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Abstract
Dirac cones (DCs) are an important band structure in topological insulators (TIs) for realizing
topological phase transition, and they provide unique ways to artificially regulate wave transport.
Herein, we proposed a simple method to achieve Dirac hierarchy in three-dimensional (3D)
acoustic TIs with rich and controllable topological phase transitions. The split of multifold DCs in
each bulk Dirac hierarchy induced boundary Dirac hierarchy, including topological surface states
and topological hinge states. We successfully realized 3D higher-order topological insulators
(HOTIs) that exhibited two-fold boundary Dirac hierarchy with hinge states and achieved energy
transport along three independent directions based on hinge-to-hinge channels. The proposed
method is not limited to single hinges, and it provides a new design idea for multidimensional
sound transport, serving as the basis for controllable acoustic functional devices.

1. Introduction

The discovery of topological insulators (TIs) has provided novel opportunities for advances in the research
on condensed matter physics and material science [1–15]. The concept of higher-order topological insulators
(HOTIs)—a new category of TIs—originated from quantum electronic systems [16–18]. The topological
properties of HOTIs are characterized by fractional bulk polarization, which sets them apart from traditional
TIs characterized by integral topological invariants. Contemporary research has shown that HOTIs exhibit
extended bulk-boundary correspondence, with the nth-order TIs possessing (D–n)-dimensional topological
boundary states in a D-dimensional system [16, 19–25]. For instance, a three-dimensional (3D) first-order
TI contains two-dimensional (2D) topological surface states within the bulk bandgap, while a 3D
second-order TI features one-dimensional (1D) topological hinge states [26, 27]. In particular, the hinge
states in 3D second-order TIs are localized at the hinges of the system, and they exhibit novel transfer
characteristics [28–35]. Initially proposed in condensed matter systems, 3D HOTIs can efficiently
manipulate classical waves across multiple dimensions [36], providing an important avenue for exploring
various topological properties in acoustic, optic, and other classical systems.

The construction of 3D HOTIs typically requires either highly cumbersome coupling strengths or
extremely complicated geometrical structures. Because of these complex structures, it is difficult to analyze
the mechanism of topological phases when investigating the topological properties of materials [34, 37–39].
Based on the same configuration, theoretical research has proposed a new approach to achieve 3D TIs; it is
related to the hierarchy of Dirac cones that correspond to the band structure of the topological phase
transition [26]. Studies have shown that the topological phase transition caused by the lifting of the Dirac
hierarchy is feasible and provides a method to realize HOTIs in 3D structures [27]. However, in
contemporary studies, the hinge state was only observed along a single hinge, limiting the application of
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hinge transport in multiple directions. In this study, we proposed a simple method to achieve Dirac hierarchy
in 3D acoustic TIs with controllable topological phase transitions, allowing for hinge transport along three
independent directions.

2. Dirac hierarchy in bulk and boundary

In this study, we presented a simple method to construct a 3D acoustic crystal with Dirac hierarchy.
Compared to 3D HOTIs implemented by designing complex geometries or setting harsh coupling
parameters, our method can use the same 3D basic configuration to peel off DCs in the bulk as well as
boundary, achieving rich topological phase transitions and topological boundary states. As shown in
figure 1(a), the basis vectors of the 3D acoustic honeycomb lattice were a1 =

(√
3/2,1/2, 0

)
a,

a2 =
(
−
√
3/2, 1/2, 0

)
a and a3 = (0,0,1)H, where a is the in-plane (xy-plane) lattice constant and H is the

