . series in k or l. Isocurvature models tend
toward a 1 :3 :5. . . pattern Even if and are(HSb). A

a
A

bcomparable, as would be the case if a small (Ðnely tuned)
uncompensated Ñuctuation remained in the initial condi-

tion, the pattern of peaks uniquely determines the phase
shift. This might be the case if the initial conditions contain
a balanced amount of coherent adiabatic and isocurvature
Ñuctuations. In most physical examples, however (see, e.g.,

Sugiyama, & Yanagida the processes thatKawasaki, 1995),
generate the two types of Ñuctuations are statistically inde-
pendent and the two contributions are incoherent, i.e., gen-
erated with di†erent phases in k. In this case it is even more
unlikely that the two contributions would be balanced to
give the same acoustic amplitudes. For incoherent super-
positions, the phase is always determined by the dominant
component with a change in amplitude, not phase, caused
by the weaker component. Furthermore, the phase di†er-
ence implies that regardless of the/(k

m
) [ /(k

m~1) \ n
phase shift or amplitude variation, the spacing of the peaks
in k is given by

k
A

\ k
m

[ k
m~1\ n/r

s
. (35)

Thus, the acoustic peaks possess both model-dependent
information in the ratios of their locations and model-
independent information for the measurement of back-
ground parameters in the spacing between the peaks.

3.2. Peak L ocations for Forced Oscillations
Although deÐniteness in phase is a typical feature of

acoustic oscillations, it is not necessarily obeyed by models
in which the source is still active inside the horizon. In this
case, the partition into pure modes through and isA

a
A

btime dependent. There are two limiting cases worth con-
sidering. The source could be scale-free in its temporal
behavior such that where recall x \ kg.'

s
(x, k) \ G(x)F(k),

This occurs, for example, if the source behavior is correlated
with horizon crossing perhaps due to the onset of a causal
mechanism. As discussed in this is in fact the most° 2.6,
likely scenario since metric perturbations that can over-
come photon pressure become increasingly hard to generate
inside the horizon. In this case, the behavior as a function of
x \ kg represents both the time evolution of a Ðxed k-mode
and the transfer function in k for a Ðxed time, e.g., at last
scattering If G(x) peaks around x \ 1 as is typical, weg

*
.

would expect an irregular Ðrst peak followed by an increas-
ingly regular but phase-shifted harmonic series. If it peaks
much after x \ 1, complicated acoustic behavior containing
detailed information about the source evolution would
result (see Even in this case, we can see fromFig. 4).

that if the source is slowly varying in timeequation (25)
such that the natural period is still imprintedG@@@@> c

s
2GA,

in the oscillations. In cases where the driving force is large,
we expect only compressional phases to be clearly visible as
peaks in the rms. Rarefactions become rms troughs. Using
only the compressional extrema, the peak spacing is then
given by 2k

A
\ 2n/r

s
.

In the extreme case that the metric perturbations are
generated well after x \ 1, one might also expect stochastic
behavior in the source et al. Here the(Albrecht 1996).
timing mechanism due to the act of horizon crossing no
longer serves to correlate the modes. In this case, each
k-mode receives a di†erent set of impulses from the source.
The phase shift given variesby tan~1 [A

a
(x, k)/A

b
(x, k)]

with k. In the extreme limit of rapid variation, the phase
information is lost when summing over k-modes to form the
observable anisotropy. This washes out the oscillatory
behavior. It is believed that a concrete example of this
mechanism is given by the cosmic string scenario (Albrecht
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et al. although whether it is the dominant mechanism1996)
or not is currently disputed. We shall discuss what can be
learned in the case where the oscillations are washed out in

Let us assume for the present that oscillations will be° 5.
observed.

3.3. Peak Heights
A wealth of information is stored in the peak heights.

Their signature is more model dependent than the peak
locations and provides an excellent means of examining the
Ðne details of the model. On the other hand, robust features
that distinguish between general classes of models are more
difficult to isolate. In this section, we will examine generic
features in the peak heights that may at least be used as
clues for this purpose.

Let us begin by examining the familiar scale-invariant
adiabatic case. In the tight coupling limit, there are two
e†ects that determine the heights of the peaks : the driving
force of feedback and baryon drag. They are to a certain
extent mutually exclusive. As we have seen in feedback° 2.5,
boosts the oscillation amplitude above the initial conditions

by a factor of 3. Recall that the[#0 ] (](g
i
, k) \ 12((g

i
, k)

Ñuid Ðrst is compressed by its own self-gravity. Photon
pressure resists the compression, causing the photon-
baryon contribution to the potential to decay. The Ñuid is
thus released exactly in this highly compressed state into the
acoustic phase. We show in the Appendix that the potential
in the matter-dominated limit ((g, k) \ (9/10) thus((g

i
, k),

the boost represents a factor of 5 enhancement over the
Sachs-Wolfe tail. The inclusion of the neu-#0] ( \ 13(trino background slightly lowers the amplitude (see HSc).

The driving e†ect does not occur if the potentials are domi-
nated by an external source such as cold dark matter.
Hence, the prominence of the acoustic oscillations increases
if the universe is made more photon-baryon or radiation
dominated at last scattering.

Baryon drag enhances the compressional, here odd,
peaks by a term of O(R(). This alters the peak heights to
give the distinctive alternating or o†set oscillation pattern
but becomes subdominant if the potential is intrinsically
small. Such is the case for driven oscillations since the
potential and decays inside the sound horizon.( B(cbFor isocurvature models, gravitational redshifts cause the
e†ective temperature above the horizon to be #0] ( B
2( \ 0 (see It is also worthwhile to note that° 2.2).
although the Ñuctuation outside the horizon at last scat-
tering is small in these models, this does not imply that the
observable anisotropy from those scales is correspondingly
small. Gravitational redshifts from the time-dependent
potential continue to generate Ñuctuations between last
scattering and the present in the same manner. This is gener-
ally called the integrated Sachs-Wolfe (ISW) e†ect. Thus, an
isocurvature model that generates a scale-invariant spec-
trum of curvature Ñuctuations near horizon crossing yields
a Ñat large-scale anisotropy spectrum just as in the familiar
adiabatic case Stebbins, & Bouchet(Bennett, 1992 ; Coulson
et al. Spergel, & Turok1994 ; Pen, 1994).

Superhorizon isocurvature evolution makes the photon-
baryon Ñuid more and more rareÐed inside a potential well
until photon pressure can successfully resist rareÐcation.
Since the Ðrst feature is the turning point from the super-
horizon behavior, it is not prominent in comparison to the
2( Sachs-Wolfe e†ect. However, the Ñuid then begins infall
into the source wells. The driving e†ect of the photon-

baryon contribution to the potential wells now proceeds as
in the adiabatic case to enhance the oscillation, making the
second feature much more prominent than the Ðrst (see Fig.

Whereas the Ðrst peak has a height of order 2( at3). kr
s
\

n/2 and is small since compensation eliminates metric Ñuc-
tuations above the horizon, the second peak has a height of
order 2( at which is signiÐcantly larger sincekr

s
\ 3n/2,

the photon-baryon contribution adds to rather than cancels
the source. As in the adiabatic case, baryon drag contrib-
utes an O(R() term that boosts the compressional phases.
However, in the isocurvature case, these are the even peaks
since compensation demands that if the Ðrst feature occurs
near the horizon it represents rarefaction inside the poten-
tial well. Thus, the second isocurvature peak is lifted even
higher with respect to the Ðrst by baryon drag.

How robust are these general tendencies? The promi-
nence of the acoustic oscillations compared with the large-
scale tail can be masked or altered by the presence of tilt or
features in the initial k-spectrum as well as by other e†ects
from tensor and vector metric perturbations (e.g.,

& Turok These e†ects are, however,Crittenden 1995).
unlikely to obscure the distinctive alternating peak heights
due to baryon drag. Unfortunately, the baryon drag e†ect
may be difficult to observe if oR( o (g

*
)>o #0] ( o (g

*
) D

Even with high precision measurements,o( o (g B 1/c
s
k).

one must Ðrst remove the di†usion damping envelope in
this case.

