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Funneling acoustic waves through largely mismatched channels is of fundamental importance to tailor and transmit sound
for a variety of applications. In electromagnetics, zero-permittivity metamaterials have been used to enhance the coupling of
energy in and out of ultranarrow channels, based on a phenomenon known as supercoupling. �ese metamaterial channels
can support total transmission and complete phase uniformity, independent of the channel length, despite being geometrically
mismatched with their input and output ports. In the 	eld of acoustics, this phenomenon is challenging to achieve, since it requires
zero-density metamaterials, typically realized with waveguides periodically loaded with membranes or resonators. Compared to
electromagnetics, the additional challenge is due to the fact that conventional acoustic waveguides do not support a cut-o
 for the
dominant mode of propagation, and therefore zero-index can be achieved only based on a collective resonance of the loading
elements. Here we propose and experimentally realize acoustic supercoupling in a dual regime, using a compressibility-near-
zero acoustic channel. Rather than engineering the channel with subwavelength inclusions, we operate at the cut-o
 of a higher-
order acoustic mode, demonstrating the realization and e�cient excitation of a zero-compressibility waveguide with e
ective so�
boundaries. We experimentally verify strong transmission through a largely mismatched channel and uniform phase distribution,
independent of the channel length. Our results open interesting pathways towards the realization of extreme acoustic parameters
and their implementation in relevant applications, such as ultrasound imaging, acoustic transduction and sensing, nondestructive
evaluation, and sound communications.

1. Introduction

Over the past decade, signi	cant attention has been paid
to zero-index metamaterials, due their extreme capabilities
for wave manipulation [1]. �ese materials can be described
by governing equations that are temporally and spatially
decoupled, due to the unusual physics enabled by near-
zero constitutive parameters. In turn, these e
ects lead to
peculiar scattering and propagation phenomena [2, 3]. �e
vast majority of this research has been focused in the elec-
tromagnetic domain, including media with near-zero dielec-
tric permittivity (epsilon-near-zero or ENZ) [2–16], near-
zero magnetic permeability (mu-near-zero or MNZ) [17],
or double-near-zero materials (epsilon-and-mu-near-zero or

EMNZ) [18, 19]. Recent attention has also been given to
analogous phenomena in the 	eld of acoustics [20–24].

Remarkable properties of zero-index metamaterials have
been proposed and experimentally validated. For instance,
these metamaterials have been used for cloaking [25–28], im-
proving the directivity in radiation and scattering [3, 29, 30],
and in enhancing the transmission through geometrically
mismatched channels, a phenomenon dubbed as supercou-
pling [4, 27, 31, 32]. It was shown that supercoupling enables
electromagnetic energy to be tunneled through narrow chan-
nels 	lled with permittivity-near-zero materials, regardless of
their geometrical shape and bending [5–9]. �e dual phe-
nomenon, tunneling through a geometrically mismatched
large channel 	lled with permeability-near-zero materials,
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was also theoretically proposed [17] and experimentally
veri	ed for radio-frequency waves [27]. �e phenomenon
can be explained through transmission-line theory [10] as
the compensation of the large geometric mismatch between
di
erent waveguide sections with the extreme impedance
values in zero-index metamaterials. ENZ supercoupling has
been also proposed at higher frequencies as an e
ective way
to boost optical nonlinearities in plasmonic channels [14] and
local density of states and quantum super-radiance [33].

�ese advances have motivated the recent interest in
exploring the physics of acoustic metamaterials with near-
zero material properties. For example, a space-coiled struc-
ture was used to assess a density-near-zero material for
acoustic tunneling [20]. Using a waveguide populated with
transversemembranes and side holes, which exhibits density-
and-compressibility-near-zero properties, an acoustic leaky-
wave antenna with broadside radiation was realized [21, 22].
Additionally, a membrane-based acoustic metamaterial with
near-zero-density was proposed as an angular 	lter that only
transmits waves with near-zero incident angle [23].