out-of-plane (z-direction) lattice constant. The unit cell was a bilayer graphene structure comprising several
air resonators connecting the air plates shown in figure 1(b). The height of the cylindrical resonators was
L= 49.2 mm, and the air plates with h= 2.05 mm connected the dispersed cylindrical resonators to form a
rigid-bounded air resonant cavity that localized the sound wave. When the lattice constant a= 168 mm was
three times the distance of the nearest adjacent cylindrical resonator R= 56 mm, and the radius of the
cylindrical resonator in each layer was r1 = r2 = 20 mm, which was related to the interlayer coupling, an
eight-fold bulk DC (figure 1(c)) appeared according to zone-folding effects, 3D bulk states were observed
(figure 1(f)). When r1 > r2 (r1 = 21.6 mm, r2 = 2 mm), the strength of the interlayer coupling changed, and
the mirror symmetry was broken; as a result, the eight-fold bulk DC split into double four-fold bulk DCs
(left panel of figure 1(d)), creating the first-order topological bandgap. At this moment, the acoustic crystal
underwent the topological phase transition, ensuring the emergence of the 2D surface DC in the bandgap
(right panel of figure 1(d)) and the 2D topological surface state (figure 1(g)). Furthermore, the interlayer
coupling was r1 = 10.8r2 and a= 168 mm, we set 3R/a= 1.09 to change the strength of the intralayer
coupling; thus, we split the four-fold bulk DCs into double two-fold bulk Weyl and formed the second-order
topological bandgap, which supported the existence of the 1D hinge DC (left panel of figure 1(e)), and it
exhibited the topological 1D hinge state on the boundary of the 3D acoustical crystal (figure 1(h)). We
focused on the two-fold bulk Weyl related to the split of four-fold bulk DC at lower frequencies.

According to the previous part, an eight-fold bulk DC (red dot) emerged at the Z point in the Brillouin
zone, as shown in figure 2(a), and the degenerated node was∼1.87 kHz, as r1 = r2 = 20 mm in the acoustic
crystal. The acoustic eigenfields of the eight-fold degenerated node (insets in figure 2(a)) underlined the
dipole p and quadrupole d nature, exhibiting the generation of dipole eigenstates accompanied by
quadrupole eigenstates. However, the eight-fold bulk DC was broken and split into four-fold bulk DC pairs,
symmetrically, forming a wide topological band gap in the range 1.66–2.18 kHz (gray region in figure 2(b));
this was because the strength of the interlayer coupling changed (r1 = 21.6 mm, r2 = 2 mm). As previously
described, the four-fold bulk DC at lower frequencies was further transformed to double bulk Weyl, forming
a bandgap (green region in figure 2(c)) by changing the strength of the intralayer coupling. To analyze the
nature of the acoustic crystal, an effect tight-binding model was constructed, and its Hamiltonian was
expressed as in equation (1)

H= I2 ⊗Hxy +Hz ⊗ I6 (1)

where IN is an N-by-N identity matrix (N = 2, 6), and Hxy and Hz are the Hamiltonians for the in-plane
monolayer honeycomb lattice and the out-of-plane SSH chain, respectively. Both these features

block-off-diagonal forms in which Hxy =

[
0 Q
Q† 0

]
and Hz =

[
0 ρ
ρ∗ 0

]
, where Q and ρ are the

couplings between different sublattices for the Kekulé honeycomb lattice (intralayer coupling) and SSH chain
(interlayer coupling), respectively (supplemental material [40]). Since the matrix form of Hxy is similar to
SSH chain, it can be considered as the extension of the 1D SSH model in xy-plane. Deducing equation (1),
we determined that the eigenvalue of H was E= Ez + Exy, with the corresponding eigenstate ψ = ψ z ⊗ψ xy,
in which Exy(z) and ψ xy(z) are the eigenvalue and eigenstate, respectively, of Hxy(Hz). Thus, if ψ xy and ψ z are
both bulk states, then ψ is also a bulk state; if ψ z is an edge state and ψ xy is a bulk (edge) state, then ψ is a
surface (hinge) state [26].

For a typical case, when the intralayer and interlayer coupling strengths were equal, the eight-fold bulk
DC emerged (figure 2(d)). The first-order topological nature was considerably influenced by the interlayer
coupling, which in turn depended on the strength of the intracell coupling s and intercell coupling t in the
tight-binding model that was reduced to a classical 1D SSH model along the z-direction. As s< t, the 8-fold
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Figure 1. Dirac hierarchy in bulk and boundary. (a) Schematic diagram of the acoustic honeycomb lattice. (b) Unit cell of 3D
acoustic crystal. (c)–(e) Dirac hierarchy including bulk and boundary state hierarchy. The eight-fold bulk DC split into two
four-fold bulk DCs, and the bulk DC split into two bulk Weyl. Boundary Dirac hierarchy evolution from 3D bulk DC to 2D
surface DC to 1D hinge DC (f)–(h) Topological states related to the corresponding Dirac hierarchy in (c)–(e).