3.4. Damping T ail
Unless baryon drag dominates over the acoustic oscil-

lation, as in the case that theoR( o (g
*
) ?o#0] ( o (g

*
),

damping leaves a clear signal in the CMB. To demonstrate
this robustness to changes in the model for the gravitational
source, we compare in the anisotropy powerFigure 6
spectra of a standard inÑationary model with scale-
invariant curvature Ñuctuations at horizon crossing and a
similar axionic isocurvature model. The background
parameters are set to be equal at h \ 0.5 and)0\ 1.0,

FIG. 6.ÈDi†usion damping. Although adiabatic and isocurvature
models predict acoustic oscillations in di†erent positions, they both su†er
di†usion damping in the same way. The damping length is Ðxed by back-
ground assumptions, here h \ 0.5, and standard recom-)0\ 1, )

b
\ 0.05

bination. These calculations were performed using a full numerical
integration of the Boltzmann equation with the code of asSugiyama (1995)
were results in Figs. and7, 8, 10, 11.
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Notice that the damping behavior is independent)
b
\ 0.05.

of the nature of the Ñuctuations.
The angular location of the damping tail is highly sensi-

tive not only to the curvature, which dominates projection
e†ects (see but also to the thermal history, which sets° 5),
the maximum di†usion scale, the baryon content )

b
h2,

which sets the mean free path of the photons, and the
matter content which sets the horizon scale. A mea-)0 h2,
surement of the damping scale alone would Ðx the com-
bination of these quantities deÐned by Moreequation (31).
speciÐcally, if last scattering occurs due to standard recom-
bination, the wavelength at which the acoustic amplitudek

Dfalls to e~1 of its original amplitude can be Ðtted by semi-
analytic techniques eq. [E6]) to D10%. Unfor-(HSc,
tunately, a measurement of cannot break the degeneracyk

Din these quantities. If is constrained by BBN and)
b
h2 )0 h2

by dynamical mass and Hubble constant measurements, it
would provide interesting constraints on the curvature of
the universe as we shall show in Furthermore, with a° 5.3.
measurement of the acoustic peaks themselves, the degener-
acy can potentially be removed in many models for the
source Ñuctuations (see ° 5.6).

4. UNIQUENESS OF THE INFLATIONARY SPECTRUM

The inÑationary paradigm is the front running candidate
for a mechanism of Ñuctuation generation in the early uni-
verse : the perturbations in density that are the precursors of
galaxies and CMB anisotropies today. Are there unique
signatures of inÑation that can validate the paradigm? For
a long time it was thought that a nearly scale-invariant
spectrum of anisotropies would provide evidence for inÑa-
tion & Turner But then it was realized that(Kolb 1990).
models of structure formation based on topological defects
also naturally formed scale-invariant spectra (see and° 3.3

et al. et al. et al.Bennett 1992 ; Coulson 1994 ; Pen 1994).
From the other direction, Ðnding that the universe had non-
vanishing spatial curvature once seemed like a way to
““ disprove ÏÏ inÑation, however recently it has been shown
that inÑation could survive such a revelation Gold-(Bucher,
haber, & Turok Sasaki, & Tanaka1994 ; Yamamoto, 1995).

Currently, the most popular means of ““ proving ÏÏ inÑa-
tion is to test the consistency relation between the tensor
(gravity wave) and scalar (density) modes. By measuring the
detailed shape of the anisotropy spectrum, one may infer
the relative amplitudes of scalar and tensor perturbations.
The ratio of tensor to scalar contributions is proportional in
slow-roll inÑation to the slope of the tensor spectrum

& Lyth et al. & White(Liddle 1993 ; Davis 1992 ; Turner
However, this method of proof requires a precise1996).

determination of the tensor to scalar ratio, which in turn
requires a sizable fraction of the anisotropy be contributed
from tensor modes Krauss, & Silk &(White, 1995 ; Knox
Turner What one really desires is a test based on the1994).
most basic ideas of the inÑationary scenario that will be
both observationally feasible and able to survive the inge-
nuity of model builders.

The key feature of inÑation for our purposes is that it
provides a mechanism of connecting parts of the universe at
early times, which are currently spacelike separated, i.e.,
outside the horizon. In fact, it can be shown that inÑation is
the unique causal mechanism for correlating curvature per-
turbations on scales larger than the horizon (Liddle 1995 ;

Turner, & Weinberg The possibility of a whiteHu, 1994).
noise spectrum of superhorizon curvature perturbations is

discussed in the Appendix but is already observationally
ruled out as a means of structure formation. The question
therefore arises, are there unique consequences of such
superhorizon curvature perturbations? If so, their obser-
vation would provide a ““ proof ÏÏ of the inÑationary para-
digm.

4.1. Robustness of the Harmonic Series
We have seen in that the harmonic series of acoustic° 3.1

peaks in a model with superhorizon curvature Ñuctuations
is given by the cosine series 1 :2 :3. . . for the locations of the
peaks. Compensated superhorizon Ñuctuations follow the
sine series 1 :3 :5. . . . Thus, by measuring the ratio of the Ðrst
three peak positions in l space, these two possibilities may
be distinguished. There are two concerns that need to be
addressed for this potential test of inÑation. How robust is
the harmonic prediction in the general class of inÑationary
models? Can an isocurvature scenario in which Ñuctuations
are generated inside the horizon mimic an inÑationary
series?

Let us consider the Ðrst question. Residual driving e†ects
can distort the shapes and locations of the Ðrst few peaks.
Even for the pure adiabatic mode of the peaks have° 2.4,
not completely settled into their asymptotic forms until

and the peak positions follow the series inkr
s
? 1 #0] (,

0.88 :1.89 :2.93 :3.94 :4.96. . . . (36)

We will hereafter refer to these ratios as the ““ cosine series, ÏÏ
despite the fact that it has not yet converged upon an actual
cosine oscillation by the Ðrst few peaks. In particular, the
Ðrst peak is somewhat low in l compared with the expecta-
tion from the higher peaks. Let us compare this prediction
against actual inÑationary models from a numerical calcu-
lation (see left panel, solid lines). All models do indeedFig. 7,
exhibit the harmonic structure predicted by equation (36).

FIG. 7.ÈRelative peak locations and the harmonic series. In the ideal
case, inÑationary acoustic oscillations follow the cosine series and driven
isocurvature models a sine series (light dotted lines). The ISW e†ect, baryon
drag and di†usion damping serve to distort the peak locations. The iso-
curvature cases considered are baryon isocurvature textures(HSb) ;

& Turok axionic isocurvature et al.(Crittenden 1995) ; (Kawasaki 1995) ;
and hot dark matter isocurvature Laix & Scherrer Numerical(de 1995).
calculations (points) are normalized to the ideal predictions of eqs. and(37)

at the third peak and are speciÐcally for though this(38) )0] )" \ 1,
constraint is irrelevant for the peak rations. They demonstrate that the two
cases remain quite distinct especially in the ratio between the Ðrst and third
peak.



No. 1, 1996 CMB ACOUSTIC SIGNATURES 41

There is a slight shift of the Ðrst few peaks downward in l as
is lowered. As noted by if the radiation is still)0 h2 HSb,

dynamically important after last scattering, the resultant
ISW e†ect will shift power toward larger angles and distort
the Ðrst peak. The even peaks are also shifted upward as

increases to make potentials deeper and baryon drag)0 h2
more important. Still, for reasonable matter content and a
near BBN baryon content a ratio of third to Ðrst peak of

is a robust prediction of inÑation. Further-l3/l1B 3.3È3.7
more, the ratio of the Ðrst peak location to the peak spacing
is between The peak spacing is best mea-l1/lA B 0.7È0.9.
sured by the prominent peaks, e.g., for inÑation l

A
\

The only caveat is that models with extremely(l3[ l1)/2.
high and may be dominated by the)

b
h2Z 0.04 )0? )

bbaryon drag e†ect. In this case, only the compression phases
are visible as peaks in the rms. Thus, every other oscillation
is unobservable and the series becomes 1 :3 :5. . . like the
isocurvature spectrum. For a model with reasonable matter
content no value of entirely eliminates)0 h2[ 0.25, )

b
h2

the second peak. For the second peak disap-)0 h2\ 0.64,
pears for and the fourth for0.04[)

b
h2[ 0.5 0.128[

Even in this extreme case, only a gross vio-)
b
h2[ 0.32.

lation of BBN would entirely mask the inÑationary pattern.
Thus, the harmonic series is a robust prediction of inÑation.

4.2. Uniqueness of the Harmonic Series
Is the cosine harmonic series a unique prediction of inÑa-

tion? Just as in the inÑationary case, for isocurvature
models residual driving e†ects create a downward shift from
the 1 :3 :5. . . pattern. Even a pure driven isocurvature model
with a source which converges to the sine series'

s
P x~1,

for (see giveskr
s
? 1 ° 2.5),

0.85 :2.76 :4.83 :6.89 :8.91. . . . (37)

We will hereafter refer to these ratios as the ““ sine series. ÏÏ
How closely do real models follow this prediction? For
comparison, we show in the right panel of theFigure 7
ratios of the peak locations for common isocurvature
models found in the literature : the baryon isocurvature

textures & Turok axionic iso-(HSb), (Crittenden 1995),
curvature et al. and HDM isocurvature(Kawasaki 1995),

Laix & Scherrer Notice that these models roughly(de 1995).
correspond to the sine series prediction. Thus, in all inÑa-
tionary models with reasonable baryon content, the ratio of
peak locations should be distinguishable from the current
models based on the isocurvature restriction. This suggests
that to mimic inÑation an isocurvature model would have
to either possess extreme conditions or Ðne tuning.