�e analogue of zero-permittivity in acoustics, for the
realization of acoustic supercoupling, is density-near-zero
metamaterials [24]. One approach theoretically showed that
energy could be squeezed through ultranarrow acoustic
channels by employing awaveguide 	lledwith arrays of trans-
verse membranes [24], which indeed realized an e
ective
zero-density ultranarrow channel. However, challenges with
viscothermal loss and the accurate tuning of multiple mem-
brane resonances have prevented the practical realization of
density-near-zero acoustic supercoupling devices thus far. A
waveguide loaded with Helmholtz resonators in the form of
low-pass 	lters was shown to support compressibility-near-
zero properties and uniform phase through an intermediate
channel [34], but again its implementation in a supercoupling
experiment would require extreme precision in the realiza-
tion of these arrays of resonators.

A big advantage that has enabled the realization of super-
coupling in electromagnetics has been the fact that conduct-
ing waveguides naturally support e
ective zero-index prop-
erties at the cut-o
 of their dominant mode of propagation.
�is phenomenon has enabled several demonstrations of
electromagnetic supercoupling in electromagnetics without
having to realize a metamaterial through periodic arrays of
small inclusions, but simply operating a hollow waveguide at
cut-o
 [7–10]. Unfortunately, conventional acoustic waveg-
uides typically do not provide a cut-o
 for their dominant
propagating mode, as these modes are longitudinal in nature.
In the present work, however, we show that it is possible
to realize acoustic supercoupling in a hollow waveguide by
exciting a higher-order mode at cut-o
, providing an exper-
imentally viable, simple geometry demonstrating e
ective
zero compressibility and supercoupling for sound. Despite
the use of simple materials with physically hard boundaries,
we show that the excitation of a higher-order mode may
synthesize e
ective so� boundary waveguide channels that
support a cut-o
 at 	nite frequency and therefore enable this
unusual tunneling phenomenon. �is approach establishes
new pathways for extreme acoustic metamaterials, cloaking,
acoustic sensing, and wave patterning.

2. Results

In order to demonstrate the e
ect of supercoupling for sound
in a simple waveguide geometry, we consider the con	gura-
tion of Figure 1, in which we sandwich an intermediate chan-
nel with large cross-sectional area S2, length L, and modal
impedance Z2 between two narrow input/output channels,
each with acoustic impedance Z1 and much narrower cross-
sectional area S1. As derived in the Methods section, the
re�ection coe�cient at the input port reads

Γ = (�22 − �21) tan (���)(�21 + �22) tan (���) + 2
�1�2 , (1)

where �� is the wave number in the middle channel. Re�ec-
tion is minimized when tan(���) = 0 or when �2 = ±�1.
�e 	rst condition corresponds to conventional Fabry-Perot
resonances, which depend upon the length and geometry of
the connecting channel. However, tunneling independent of
the channel length, as expected in supercoupling phenomena,
can be achieved at the impedance matching condition �2 =�1.

A straightforward way to realize this matching condi-
tion in waveguides with large geometrical mismatch, as in
Figure 1, is to consider a rectangular channel bounded by two
hard boundaries and two so� boundaries. �is waveguide
does not support a mode at low frequencies, and the domi-
nant propagating mode, as derived in the Methods section,
has impedance

�2 = ��0
2√(�/�0)2 − (�/�)2

,
(2)

where� is the driving frequency, �0 is the density of the 	lling
medium, �0 is the corresponding sound velocity, and � is the
distance between the two so� boundaries. In particular, the
impedance becomes very large at the cut-o
 frequency of the
dominant mode � = �0/2�, when the term in the square
root goes to zero. For values close to cut-o
, impedance
matching can be achieved, as the small value of the square
root is compensated by 2 ≫ 1, yielding zero re�ection
and full transmission independent of the channel length.
In order to con	rm this intuition, Figure 2(a) shows full-
wave simulations evaluating the transmission through this
geometry varying the channel length L. For each length, the
	rst peak in transmission corresponds to the supercoupling
frequency, which arises near the cut-o
 frequency of the
intermediate channel. �e higher-frequency transmission
peaks are due to Fabry-Perot resonances, which are largely
dependent on the channel length. By increasing the length of
the channel, the number of Fabry-Perot resonances increases
for a 	xed frequency spectrum; however the tunneling fre-
quency remains nearly unchanged. Figure 2(b) presents the
corresponding phase of the pressure 	eld along the channel
at the supercoupling frequencies, and the inset shows the
2D 	eld distribution for the di
erent lengths considered.
We observe completely uniform phase along the channel,
independent of the length of the coupling channel, consistent
with propagation in a zero-index material, and with the
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Figure 1: Geometry of the CNZ supercoupling experiment. �e geometry under analysis consists of input and output waveguides connected
by a much wider intermediate channel with variable length. �e output port remains �ush with the face of the wooden boundary and moves
along with the boundary as L is varied. (Inset bottom): transmission-line model. Inset top-le�: photograph of the experimental setup.