Figure 2. Band structure of Dirac hierarchy in acoustic crystal and tight-bounding model. (a) Bulk band dispersion at
high-symmetry lines related to eight-fold bulk DC in acoustic crystal. Inset: Brillouin zones and eigenfields in the Dirac point
with dipole p and quadrupole d nature. (b) Bulk band dispersion at high-symmetry lines related to four-fold bulk DCs in acoustic
crystal and the first-order topological bandgap (gray region). (c) Bulk band dispersion at high-symmetry lines related to two-fold
bulk Weyl at Z, and the second-order topological bandgap (green region). (d) Calculated band structures with equal intralayer
and interlayer coupling strengths. (e) Calculated band structures with equal intralayer coupling strengths and unequal interlayer
coupling strengths. Gray region: first-order topological bandgap. (f) Calculated band structures with unequal intralayer and
interlayer coupling strengths. Green region: second-order topological bandgap.

bulk DC split into two 4-fold DCs (figure 2(e)), and the nontrivial Zak phase π was induced along the
z-direction, which implied the emergence of the 2D topological surface states (2D boundary Dirac hierarchy)
in the topological bandgap protected by inversion symmetry [41–43]. The second-order topological nature
was considerably influenced by the intralayer coupling, and the tight-binding model can be regarded as the
extension of the 1D SSH model in xy-plane. Under the interlayer coupling of s< t, when w< v (intracell
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Figure 3. First-order TI. (a) Topological surface states appear in the xy-plane when r1/r2 > 1; (b) they ceased to exist when
r1/r2 < 1. Inset: projective Brillouin zone on the top surface.

coupling w and intercell coupling v along the xy-plane), the four-fold bulk DC at the lower frequency
transformed to double two-fold DCs (figure 2(f)).

3. First-order 3D acoustic TI

Further, we computed the projected surface dispersion along the high-symmetry line K̃− Γ̃− M̃− K̃ (the
projections of the high-symmetry points on the xy-plane) of a truncated honeycomb first-order TI with ten
layers stacked along the z-direction. We distinguished between two cases, that is, figures 3(a) and (b)
represent interlayer couplings with r1/r2 > 1 and r1/r2 < 1, respectively. Topological surface states spanned
the frequency range of the bulk band gap with a gapless four-fold DC when r1/r2 > 1, while they ceased to
exist when r1/r2 < 1 (red spheres: four-fold surface DC; gray dots: bulk state).

The topological nature of the first 3D acoustic crystal was as follows. According to equation (1), the
lattice configuration of the first sample indicated that Hxy had a gapless eigenspectrum, and ψ xy was a bulk
state, while Hz had a topological edge state ψ z because the winding number

wz =− 1

2π

2πˆ

0

d

dkz
arg(detρ)dkz (2)

was nonzero [26]. Consequently, ψ = ψ z ⊗ψ xy appeared to be 2D topological surface states.

4. Second-order 3D acoustic TI

In section 2, we discussed the theoretical Dirac hierarchy in bulk as well as boundary. Herein, we investigated
the higher-order topological characteristics of 3D acoustic TIs. When r1/r2 = 10.8 and 3R/a= 1.09, two
2-fold degenerated nodes appeared at Z, which were attributed to the modes of d- and p-states, and they
shaped the second-order topological bandgap (figure 4(a)). The eigenmodes of the unit cell at Z exhibited a
pair of pseudospin dipolar states above the bandgap, which were even or odd symmetrical to the x/y axes,
and they were similar to the px/py-type orbitals (inset in figure 4(a)). In contrast, a pair of pseudospin
quadrupolar states appeared below the bandgap, which showed the odd symmetry on the x- and y-axes
corresponding to the dxy-type orbital, or even symmetry on the x- and y-axes corresponding to the
dx2−y2-type orbital (inset in figure 4(a)). We first maintained the interlayer coupling r1/r2 and altered the
intralayer coupling 3R/a and then transformed the degenerated nodes from two-fold to four-fold to
two-fold, achieving the closing and reopening of the bandgap (figure 4(b)). The corresponding acoustic
eigenmodes at Z were also reversed; figures 4(b) and (c) illustrate the inversion process. When 3R/a< 1, the
acoustic TI was trivial; while at 3R/a> 1, it was nontrivial and exhibited second-order topology.