Let us attempt to construct models that mimic inÑation.
Since the Ðrst inÑationary peak appears immediately after
sound horizon crossing it is difficult to avoid ork \n/r

s
,

counter the driving e†ects that produce the sine series. Can
a series based on peaks arising after sound horizon crossing
somehow mimic the cosine series? Consider the possibility
that the Ðrst isocurvature peak in the sine series equation

is missing or cannot be observed. This is indeed likely in(37)
some models since the Ðrst peak can be quite low in intrin-
sic amplitude (see °° and Furthermore, exter-Fig. 8, 3.3 4.3).
nal e†ects such as tensor and vector modes that naturally
possess a feature on the horizon scale at last scattering
might mask or distort the peak. In this case, the observable
peaks would follow the series : 2.8 :4.8 :6.9. . . , which is close
enough to the cosine series to cause some concern, espe-
cially if only the Ðrst two peaks are measured. More gener-

FIG. 8.ÈObscured isocurvature peak. The Ðrst isocurvature ““ peak ÏÏ
appears as a shoulder and may be obscured especially in high baryon
models where the second peak is signiÐcantly higher (left panel, arbitrary
normalization). If the second peak starts the harmonic series, the ratios
(right panel, points) can be quite close to the cosine prediction (dotted lines).
The points are normalized to the cosine prediction at the third peak. These
models can be distinguished by the peak to spacing ratio and the morphol-
ogy of the Ðrst compressional peak (second feature).

ally, one might have a source that turns on only after sound
horizon crossing so that the harmonic series is again shifted
toward smaller scales. These possibilities, however, create
spectra that are not as close to the inÑationary prediction as
they initially might appear.

The crucial point is that although the starting point of the
harmonic series can change with the model, its spacing
cannot. The separation between the peaks is Ðxed by the
sound horizon at last scattering. Thus, the harmonics
cannot simply be scaled to match the inÑationary predic-
tion. The distinction is clearer when we consider the ratio of
the peak location to peak separation. The idealized inÑa-
tionary prediction of requires a ratio of theequation (36)
Ðrst peak to the separation between peaks of Ifl1/lA B 0.88.
the second peak of the isocurvature prediction equation (37)
is to be taken for a Ðrst peak, it gives a corresponding ratio
of In other words, we expect a factor of 1.5l1/lA B 1.33.
di†erence between the two cases. The uncertainty displayed
in the real models of do not destroy the test. WhenFigure 7
comparing models with the same values for the ideal-)0 h2
ized expectation is validated, e.g., between inÑation and
axionic isocurvature with and)0 h2\ 0.25 )

b
h2\ 0.0125

there is a 1.4È1.5 di†erence in depending on whichl1/lApeaks are used to measure the spacing. Even if the back-
ground parameters are unknown, to get the ratio as low as
it is in the highest inÑationary case for(l1/lA B 0.9 )0 h2[

1), the Ðrst peak must be created around sound horizon
crossing.

The robustness of this test arises because the natural fre-
quency of the oscillator is related to the sound horizon.
Thus, the oscillations, if regular enough to be mistaken for
inÑation, must appear regularly spaced with respect to that
scale. It is of course in principle possible that the external
source is periodic and drives the oscillator at a di†erent
frequency. It is amusing to note that even this rather
unlikely scenario can be distinguished. The damping tail
provides a scale that is entirely independent on the nature of
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the Ñuctuations. If the background parameters are known,
the ratio of the damping scale to peak position provides an
additional consistency test for the inÑationary scenario. In
models where the Ñuctuation is generated inside the sound
horizon, the ratio increases. In particular, for the abovel1/lDcase of a missing Ðrst isocurvature peak, the ratio increases
by a factor of 1.5 exactly as with the case of the peak-to-
spacing ratio.

Therefore, the only way to mimic the inÑationary series is
to tune the behavior of the source at sound horizon crossing
so that it immediately generates a peak in the proper posi-
tion but leaves no residual e†ects that would distort the
series of higher peaks. Although contrived, this is possible.
In we plot a source given by withFigure 9, equation (24)

and a \ 0.05 with In this case, wep1\ 2, p2\ 1, )
b
] 0.

have constructed a source that dies o† after x B a~1 such as
to leave the oscillations in a nearly pure cosine mode. The
Ðrst Ðve peaks follow a series 1 :2.05 :3.16 :4.23 :5.29, very
close to the canonical inÑationary prediction. Notice,
however, that the prediction is 180¡ out of phase with the
inÑationary prediction. This is an important fact that we
will make use of in the next two sections. As we shall see, the
crucial point is the e†ect of compensation near sound
horizon crossing. One should also bear in mind that we
have tuned the source to produce as pathological a case as
possible. The cosine harmonic of peaks is essentially but not
entirely unique to the inÑationary paradigm. Its conÐrma-
tion would strongly support the inÑationary scenario.

4.3. First Peak
Can we employ additional information to eliminate the

possibility that an isocurvature model might mimic the
inÑationary model through the peak positions? Com-
pensation from photon feedback discussed in °° and2.4 3.3
provides an essential distinction. Near or above the
horizon, the photons act to resist any change in curvature
produced by the source if the universe is radiation domi-
nated (see Appendix for relaxations of this assumption).
Thus, the Ðrst peak in an isocurvature model, if it is suffi-
ciently close to the horizon to be confused with the inÑa-

FIG. 9.ÈPathological isocurvature model. Here forced isocurvature
Ñuctuations are tuned to match the locations of the inÑationary prediction
(upper panel, dotted lines) with vanishing baryon content R] 0. Notice
that even in this case the isocurvature oscillations are out of phase with the
inÑationary prediction by 180¡. With the inclusion of baryon drag, this
leaves an observable signal in the rms.

tionary prediction, must be anticorrelated with the source.
In other words, the Ðrst peak in the rms temperature rep-
resents the rarefaction stage inside the potential well of the
source rather than a compression phase as in the inÑation-
ary prediction.

Since the dilation e†ect which causes#0 0 \['0 ,
creates both the Ðrst peak and the Sachs-#0] ( B [2',

Wolfe e†ect, the Ðrst feature in an isocurvature spectrum is
not truly a peak but a smooth turnover from the large-scale
behavior as discussed in °° and This point represents2.5 3.3.
the epoch at which the Ñuctuation ceases to follow the
growth of the curvature and turns around to start the
acoustic oscillation. It creates the shoulder appearance of
the Ðrst isocurvature feature (see, e.g., Figures and On6 8).
the other hand, the inÑationary Ñuctuation in the e†ective
temperature is proportional and passes throughto cos (kr

s
)

a zero at before the Ðrst peak (see Thekr
s
\ n/2 Fig. 3).

resultant spectrum thus exhibits a rather sharp break
between the gravitationally dominated Sachs-Wolfe tail
and the Ðrst peak (see The gravitational nature ofFig. 6).
the Ðrst peak in an isocurvature model makes it substan-
tially less prominent when compared with the low l tail. The
Ðrst isocurvature peak also tends to be low with respect to
the higher peaks because it appears too close to horizon
crossing to experience the full forcing e†ect by the source.

Unfortunately, these morphological distinctions are hard
to quantify. Indeed, the sharp rise to the Ðrst peak in the
inÑationary model can be masked by the presence of the
integrated Sachs-Wolfe e†ect in a low universe)0 h2 (HSa).
In an isocurvature model, the prominence of the Ðrst feature
can be enhanced by a smooth bend in the power spectrum
or vector and tensor modes. Nevertheless, the physical dis-
tinction between the Ðrst adiabatic and isocurvature peaks
does suggest a robust way of distinguishing the models, as
we shall now discuss.

4.4. Relative Peak Heights
Whereas the inÑationary spectrum obeys a compression-

rarefaction-compression pattern an isocurvature model dis-
plays a rarefaction-compression-rarefaction pattern. In the
absence of baryons, there is no observable distinction
between compression and rarefaction since only the rms can
be measured. However, as we have seen in baryons° 2.7,
enhance the compression at the expense of rarefaction
leading to an alternating series of peaks in the rms. In fact,
the example in is the same pathological model ofFigure 5

which has peaks at the inÑationary locations by con-° 4.2,
struction. Notice that for reasonable baryon content, the
even peaks are enhanced by the baryons, whereas the odd
peaks are enhanced under the inÑationary paradigm. Since
this nonmonotonic peak pattern cannot be reproduced
without introducing the appropriate features in the initial k
spectrum of Ñuctuations, the pattern of anomalously high
odd cosine peaks is a unique feature of standard inÑation-
ary models.