previous observations of supercoupling in ENZ media for
electromagnetic waves [5–10].

Indeed, for the intermediate channel the e
ective con-
stitutive parameters can be retrieved as discussed in the
Methods, yielding

����2 = �0
����2 = �01 − (��0/��)2 ,

(3)

where �0 is the bulk modulus of the 	lling material. �ese
equations con	rm that, at the cut-o
 frequency � = �0/2�,���� has a pole, the e
ective compressibility goes to zero,

and the phase velocity �/�� = √����/���� becomes in	nite.

We conclude that the geometry in Figure 1 with mixed
hard and so� boundary walls realizes the dual of zero-
density supercoupling, enabling the compensation of large
geometrical mismatch in the middle channel through com-
pressibility close to zero. �e electromagnetic analogue has
been explored in [17, 27] as a wide channel 	lled by MNZ
materials. Consistent with these works and similar phenom-
ena for zero-density supercoupling [24], Figure 2(c) shows
that supercoupling tunneling and in	nite phase velocity
is preserved also when the connecting channel is bent in
di
erent con	gurations, an e
ect of the quasistatic nature of
wave propagation associated with its in	nite phase velocity.

So far, we have shown that it is possible to achieve the
equivalent of zero-compressibility propagation and super-
coupling in a waveguide with mixed hard and so� boundary
walls, operating near its cut-o
 frequency. However, this

con	guration is hardly realizable in a realistic geometry.
Interestingly, in the following we show that it is possible
to achieve an analogous functionality exciting a waveguide
with all hard boundaries, as in the case of a conventional
acousticwaveguide 	lled by air, at the cut-o
 frequency of one
of its higher-order modes. In the Methods we indeed show
that the e
ective constitutive parameters of the (m,n) = (2,0)
mode supported by a hard-wall waveguide indeed satisfy a
similar expression as in (3), ensuring a zero-compressibility
condition near its cut-o
.

�e di
erence compared to the so�-hard waveguide in
Figure 2 is the presence of other modes in the waveguide,
including the dominant mode (m,n) = (0,0), which has no
cut-o
.However, we notice that these other modes, not being
operated near the cut-o
 frequency, are badly mismatched
with the input and output waveguides, due to the large
geometrical mismatch. �erefore, their coupling to the input
signal is negligible. In other words, the transition between
di
erent waveguides can be treated as a multiport network,
and the impinging energy naturally couples to the higher-
order mode at cut-o
, given that the impedance is conserved.
In our geometry, we drive the middle channel at its center,
totally preventing the excitation of odd-order modes because
of symmetry. �e dominant (0,0) mode is not excited due to
the large impedance mismatch, and therefore all the energy
can �ow unperturbed into the second-order mode at the
compressibility-near-zero (CNZ) frequency.