Of course, an isocurvature model can also begin with a
compression if the Ðrst peak is so low in amplitude as to be
unobservable (see However, such a model cannotFig. 8).
simultaneously create the peak positions of the inÑationary
prediction. In fact, regardless of the peak positions, iso-
curvature models are still unlikely to mimic a strongly alter-
nating heights pattern. Since the Ðrst compressional
isocurvature peak occurs well after horizon crossing,
neither the potentials of the source nor the photon-baryon
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backreaction are large enough to cause signiÐcant baryon
drag unless the baryon fraction is exceedingly high. In this
case, the behavior of the potential implies an anomalously
high Ðrst compressional peak compared with the second
due to baryon drag from the residual self-gravity (see Fig. 8).

Although this pattern of peak locations and relative
heights is unique, it is not an entirely robust prediction of
inÑation. The intrinsic fractional e†ect at the mth peak is on
the order

R(g
*
)
((g

*
, mk

A
)

((g
i
, mk

A
)
B R(g

*
)T (mk

A
) (g

*
Z geq) , (38)

where T (k) is the matter transfer function et al.(Bardeen
However, if the intrinsic e†ect is small, complications1987).

such as possible smooth tilts in the initial spectrum and
di†usion damping will make the signal difficult to observe
(see For this occurs ifFig. 10). )0 h2B 0.25 )

b
h2[ 0.007

and for BBN baryon content for Still, with high)0 h2[ 0.1.
precision experiments, a sufficiently smooth initial spec-
trum, and known thermal history, it is possible that even
these extreme cases may be testable (Hu & White, in
preparation). On the other hand if baryonR(g

*
)T (mk

A
)? 1,

drag dominates and the even m peaks (rarefactions) no
longer appear as peaks in the rms (see In this case,Fig. 5).
the oscillations are small compared with the o†set and the
distinction between compression and rarefaction stage is
that they are maxima and minima of the rms, respectively.
Since T (k) ¹ T (0), a necessary but not sufficient condition
for this to occur is R[ 1 or a baryon content more than 3
times the BBN value.

4.5. Summary
In summary, inÑationary models carry an acoustic signa-

ture with distinct properties that can distinguish them from
isocurvature models. The ratio of peak locations is a robust
prediction of inÑation. In particular, the ratio of third to
Ðrst peak location should be in the range l3/l1B 3.3È3.7
and the ratio of Ðrst peak location to peak spacing should
be between If this pattern is not observed inl1/lA B 0.7È0.9.
the CMB, either inÑation does not provide the main source
of perturbations in the early universe or BBN grossly

underestimates the baryon fraction. The latter possibility is
treated more fully in Observational conÐrmation of° 5.6.
the pattern would provide a plausibility proof for inÑation.
It would thus require Ðne tuning for an isocurvature model
to reproduce this spectrum. To close this loophole in the
test of inÑation, the relative peak heights can be observed.
Assuming the location of the peaks follows the inÑationary
prediction, we Ðnd that the high odd peak pattern of inÑa-
tionary peaks is a unique prediction of inÑation with a near
BBN baryon content. Thus, the locations and relative peak
heights can be used to ““ prove ÏÏ the inÑationary paradigm.
On the other hand, this signature relies on the baryon drag
e†ect, which may be small and difficult to observe in some
exotic inÑationary models. Moreover, inÑation does not
preclude the presence of isocurvature perturbations (Linde

& Suto Disproof of inÑation along1985 ; Yokoyama 1991).
these lines is more difficultÈa common problem in cosmol-
ogy !

5. ROBUSTNESS OF THE CURVATURE MEASUREMENT

Acoustic oscillations in the CMB provide an interesting
and unique opportunity to measure the curvature of the
universe. Features in the spectrum supply standard rulers
with which to make a classical test of the geometry

et al. & Gouda(Doroshkevich 1978 ; Sugiyama 1992 ;
Spergel, & Sugiyama & WhiteKamionkowski, 1994 ; Hu

If the inÑationary scenario is correct, the curvature1996).
can be measured to a few percent essentially from the loca-
tion of the Ðrst acoustic peak. However, is the curvature
measurement robust to changes in the underlying model?
Clearly, the location of the Ðrst peak does not contain
enough information. Isocurvature models predict peak
locations with a di†erent relation to the sound horizon.
Radical changes in the baryon content from its BBN value
and the thermal history from standard recombination can
shift their positions. What additional information is
required to ensure that the curvature measurement is
robust?

5.1. Angular Diameter Distance
It is instructive Ðrst to review the general case for measur-

ing the curvature by the angular diameter distance test. For

FIG. 10.ÈBaryon drag in the inÑationary model. Baryon drag enhances the compressional, here odd, acoustic peaks. (a) Although di†usion damping at
small scales coupled with the intrinsically small baryon drag e†ect in low models hides the e†ect, the third peak is clearly anomalously high in all but the)

b
h2

most extreme case which is in clear violation of BBN constraints. (b) Lowering also reduces the e†ect by reducing the potential)
b
h2\ 0.0025, )0 h2

Ñuctuation (.
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deÐniteness and simplicity, let us take the inÑationary
example. Here the acoustic spectrum in k is purely a func-
tion of and The implied Ñuctuations on the last)

b
h2 )0 h2.

scattering surface are viewed as anisotropies on the sky
today via the projection

lfeature(K, ") \ kfeature rh(K, ") , (39)

where the comoving angular diameter distance to the last
scattering surface is

rh(K, ")\ oK o~1@2 sinh [ oK o1@2(g0[ g
*
)] (40)

for K \ 0 negatively curved universes. For K [ 0, merely
replace sinh] sin. The functional dependence arises since

and and we are consideringg0(K, ", )0 h2) g
*
()0 h2, )

b
h2)

and Ðxed for now. In general, negative curvature)0 h2 )
b
h2

moves the acoustic features to smaller angles since a Ðxed
physical scale then subtends a smaller angle on the sky. A
cosmological constant moves features to larger angles due
to a decrease in the current horizon size from the rapid
expansion.

In we display an example. By holdingFigure 11, )
b
h2

and constant, the acoustic features are Ðxed in physi-)0 h2
cal space and the shift in l is entirely due to the projection.
Shifting the canonical model by the angular diam-)0\ 1.0
eter distance scaling of an model, we see that)0\ 0.1

accurately accounts for the e†ect. Notice thatequation (40)
K and " are degenerate with respect to the acoustic signa-
ture. One cannot in principle measure them independently
from these features. The degeneracy is broken at larger
angular scales by the ISW e†ect Moreover, for realis-(HSb).
tic " introduces little ambiguity in the curvature mea-)0,surement.

It is clear that either the peaks or the damping tail can be
used as standard rulers to probe the curvature in this simple
case. We shall now consider the beneÐts and drawbacks of
each in the more general setting where the model for the
perturbations and the background are not known a priori.
We then turn to what can be learned about the model for
the perturbations and how this additional information can
be used to reÐne the measurement of the curvature.

FIG. 11.ÈStandard rulers and the angular diameter distance. Acoustic
features in the CMB, in particular the peak locations and the damping tail,
act as standard rulers with which a measurement of the curvature can be
made. Thin solid lines represent the "\ 0 calculation scaled in l to)0\ 1,
account for the projection in the open and " models.)0\ 0.1

5.2. Acoustic Peaks
The physical scale associated with the acoustic peaks is

the sound horizon at last scattering. Unfortunately,
however, the exact relation between the peak locations and
the sound horizon typically varies by a factor of 2 depend-
ing on the model. In this section, we discuss a how the peak
spacing can be used as a measurement of the spatial curva-
ture, which is far less dependent on the model for the Ñuc-
tuations.

As discussed in once the source has switched o†° 3.1,
inside the horizon the acoustic peaks follow a phase-shifted
harmonic series. The key point is that regardless of the
phase, the peaks are spaced by Hence, if thek

A
\n/r

s
.

sound horizon at last scattering is known, the spacing pro-
vides us with an angular diameter distance test of the curva-
ture. In making this measurement, the higher peaks form a
better probe than the lower peaks, since the latter can be
shifted due to residual driving e†ects and metric Ñuctua-
tions between last scattering and the present. The peak
spacings *l for the models of are shown inFigure 7 Table 1
and should be compared with the prediction *l \ l

A
4

As can be seen, the spacing becomes more regular andk
A

rh.approaches the expected value after the Ðrst peak separa-
tion In the inÑationary case shown here, baryonl2[ l1.drag suppresses the even peaks and distorts their locations.
For best accuracy, one should employ the spacings of the
prominent peaks for the test, e.g., in thel

A
\ (l3[ l1)/2inÑationary case. In general, three peaks will be necessary to

assure accuracy of the test.
How well can this test measure the curvature given realis-

tic uncertainties in and through h, which a†ect)
b
h2 )0 h2

the physical scale of the sound horizon at last scattering (see
If the baryon content is near or less than the BBNFig. 12) ?

limit it has only a small e†ect since the)
b
h2[ 0.05,

photons dominate the Ñuid at last scattering. The Hubble
constant has a relatively larger e†ect but even so a measure-
ment of a peak spacing would requirel

A
D 290 )0] )" Z

0.7 if 0.4¹ h ¹ 0.8. Note that the dependence on the
Hubble constant becomes weaker as it increases to make
the universe more matter dominated at last scattering.

The main drawback of this method is that it may be
difficult to apply in models where the forced e†ects continue
well after horizon crossing. In this case, the peak spacing
may not become regular until the higher peaks. Near the
di†usion scale, the power in the CMB Ñuctuations is expo-
nentially damped. Foregrounds become more difficult to

TABLE 1

PEAK SPACINGS *l FOR THE MODELS OF

FIGURE 7

Model 1È2 2È3 3È4 4È5

Inf . . . . . . . . . 288 259 297 277
HDM . . . . . . 204 282 272 295
Tex . . . . . . . . 221 286 287 285
Axi . . . . . . . . . 204 295 275 298

NOTEÈThe spacing between peaks for the
suite of models in with the same back-Fig. 7
ground parameters h \ 0.5,)0\ 1, )

b
\ 0.05,

and standard recombination. The spacing
becomes more regular for the higher peaks and
converges toward the expected value of 290.
The spacing yields a measure of the curvature
of the universe that is nearly independent of
the model for the Ñuctuations.
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FIG. 12.ÈPeak spacing and damping scale as a function of Even allowing for uncertainties in the baryon content (solid shading, h \ 0.5) and Hubble)0.constant (dashed shading, open models with can be distinguished from Ñat " models through either scale. The)
b
h2\ 0.0125), )0[ 0.5 ()0] )" \ 1)

damping scale is entirely independent of the model for the Ñuctuations but may be more difficult to measure than the peak spacing.

subtract on these smaller scales and gravitational lensing by
large-scale structure (see, e.g., can wash out theSeljak 1996)
oscillations to some extent. It is even possible that stochas-
tic metric perturbations would leave the spectrum with no
distinct peaks (see et al. In these cases,° 2.6, Magueijo 1996).
we must turn to the damping tail to measure the curvature.

5.3. Damping T ail
The di†usion damping length provides a standard ruler

for the curvature measurement that is the most robust
against changes in the model for the Ñuctuations (see also

& White As discussed in its location isHu 1996). ° 3.4,
dependent only on background parameters. However, it is
more sensitive to changes in and the thermal history)

b
h2

due to its dependence on the Compton mean free path at
last scattering. displays the location of theFigure 12b
damping tail deÐned as the multipole number at whichl

Dthe acoustic e†ect drops by e~2 in power. It is related to the
damping wavenumber by the simple projec-equation (31)
tion of Here the thermal history has beenequation (39).
Ðxed to follow standard recombination. By applying rea-
sonable constraints on the other parameters, the damping
scale becomes a sensitive probe of the curvature. Even
allowing for a factor of 4 uncertainty in an open)

b
h2,

model of can be distinguished from a Ñat)0[ 0.5 )0universe. An additional uncertainty arises from] )" \ 1
the Hubble constant, which changes the age of the universe
and expansion rate at last scattering and hence the di†usion
scale. In we show the uncertainty from h ifFigure 12, )

b
h2

is Ðxed by BBN. Again open universes with can be)0[ 0.5
distinguished from the Ñat cases for reasonable values of h,
amounting to a factor of 4 ambiguity in )0 h2.

There is one caveat to this proposal for measuring the
curvature. It must Ðrst be established that the damping tail
is indeed due to photon di†usion and not due to some
intrinsic fallo† in the source or secondary e†ect between
recombination and the present. To test this assumption, one
must measure the shape of the damping tail. Di†usion
damping leads to a near exponential fallo† in the aniso-
tropy rather than the power-law behavior expected in the
alternate possibilities. Thus, it will be necessary to follow
the damped oscillations into the di†usion regime to estab-

lish its exponential character. Even in a Ñat universe the
damping tail is at arcminute scales. Detailed measurements
of the primary signal may or may not be observationally
feasible due to possible foreground and secondary e†ects,
most notably the ISW e†ect. Models with large small-scale
metric Ñuctuations may also have their e†ective tem-
perature at last scattering dominated by baryon drag rather
than acoustic oscillations. This too would mask the expo-
nential signature. Of course, if acoustic peaks in the angular
power spectrum are also measured, then it is almost assured
that a break in the acoustic spectrum is due to di†usion.

5.4. Exotic Baryon Content
Thus far, we have mainly considered the robustness of the

curvature measurement to exotic sources of gravitational
perturbations. It is also possible that the background itself
exhibits an exotic nature. In particular, we have been
implicitly assuming that the baryon content is within a
factor of several of its BBN value and the thermal history
follows standard recombination. Let us now consider how
the possibility of exotic background properties may be
handled, beginning with the baryon content.

If the baryon content is far from the BBN prediction of
but known, the approach to measuring)

b
h2B 0.01È0.02,

the curvature is unchanged since both the sound horizon
and damping scale are known as well. It may be the case,
however, that the prediction is violated by observations
that do not then constrain sufficiently. If it is low, the)

b
h2

peak spacing still provides a good measurement of the cur-
vature. In this limit, the sound horizon at a Ðxed redshift
becomes independent of the baryon content and the only
variation with is a weak dependence on the redshift of)

b
h2

last scattering (see However, the peaks must stillFig. 13a).
be measured for this test to work. With a low baryon
content, the Compton mean free path and hence the di†u-
sion length at last scattering increases making the higher
peaks difficult to observe. The ratio of the damping tail to
the peak spacing provides a rough model independentl

D
/l
Aestimate of the number of peaks that are potentially observ-

able and is displayed in (cf. Two peaksFigure 13a Fig. 5).
and hence the peak spacing is likely to be observable as long
as which is close to the stellar mass density)

b
h2Z 0.001,
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FIG. 13.ÈExotic baryon and radiation content. (a) The sound horizon that forms the basis of the peak spacing test is independent of for values near)
b
h2

BBN or lower, whereas the damping tail is insensitive to high In either limit a robust test exists. The ratio of tail to peak spacing can detect an)
b
h2. l

D
/l
Aexotic baryon content. (b) Changing the radiation content, e.g., by altering the number of relativistic neutrinos a†ects the expansion rate and thus the twoNl,physical scales weakly. Cases extreme enough to a†ect the scales signiÐcantly can also be distinguished by l

D
/l
A
.

for a reasonable Hubble constant. Thus, the)starsB 0.004
peak spacing should provide a test of the curvature even
under the most extreme conditions. On the other hand, a
curvature measurement from the damping tail alone could
fall victim to this exotic possibility. However, the severely
truncated acoustic spectrum in this case should prevent
such a misinterpretation of the position of the damping tail.

In the case of an extremely high baryon content, the situ-
ation is reversed. The damping tail now provides the more
robust estimate. Since the e†ects of a delay in last scattering
and a decrease in the Compton mean free path tend to
cancel, the physical scale is nearly independent of the
baryon content for high values (see On the otherFig. 13).
hand, if the baryon content is raised more than a factor of 5
over the BBN value, the sound speed and hence the sound
horizon at last scattering decreases. Thus, the peak spacing
alone is an unreliable test of the curvature if the baryon
content is extremely high but unknown.()

b
h2Z 0.06)

Is there a model-independent measure of the baryon
content that can test for anomalous values? It should be
clear from the discussion above that the ratio of the
damping tail to peak spacing is highly sensitive to It is)

b
h2.

also a function of but since must be consistent)0 h2, )0with the inferred curvature only uncertainties in the Hubble
constant enter if The ratio is double valued so that)" \ 0.
its measurement would allow both a high and low baryon
content solution (see As we shall see inFig. 13a). ° 5.6,
baryon drag provides a distinction between the two
extremes from a measurement of the relative heights of the
peaks. In summary, an exotic baryon content is detectable
and does not present a problem for the curvature measure-
ment if both the peak spacing and damping tail can be
measured.