Figure 3 veri	es this prediction in full-wave simulations
of a hard-walled acoustic waveguide. Quite surprisingly,
we retrieve very similar functionality in this con	guration,
relying on a simple hollow waveguide driven at the cut-o
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Figure 2: Waveguides with two so� and two hard boundaries, operated near the cut-o frequency. (a) Calculated transmission phase and
amplitude. �e design parameters are similar to the experimental setup, with only the length being modi	ed (a = 0.225 m, b = 0.382 m, and
d = 12.6 mm). (b) Phase distribution through the CNZ channel near the 	rst cut-o
 frequency for di
erent lengths. f �����	
�� (i) = 763.0 Hz,

f �����	
�� (ii) = 763.3 Hz, and f �����	
�� (iii) = 764.9 Hz. (c) Spatial variation of phase at the CNZ tunneling frequency for waveguides with 90∘

and 180∘ bends. We observe uniform phase despite bending of the channel. Here, f �����	
�� 90 (i) = 755.10 Hz, and f �����	
�� 180 (ii) = 756.52 Hz.

frequency of its (2,0) mode, � = �0/�. We can see that
the spatial phase distribution of Figure 3(b) matches well the
one of Figure 2(b) in the center of the channel, with in	nite
phase velocity throughout the channel independent of its
length. In the transverse plane of the waveguide we observe a

phase �ip by �, associated with the modal distribution of the
excited higher-order mode. Interestingly, the location of the
�ip is exactly the e
ective location of a so�-wall boundary,
consistent with the results in Figure 2. �is concept may
be useful to design e
ective so�-wall waveguide structures
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Figure 3:Waveguides with hard boundary walls, operated near the higher-order (2,0) mode cut-o of the intermediate channel. We can see that
the higher-order mode matches the phase pattern of a so�-hard (1,0) mode (from Figure 2) in the center of the channel. �is presents an
“eective so� boundary” along the planes where the phase �ips by �. �is �ip results from a change in sign of the pressure, which is a purely
real-valued standing wave. (a) Numerical results for transmission phase and amplitude.�e design parameters are similar to the experimental
setup, with only the length being modi	ed (a = 0.450 m, b = 0.382 m, and d = 12.6 mm). (b) Phase distribution through the CNZ channel
near the (2,0) cut-o
 frequency for hard-hard con	gurations of di
erent lengths. For bottom 	gure: f �����	
�� (i) = 762.9 Hz, f �����	
�� (ii) =

763.4 Hz, and f �����	
�� (iii) = 764.8 Hz. (c) Spatial variation of phase at the CNZ tunneling frequency under 90∘ and 180∘ bends. Here, a =
0.450 m, b = 0.382 m, f �����	
�� 90 (i) = 764.40 Hz, and f �����	
�� 180 (ii) = 757.38 Hz.

usingmaterials that are not substantially so�er than the 	lling
medium. Also in this scenario, due to the quasistatic nature
of the pressure 	eld near the CNZ frequency, the acoustic
wave tunneling occurs regardless of the shape of the channel,

as demonstrated in Figure 3(c). In this case, the e
ective so�
boundary also follows the bending pro	le adiabatically.

Figure 4 presents our experimental veri	cation of CNZ
supercoupling in a channelwith variable length operated near
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the cut-o
 frequency of its (2,0) mode. We built the inter-
mediate channel using an o
-the-shelf steel welder’s tool box,
in which a wooden wall was shi�ed in di
erent positions to
change the length of the channel. �e measured data capture
the physics of the problem well: impedance matching and
near-zero phase delay in transmission, independent of the
length of the intermediate channel, are veri	ed experimen-
tally, despite the fact that the walls of our waveguide are not
ideally hard (details of the experimental setup are provided
in the Methods section). To aid in comparing numerical
results to experiment, the model in Figure 4 treated the
boundaries of the coupling channel as elastic shells, which
are capable of radiating sound into the surrounding air.
�is model also allowed for coupling of acoustic energy
into vibrational modes of the walls and for dissipation due
to loss within the material (with tan � = 0.05 for steel
lined with silicone caulk). �is more realistic condition
resulted in predicted transmission amplitudes with 13-18 dB
of loss (depending upon length), whereas the experimental
results showed similar loss levels of 17-18 dB. �is agreement
in transmission is good, considering the uncertainties in
material properties and variation of the intermediate channel
geometry froman ideal rectangular prism.�edata displayed
slightly lower-Q resonances than in the ideal scenario with
hard walls, as expected, but con	rmed nearly in	nite phase
velocity and a tunneling frequency nearly independent of the
channel length.