5.5. Exotic T hermal History
Exotic thermal histories are another possibility. By

thermal history, we refer to both the thermodynamics of the
expansion and the ionization history. Massive decaying
particles can create an epoch of matter domination before
last scattering, which changes the age of the universe at last
scattering and hence both the sound horizon and the di†u-

sion scale Gelmini, & Silk Bond, &(White, 1995 ; Bardeen,
Efstathiou A less exotic example of the latter e†ect is1987a).
provided by any model that changes the epoch of equality.

Let us take the a simple but illustrative example of a
change in the energy density in relativistic species. This can
arise, for example, by changing the number of relativistic
neutrinos or their temperature. In we plot theFigure 13b,
sound horizon, damping scale, and the ratio between the
two as a function of the fractional increase in the radiation
density The standard thermal history with three rela-o

r
/oc.tivistic neutrinos predicts Raising the radi-o

r
/oc\ 1.68.

ation content increases the expansion rate and thus
decreases both the sound horizon and di†usion scale at last
scattering. Its e†ects are relatively weak unless the standard
prediction grossly underestimates the radiation content.
Because the di†usion scale is essentially the geometric mean
of the horizon and Compton mean free path, it is a weaker
function of the radiation content. Hence, if the universe
really has a sufficiently exotic history to change the two
physical scales at last scattering, it should be detectable in
the ratio of tail location to peak spacing l

D
/l
A
.

The use of as a probe of the thermal history is espe-l
D
/l
Acially powerful for models that delay last scattering signiÐ-

cantly. This might occur due to energy injection near
zD 103 from particle decays or nonlinear Ñuctuations.
Since the Compton mean free path grows as the universe
expands, the di†usion scale can approach the horizon scale
(see Here full ionization is assumed until a redshiftFig. 14).

when recombination is taken to occur instantaneously.z
*
,

Instant recombination is not realistic ; however, it provides
an upper limit on The ratio of in thenl

D
. l

D
/l
A

Figure 14
measures the delay in recombination. Under the instantane-
ous recombination assumption it corresponds to the
number of observable peaks. The actual observable value
for any given model will be lowered in a manner dependent
on the details of recombination.

Even if recombination never occurred, the Compton
mean free path will eventually reach the horizon size due to
dilution in the electron number density from the expansion.
At this point the universe is e†ectively transparent and the
photons free stream to the present. Since by deÐnition the
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FIG. 14.ÈExotic ionization history We()0 h2\ 0.25, )
b
h2\ 0.0125).

show the damping and peak separation scales in a model with instantane-
ous recombination at For a gradual recombination, a lower willz

*
. l

D
/l
Aalways result. The di†usion scale at last scattering by deÐnition approaches

the sound horizon in the limit that no recombination (NR) occurred.
Assuming instantaneous recombination, the ratio roughly corre-l

D
/l
Asponds to the number of observable peaks and can be used to discriminate

against exotic ionization histories.

di†usion length roughly corresponds to the horizon scale
at this epoch, and no acoustic oscillations arel

D
/l
A

D 1
apparent. Thus, recombination is a necessary condition for
the acoustic signature to be observable. In fact for
practical purposes, we require at least two observable
peaks. For and this translates)0 h2\ 0.25 )

b
h2\ 0.0125,

to recombination by For comparison, late reion-z
*

\ 175.
ization after standard recombination does not destroy
the acoustic signal unless the optical depth through
the reionized epoch is greater than unity : zreionZ

100()0 h2/0.25)1@3()
b
h2/0.0125)~2@3.

Although there is not enough information in the one
number to reconstruct all possible exotic thermal his-l

D
/l
Atories, it is possible to determine that some exotic model is

necessary if is not B4È5. Further work on thel
D
/l
Adamping tail is necessary before this constraint can be tight-

ened (Hu & White, in preparation). In this case, we trade
precise knowledge of the curvature for evidence that exotic
physics is required in the early universe. On the other hand,
if the deviation is known to occur due to a speciÐc cause
such as early energy injection or delays in equality, then the
curvature can once again be obtained. Moreover, with this
information from both the damping tail and the peaks, we
cannot mistakenly infer a value of the curvature due to
exotic baryon content or thermal history.

5.6. T oward Reconstructing the Model
The previous sections considered constraints on the cur-

vature that could be made with minimal knowledge of the
model for the perturbations. However, we would ideally like
to learn as much as possible about both questions from the
CMB spectrum. In this section, we shall outline a program
for measuring the curvature by Ðrst establishing the basic
model for structure formation. Model properties such as the
relative peak heights simplify the task of measuring the cur-
vature since they provide extra clues. As noted in °° 5.2È5.3,
this may be the only way to proceed if it proves impossible
to measure the higher acoustic peaks and damping scale.

We deÐne the basic model possibilities by their dominant
mechanism for forming anisotropies :

1. InÑation : correlated superhorizon curvature Ñuctua-
tions. Although inÑation may also produce isocurvature
initial conditions, we class them separately.

2. Driven isocurvature (e.g., axionic and baryonic iso-
curvature, textures, etc.) : photon-compensated initial condi-
tions. We allow for the possibility that the Ðrst peak is
obscured (see especially in high baryon cases in which° 4.2)
it is strongly suppressed with respect to the second peak.

3. Forced isocurvature (e.g., possibly strings) : forces after
but temporally correlated with horizon crossing.

4. Stochastic isocurvature (e.g., possibly strings) : random
subhorizon forces.

5. Reionized : any of the above in which the di†usion
length and horizon length coincide, e.g., fully ionized
models.

Each of these models can have anomalously high (low)
baryon content deÐned as signiÐcantly larger (smaller))

b
h2

than the big bang nucleosynthesis (BBN) value of 1%È2%.
They can also be low in dark matter (CDM) such that

It is possible, though unlikely, that the model may)0D )
b
.

be a mixture of ““ inÑation ÏÏ (as deÐned above) and driven
isocurvature scenarios.

For deÐniteness, we hereafter discount the possibility of
an exotic thermal history as treated in except for the° 5.5,
case of late reionization which is plausible in many models.
Furthermore, we assume that the Hubble constant and "
are sufficiently constrained to make the confusion they
introduce to the curvature measurement irrelevant (see, e.g.,

We, however, relax the BBN constraints onFig. 12). )
b
h2

as this can lead to a qualitatively distinct acoustic pattern.
There are four tests that we can apply to Ðx the model

and the curvature, based on the acoustic signatures dis-
cussed in ° 3.

1. Peak positions test : measure the locations and spac-
ings between the peaks in l. Three useful items can be
extracted from this test :

Peak ratios.ÈRatios probe the nature of the model. We
deÐne the distinguishing feature of a ““ cosine ÏÏ series as a
ratio of third to Ðrst peaks of and that of al3/l1B 3È4
““ sine ÏÏ of B5. Note that a true sine oscillation with missing
Ðrst peak might be observationally classed as a cosine.

Peak spacings.ÈIf they are regular, they provide an
angular diameter distance test. The physical scale corre-
sponds to if both compressional and rarefactionalk

A
\n/r

speaks are measured or for the compressional ones.2n/r
sPeak-to-spacing ratio.ÈSince the peak spacing is Ðxed by

the sound horizon, its ratio with respect to the Ðrst peak
location provides a sensitive probe of the model. InÑation
predicts l1/lA B 0.7È0.9.

2. Relative height test : determine if any of the peaks are
anomalously high with respect to a smooth underlying
spectrum. Heights probe the baryon content and forcing
mechanism.

3. Tail-to-spacing test : measure the ratio of tail to peak
spacing If the peak spacing is regular, the ratio mea-l

D
/l
A
.

sures the baryon content (and/or identiÐes exotic)
b
h2

thermal histories).
4. Damping tail test : measure the shape and absolute

location of the damping tail as described in The shape° 5.3.
conÐrms its acoustic nature and the location provides an
angular diameter distance test.
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As we shall see, in most cases not all four tests are necessary.
In contrast to we shall here adopt the philosophy that° 5.3,
information from the damping tail only be used if all other
tests are ambiguous. If the baryon content is assumed to be
known from nucleosynthesis, most of the tests involving the
damping tail are generally unnecessary. On the other hand,
the damping scale ideally should still be measured since it
provides a valuable consistency check on both the baryon
content and the thermal history assumption. Let us outline
the program as a Ñow chart. It starts with the suite of peak
position tests. There are four possibilities, as outlined in
°° 5.6.1È5.6.4.

5.6.1. T he Peak Ratios Form a Cosine Series

Apply the relative heights test.

1. High odd peaks forming a smooth sequence : inÑation
with BBN or high Tail-to-spacing Ðxes Spacing)

b
h2. )

b
h2.

measures the curvature.
2. High odd peaks with anomalously high Ðrst peak :

high driven isocurvature with Ðrst peak obscured. Tail-)
b
h2

to-spacing Ðxes Spacing measures curvature.)
b
h2.

3. High even peaks : tuned forced isocurvature with near
BBN Spacing measures the curvature.)

b
h2.

4. Monotonic : BBN or lower Spacing measures)
b
h2.

curvature.
a. Peak-to-spacing ratio \ 1 : low CDM inÑation. Tail-

to-spacing can also measure )
b
h2.

b. Peak-to-spacing ratio [ 1 : driven isocurvature with
obscured Ðrst peak. Tail-to-spacing can also measure )

b
h2.

5.6.2. T he Peak Ratios Form a Sine Series

Apply the relative heights test.

1. High even peaks : driven isocurvature model with high
Tail-to-spacing Ðxes Spacing or damping tail)

b
h2. )

b
h2.

measures curvature.
2. High second peak : driven isocurvature model with

BBN or lower. Spacing measures curvature. Tail-to-)
b
h2

spacing can also measure )
b
h2.

3. Monotonic : high high CDM inÑation. Tail-to-)
b
h2,

spacing Ðxes and half-spacing determines curvature.)
b
h2
5.6.3. Neither Cosine nor Sine

1. Peaks follow phase-shifted harmonic : Coherent and
tuned superposition of inÑationary and driven isocurvature
(cf. Tail-to-spacing Ðxes Spacing measures cur-° 3.1). )

b
h2.

vature.
2. Peaks follow a cosine harmonic with gaps 1 :3 :4 :5 :

High relatively high inÑation. Tail-to-spacing)
b
h2, )0/)bÐxes Spacing of higher peaks or half-spacing across)

b
h2.

the gap measures curvature. Damping tail also measures
curvature.

3. First few peaks irregular followed by a regular series.
Forced isocurvature model with horizon crossing e†ects and
BBN or lower Peak spacing measures curvature.)

b
h2.

Tail-to-spacing ratio can also measure the )
b
h2.

4. Somewhat irregular peaks o†set by smooth function
(e.g., Forced isocurvature model with e†ects wellFig. 3).
after horizon crossing and high Take average value of)

b
h2.

half-peak spacing. Tail-to-(average)-spacing Ðxes )
b
h2.

Average spacing measures curvature.
5. Random locations : Forced isocurvature model with

rapidly varying metric well after horizon crossing. Tail-to-
spacing ratio constrains Damping tail constrains cur-)

b
h2.

vature.

5.6.4. No Peaks

Apply the damping tail test.

1. Exponential fallo† : Stochastic isocurvature model.
Location of damping tail measures the curvature if is)

b
h2

known.
2. Power-law fallo† : Reionized or stochastic isocurvature

model with peak source amplitude far inside horizon and
high No robust constraints on the curvature are pos-)

b
h2.

sible.

Thus, in all but the last case the acoustic signature con-
strains the curvature. If the baryon content can also either
be measured from the signature itself or is known from
external constraints such as BBN, highly accurate measure-
ments of the curvature are possible. Once the basic nature
of the model and background is determined through this
program, detailed modeling of the fundamental source for
the Ñuctuations that formed large-scale structure may
begin.

6. CONCLUSIONS

We have generalized the formalism of to includeHSa
backreaction e†ects and examined the uniqueness and
robustness of acoustic signatures in the CMB. By clarifying
the role of compensation and feedback in the evolution of
Ñuctuations, we have shown that the phase of the oscil-
lation, and hence the ratios of peak locations, distinguishes
inÑation from ““ typical ÏÏ isocurvature models. SpeciÐcally,
two robust tests are the ratio of third to Ðrst peaks and Ðrst
to peak spacing. Our analysis also provides a better under-
standing of the structure of the peaks in these models.
However, since it is possible to imagine isocurvature models
that are tuned to mimic the inÑationary pattern of peaks, we
have stressed the importance of baryon drag, which allows
us to distinguish compressions from rarefactions in poten-
tial wells. This can help lift the confusion between adiabatic
models and these contrived isocurvature models. Although
the level of drag does not make this distinction clear for all
possible baryon densities, it is observable for the value pre-
dicted by big bang nucleosynthesis. Further understanding
of the di†usion damping of anisotropies will allow us to
extend the lower limit of baryon densities for which we can
distinguish the rarefaction and compression peaks.

We focus on the importance of the damping tail as a
measure of spatial curvature that is independent of the
model for structure formation, and discuss the robustness of
curvature measurements from the CMB. Even in the case
where no acoustic peaks are seen (e.g., possibly string
models) the damping scale can be estimated under mild
assumptions about the thermal history and baryon content.
A more precise test is possible if the acoustic peaks are
regularly spaced as indeed expected of models without
extreme behavior at small scales. Either approach allows
one to infer the physical scale of the acoustic feature(s). Its
projection onto the sky allows us to perform a classical
angular diameter distance test to determine the curvature of
the universe. In the process of carrying out these tests of the
curvature, the general nature of the model for the Ñuctua-
tions can be reconstructed, as well as the baryon content of
the universe.

All of these studies focus on the tale told by the CMB
spectrum taken as a whole. In particular, the acoustic
pattern, which arise from forced oscillations in the photon-
baryon Ñuid before recombination, leaves a distinct signa-



No. 1, 1996 CMB ACOUSTIC SIGNATURES 49

ture from which we may begin to reconstruct the
cosmological model.
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APPENDIX

CAUSALITY AND COMPENSATION

In this Appendix, we clarify the role of causality in limiting the behavior of Ñuctuations outside the horizon and its
dependence on gauge. We show that only inÑation can correlate the curvature Ñuctuations above the horizon assuming
general relativity is the correct description of gravity. Moreover, in the main text we employed only the mechanism of
compensation, i.e., the response of the photon-baryon Ñuid to a source, and not the full causal constraints that limit the
behavior of the source as well. This proved sufficiently powerful to produce the distinctions in the acoustic signature under the
additional assumption that the compensation is provided by the photons. In this case, the feedback from the photon
self-gravity produces the key ingredient in making many of the signatures robust. Since in the standard FRW model, the
universe is radiation dominated until near recombination, this additional assumption is automatically satisÐed.1 There are,
however, exotic models where this assumption is not satisÐed. For example, a decaying massive particle could cause the
universe to undergo a period of matter domination before recombination. For this kind of situation, we need to examine the
general case of compensation and additional causal constraints on the model.

Causality implies initial compensation in density Ñuctuations above the horizon since the stress-energy tensor is conserved.
Heuristically, the conservation law implies that changes in energy density at any location arise from ““ Ñows ÏÏ of energy density
current across surfaces, or from displacements of Ñuid elements. Since Ñuid elements cannot be displaced ““ beyond ÏÏ the
horizon, this severely constrains the behavior of Ñuctuations at kg > 1. However, because the stress-energy tensor obeys
covariant conservation, the exact form of causal constraints on the density perturbation depends on the representation of the
metric, i.e., the gauge.

We have seen in that density perturbations can also change due to the ““ stretching ÏÏ e†ects from changes in theequation (1)
metric. A clever choice of gauge can eliminate such e†ects. Let us examine the evolution of the density Ñuctuation in its local
rest frame. Note that this does not coincide with hypersurfaces with zero bulk velocity for the total matter unlessV

T
g0ivanishes. In the literature, this has been called the comoving gauge velocity-orthogonal isotropic gauge(Bardeen 1980),

& Sasaki and total matter gauge It represents the metric Ñuctuations as(Kodama 1984) (HSb).

g00\ [a2(1] 2mQ) ,
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@ j

,

g
ij
\ a2(1] 2fQ)c

ij
, (A1)

where o represents a covariant derivative with respect to and recall Q is the kth eigenfunction of the normal modec
ijdecomposition. These quantities are related to their Newtonian counterparts by a gauge transformation If thex8 k\ xk ] dxk.

line element ds2 is to remain unchanged (to Ðrst order in dx),

g8 kl \ gkl ] gal dxa,k] gak dxa,l[ gkl,a dxa . (A2)

A similar relation follows for the stress energy tensor and relates the matter quantities. For densities, it is simpler to noteTklthat it arises from a combination of a shift in time slicing and the background density evolution : d8
i
Q\ d

i
Q[ (o5
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i
)dx0.

These relations imply that from the Newtonian gauge, the rest frame is reached by the coordinate shift anddxk\ (V
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the perturbation quantities are related by
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where and subscript the T denotes quantities of the total Ñuid from a sum over the particle constituents. Here wew
i
\ p

i
/o

ihave used the background evolution equation Note that the velocity is the same in the Newtoniano5
i
/o

i
\ [3(1] w

i
)(a5 /a). V

Tand rest frame gauges since its transformation properties depend on dxi. The familiar quantity f is the curvature of the spatial
hypersurfaces in this gauge (Bardeen 1980).