3. Discussion

In this work, we have presented theoretical and experimen-
tal validation of a straightforward way of realizing zero-
compressibility acoustic wave propagation in waveguides,
by exciting a higher-order mode at the cut-o
 frequency.
We used this unusual propagation regime to realize the
supercoupling phenomenon for sound, enabling tunneling of
energy through largely mismatched waveguide geometries.
Our theoretical results accurately capture the physics behind
this anomalous tunneling, and our experiments con	rm large
phase velocity and anomalous transmission independent
of the channel length. �e small discrepancies between
measurements and numerical predictions can be explained
by irregular geometry and uncertainties in the detailed
material properties of the o
-the-shelf toolbox used for the
middle channel in the experiment. We estimate that the
supercoupling transmission loss may be practically reduced
below 2 dB, if the middle channel was manufactured with a
steel wall thickness of approximately 7.5 mm or higher (see
Figure 4(a)).

In summary, we can describe the supercoupling phe-
nomenon as a dispersive impedance matching condition,
which occurs when the coupling channel (with smaller
characteristic impedance than the input waveguide) has
input impedance that appears nearly in	nitely sti
. At this
matching condition, the phase velocity approaches in	nity,
as long as S2/S1 is su�ciently large. Under this condition, we
achieve full amplitude transmission and total conservation
of the phase, independent of the height and length of
the coupling channel. Moreover, our results show that a

hard-wall waveguide, when driven near the cut-o
 frequency
of a higher-order mode, exhibits compressibility-near-zero
e
ective material properties and may be thought of as
consisting of two e
ective so� boundaries, along which
the pressure 	eld is equal to zero and the uniform phase
of the tunneling mode �ips by �. Quite surprisingly, it is
possible to suppress the excitation of all other modes in the
waveguide, including the dominant plane wavemode, thanks
to the largely mismatched cross-section at the connecting
interfaces. We envision a wide range of applicability of
this phenomenon, for use in acoustic sensing [35], for the
tailoring of acoustic radiation patterns [3, 36], for acoustic
lensing [37], and for enhanced acoustic nonlinearities and
sound-matter interactions [14, 33].

4. Materials and Methods

Transmission-Line Model for Acoustic Supercoupling. Sup-
pose there are two identical waveguides, each with cross-
sectional area S1, 	lled with a �uid with characteristic
acoustic impedance Z1. �ese waveguides are connected as
an input and output to an intermediate rectangular acoustic
channel, as in Figure 1, with length L, �uid with charac-
teristic impedance Z2 and cross-sectional area S2. Using
transmission-line theory, the re�ection coe�cient for a plane
wave from one port of this structure is written as

Γ = �1 − �
��1 + �
� (4)

where �
� is the impedance seen from the input waveguide
when looking into the channel and it is calculated using

�
� = �2�1 + 
�2 tan (���)�2 + 
�1 tan (���) . (5)

Plugging (5) in (4), the re�ection coe�cient reads as in (1).
Cut-o in Acoustic Waveguides and Compressibility-Near-

Zero. For sound propagating in an acoustic waveguide with
hard boundaries 	lled by a medium with density ���� and
bulk modulus ����, the following relations can be written:

√�������� = �, √�������� =
��� , (6)

where � and �� are de	ned as the acoustic impedance and
wave vector in the z-direction and S is the cross-sectional
area of thewaveguide. Solving (6) for the e
ective constitutive
parameters results in

���� = ����
���� = ���� ,

(7)

which allows retrieval of the e
ective constitutive parameters
knowing impedance, wave number, operating frequency, and
cross-sectional area of the waveguide.
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Consider now a waveguide with two parallel so� bound-
aries at x = {0, a} and two parallel hard boundaries at y ={0, b}. For this con	guration, the spatial pressure distribution
is given by �� = �� sin((��/�)�) cos((��/�)�), and it
exhibits cut-o
 at discrete frequencies

��� = �2�√(��� )2 + (��� )2. (8)

Due to the sinusoidal term in the pressure expression, the
mode (m,n) = (0,0) is not supported, resulting in a nonzero
cut-o
 frequency for the dominant mode (m,n) = (1,0), which
we denote as the 	rst cut-o
 frequency, only depending upon
the width a of the channel.