1 Note that the universe need only be radiation dominated when the Ñuctuation was well outside the horizon, not at last scattering itself. This is of course
not satisÐed in models with signiÐcant reionization, but in this case acoustic oscillations are not observable anyway.
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Applying the gauge transformation to the Newtonian gauge equations or writing the Einstein equations inequation (A3)
this gauge (see eq. [16] ; & Sasaki eq. [4.7]), we obtain the evolution equation for the curvature :HSb, Kodama 1984,

f5 \ a5
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m \ [a5
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T

1 ] w
T

Adp
T
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T

[ 2
3

%
T

B
. (A4)

Unless as in the case of the de Sitter phase, the rest frame curvature remains constant in the absence of isotropicw
T

\ [1
(pressure) or anisotropic stress perturbations. The isotropic stress perturbation can be broken up into an adiabatic and
nonadiabatic part :

dp
T

p
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T
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T
~1*

T
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, (A5)

with the sound speed of the total Ñuid given by c
T
2 \ p5

T
/o5

T
.

The adiabatic pressure perturbation is related to the curvature Ñuctuation by a factor of (kg)2 through the Poisson equation
and hence is a negligible source for (kg)2> 1. The generalized compensation law is therefore that component evolution must
balance at kg > 1 to keep the rest frame curvature constant in the absence of nonadiabatic isotropic stress (““ entropy ÏÏ) or
anisotropic stress perturbations. Note that unlike the adiabatic isotropic stress, both of these sources are the same in any
frame and admit no gauge ambiguity.

Since the continuity equation in this gauge is

d
dg
A *

i
1 ] w

i

B
\ [(kV

i
] 3f5 ) , (A6)

for each of the individual particle species, the rest frame density perturbation obeys an ordinary conservation law if these
stresses are absent In other words, the number density of each of the particle constituents only changes through their(f5 \ 0).
bulk motion. Thus, we see that the causal constraint is simplest in the rest frame. Note that equations and imply that(A6) (A4)
although density Ñuctuations can change purely due to an evolving equation of state, this does not a†ect the curvature
Ñuctuation f above the horizon.

Now let us consider the source of curvature Ñuctuations from nonadiabatic pressure perturbations. The analysis
also applies to anisotropic stress perturbations. The curvature Ñuctuation generated by pressure perturbations is of order

This fact is somewhat counterintuitive since the physical mechanism that converts a pressure Ñuctuation to adp
T
/(p

T
] o

T
).

density Ñuctuation is the movement of matter, which is impossible beyond the horizon. Let us examine its qualitative origin.
Causality constraints in Fourier space do not require no evolution for kg > 1. In physical space, motion of matter through
length scales up to g cause a suppressed evolution of the Fourier amplitude. A change in momentum density of the Ñuid is
caused by the pressure gradient and generates a bulk velocity of order This, then, forms a kinematic density(kg)dp

T
/(p

T
] o

T
).

Ñuctuation from the continuity of order or a curvature Ñuctuation of orderequation (A6) (kg)2dp
T
/(p

T
] o

T
) dp

T
/(p

T
] o

T
).

Thus, the residual curvature Ñuctuation induced by motion of matter inside the horizon is generically of order w
T
/(1 ] w

T
)

times the pressure perturbation.
Causality implies that before matter has had a chance to move around, the universe must obey the isocurvature condition

f\ 0 or If the condition is met by balancing perturbations in the di†erent components of the Ñuid, a nonadiabatic*
T

\ 0.2
pressure Ñuctuation generically arises,

p
T

!
T

4 dp
T

[ c
T
2 do

T
\ ; (c

i
2[ c

T
2)do

i
, (A7)

if the equation of state of the balancing components di†er. As we have seen, can produce a curvature Ñuctuation even at!
Tkg > 1. How does this possibility a†ect our arguments concerning the uniqueness of the inÑationary spectrum? First, we need

to relate the rest frame curvature to the Newtonian curvature. Employing the continuity equation & Sasaki(Kodama 1984,
eq. 4.7) in we Ðnd et al.equation (A3), (Lyth 1985 ; Mukhanov 1992)

f\ '] 2
3

1
1 ] w

T

A
'] a

a5
'0
B

(A8)

in the absence of anisotropic stress. If the equation of state is constant and ' evolves as a power law, fP '. The two curvature
Ñuctuations are comparable except in the degenerate case where f\ 0 and

'0
'

\ [a5
a
C3
2

(1 ] w
T
) ] 1

D
. (A9)

In fact, this is the case of the source-free decaying mode described by The decaying mode thus carries noequation (14).
curvature perturbation in the rest frame. The other case in which f and ' behave di†erently is through a change in the
equation of state. For example, through the matter radiation transition goes from Although f remains constant inw

T
13 ] 0.

the absence of stress perturbations, ' drops by a factor of 9/10 through the transition. For most purposes however, we can
think of f and ' as nearly interchangeable.

The mechanism by which nonadiabatic pressure perturbations generate curvature Ñuctuations is of course already implic-
itly incorporated in our analysis and is the cause of the curvature not being strictly zero outside at kg > 1 but merely

2 More precisely, aside from a f\ 0 decaying mode (see*
T

\ 0 eq. [A9]).
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suppressed. In the photon-dominated limit, only a small pressure Ñuctuation is needed to compensate a rather large density
Ñuctuation in the source. Thus, the curvature generated by this e†ect is negligible. In the matter-dominated limit, pressure
Ñuctuations cannot move a large amount of energy density as exhibited by the suppression. However, as thew

T
/(1 ] w

T
)

universe changes from radiation to matter domination a relatively signiÐcant curvature Ñuctuation can be generated.
The baryon isocurvature model provides a concrete example. In this case, the nonadiabatic pressure perturbation is

!
T

\ [1 [ 3w
T

1 ] w
T

S , (A10)

where is the entropy Ñuctuation. Notice that the pressure Ñuctuation is small as long as the universeS \ d(n
b
/nc)\ d

b
[ 3#0is radiation dominated The evolution equations may be exactly solved in the kg > 1 limit such that the Newtonianw
T

\ 13.
curvature is in the radiation-dominated limit and in the matter-dominated limit (see eq. [27]). Notice'\ 18(a/a

eq
)S 15S HSb,

that the curvature is a constant in the matter-dominated limit even outside the horizon. Around equality, pressure pertur-
bations of order S generate curvature Ñuctuations of the same order. Since in the matter-dominated limit, pressure is no
longer e†ective, this curvature Ñuctuation is frozen in.

If one considers the evolution of a single k-mode, distinguishing between this and the inÑationary case would be difficult
since they both exhibit a constant curvature Ñuctuation above the horizon. In the standard scenario, this is not a problem
since the matter-radiation transition cannot occur early enough without overclosing the universe Note that the()0 h2? 1).
curvature Ñuctuation must be constant well before horizon crossing for all observable scales in order to mimic inÑation.
However, it is possible with decaying massive particle scenarios for the universe to undergo a period of matter domination
before the ordinary radiation-dominated epoch.

In this case, the spectrum of nonadiabatic pressure perturbations implied by causality serves to distinguish the model from
inÑation. Causality forbids spatial correlations in the spectrum of such perturbations, so and hence o'(k) o2 areo!

T
(k) o2

constant in k, i.e., white noise (or steeper if symmetries can be imposed), before horizon crossing. Notice that this agrees with
the familiar result that the density perturbations generated by the motion of matter have a tail for kg > 1o*

T
o2P k4

& Wandelt This translates to a steeply rising spectrum of acoustic Ñuctuations compared(ZelÏdovich 1965 ; Robinson 1996).
with the inÑationary case of an approximately scale-invariant spectrum Thus, acoustic modes associatedo'(g

i
, k) o2P k~3.

with a constant curvature perturbation outside the horizon generated from an isocurvature initial condition are both easily
distinguished from inÑation and observationally ruled out ! The most general isocurvature spectrum with scale-invariant
curvature perturbations at horizon crossing is o'(g, k) o2\ F(kg)k~3. With the requirement of white noise perturbations
outside the horizon, ' must grow as g3@2 before horizon crossing. Since only models like these, with curvature Ñuctuations
growing until horizon crossing, require observation of the acoustic signature to distinguish them from inÑation, our assump-
tion in the main text is justiÐed. It is of course still possible that tuned e†ects around horizon crossing can mimic an
inÑationary spectrum in such a exotic scenario where the regulatory e†ects of photon feedback are absent. However, since
both tuning and a drastic modiÐcation of the thermal history is necessary, we do not consider this possibility to be worth
considering.
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