Momentum conservation requires

∇� + j��0# = 0, (9)

and therefore the particle velocity u is given by

# = −��$−����
��0 [�� cos (���) cos (���) �̂
− �� sin (���) sin (���) �̂
− 
�� sin (���) cos (���) '̂] ,

(10)

and � = (�/#) for the (m=1, n=0) mode, which gives the
result in (2).

�en, combining (7) with (2), we derive the e
ective
material properties of the acoustic waveguide with so�-
hard boundaries near the (1,0) mode cut-o
, yielding (3).
It is observed that the value of the e
ective bulk modulus
has a pole for � = �0/2�, and consequently the e
ective
compressibility tends to zero.

�is CNZ condition can be exploited to induce super-
coupling through a so�-hard channel waveguide. �ese
boundaries however can be di�cult to realize in practical
acoustic media. For a more realistic case, we assume a waveg-
uide con	guration in which all boundaries are composed
of a hard material. �is is a typical scenario for air-	lled
waveguides. In this case, the spatial pressure distribution
is

�� = �� cos (��� �) cos (��� �) , (11)

and the cut-o
 frequencies are again given by (8). In this case,
the 	rst cut-o
 frequency is zero, and a plane wave mode can
propagate also for very low frequencies in this con	guration.
However, a compressibility-near-zero (CNZ) condition can
arise when the hard boundary waveguide is operated near a
higher cut-o
 frequency, for instance, with (m,n) = (2,0), for

which ����2 = �02/(1 − (�0/��)2), and the CNZ frequency is� = �0/�.
Numerical Modeling. Finite element analysis was con-

ducted using Comsol Multiphysics. �e Pressure Acoustics
module was selected with the frequency domain solver. Air
was chosen from theComsol built-inmaterial list as the 	lling

�uid of all structures. Finally, the input and output ports were
set to Plane Wave Radiation conditions, while the acoustic
source wasmodeled as an Incident Pressure Field at the input
port. In Figure 1, the walls of the intermediate channel were
modeled as either hard or so� boundary conditions. For the
simulation of experimental parameters and consideration of
vibrational coupling in the results of Figure 4(a), the super-
coupling system was 	rst placed in an external rectangular
domain 	lled with air. �is domain enabled the modeling
of leakage from the intermediate channel and was bounded
by Perfectly Matched Layers (PMLs) to realize nonre�ecting
boundaries. Materials were chosen from the built-in material
library as Steel AISI 4340 for the intermediate channel walls
and aluminum for the input/output channel. �e e
ects
of viscothermal acoustic boundary-layer loss were modeled
by specifying the input/output waveguides as coupled to
Narrow Region Acoustics. �en, walls in the intermediate
channel were numerically modeled as thin elastic shells in
the Comsol Acoustic-Shell Interaction Module. Finally, the
re�ection and transmission coe�cients were calculated using
a four-microphone measurement technique similar to [38],
where the value of complex �� was derived from numerical
simulations using complex sound speed.

Measurements. �e experimental setup was built from an
o
-the-shelf steel welder’s tool box with dimensions of a =
0.450 m, b = 0.382 m, L = 0.79 m, and wall thickness = 1.54
mm. �e input and output waveguides were nearly-identical
aluminum tubes with inside diameter = 12.6mm, length of 92
cm, and wall thickness of 1.6 mm. �e input waveguide was
fed by a horn that was mounted transversely to the direction
of propagation, and both input and output waveguides
were terminated with anechoic foam to suppress standing
waves in the tubes. Measurements were carried out with
a procedure similar to [38] and following the standards of
[39, 40]. Due to the small dimensions of the input and output
waveguides, amodest amount of acoustic boundary-layer loss
was observed in the waveguides alone. �is was corrected
for by employing a complex value of �� = - + 
3 in the

transfer-matrix equations, with 3 ≈ −0.13m−1 according to
[41].
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