The 3D second-order TI enabled the existence of 1D hinge states in the bandgap, and the acoustic fields
were localized at the hinge of the system. We considered the realization of hinge states on the out-of-plane
(z-direction) and in-plane (xy-plane) in acoustic TIs. First, we discussed the method for achieving the
out-of-plane hinge state. The triangular supercell structure was constructed, which comprised nontrivial
unit cells arranged in the xy-plane. The side length of the equilateral triangle was 9a, and the z-direction was
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Figure 4. Second-order acoustic TI and the eigenmode transformation. (a) Band structure of second-order TI at high-symmetry
line, with r1/r2 = 10.8 and 3R/a= 1.09. Inset: the eigenmodes of the unit cell at Z. (b) Phase diagram at Z. Red and blue dotted
lines represent the acoustic modes of d- and p-states, respectively. (c) Inversion of acoustic eigenmodes corresponding to (b).

set to periodic, as shown in figure 5(b). Figure 5(a) exhibits the numerical projected dispersion along kz, and
the gapped hinge states appear at frequencies of 1.28–1.30 kHz, which was under the bandgap range. The
acoustic pressure field distributions of bulk and hinge states are shown in figures 5(b) and (c), respectively.
Clearly, the acoustic energy was highly localized at the corner of the air cavity of the acoustic supercell, that
is, the acoustic energy was concentrated on the 1D hinge along the z-direction, and the bulk state was
dispersed throughout the system. Second, we discussed the existence of the hinge state in the in-plane. As
shown in figure 5(e), the 3D acoustic ribbon-shaped supercell comprised 216 trivial unit cells and 234
nontrivial unit cells. Periodic boundary conditions were applied on both sides of the supercell along the
y-direction. The numerical projected dispersion along the ky direction is shown in figure 5(d), which reveals
that gapped 1D hinge Dirac hierarchy (red curves) were achieved. The simulated acoustic pressure field
distribution of the surface and hinge states at ky = 0 corresponding to the blue star in the gray area of
figure 5(d) are shown in figures 5(e) and (f). The surface states of acoustic energy were highly localized at the
interface of the trivial and nontrivial parts (yz-plane) (figure 5(e)). However, the acoustic energy of the 1D
hinge states was only distributed along the y-direction (figure 5(f)).

The emergence of these hinge states was ascribed to a net-winding number when considering a specific
lattice termination [26]. An alternative explanation was obtained by considering the mirror symmetryMy

along the perpendicular direction of the molecule-zigzag hinge and by calculating the mirror winding
numbers. SinceMy commutes with Hxy at Γ point, the off-diagonal block Q can be block-diagonalized into
two sectors Q±, associated with the+1 and−1 eigenvalues ofMy [44]. This further allowed us to calculate
the winding numbers in each sector separately using equation (3)

w±
MZ =− 1

2π

2πˆ

0

d

dk⊥
arg

(
detQ±)dk⊥ (3)

where the subscript denotes the molecule-zigzag edge, and k⊥ is the wave vector along the perpendicular
direction of the edge. According to the calculated results, w±

MZ = 0 for w> v, while w±
MZ =∓1 for w< v,

which corresponds to the two helical hinge states in our case [40]. Moreover, because of the mirror symmetry
My, these two helical hinge states degenerate at ky = 0 [44], forming a 1D gapless hinge DC within the
surface band gap.

5. Hinge transport

In section 4, the hinge states along the z-direction and xy-plane were realized independently. Hence, the
natural next question is whether the hinge states exist simultaneously along all three independent directions
in the HOTIs. A finite 3D acoustic structure spliced together from trivial and nontrivial insulators was
designed to explore hinge transport in the three independent directions. As shown in figure 6(a), the domain
walls between trivial and nontrivial regions were orthogonal; the green and red lines denote the zigzag-type
and broken armchair-type domain walls, respectively. The zigzag-type interface was parallel to the
y-direction and all the unit cells remained intact. In contrast, the broken armchair-type interface was
arranged along the x-direction and the unit cells near the interface were cut in half. An excitation source with
a frequency of 1.27 kHz (white star in figure 6(b)) was placed on the top surface of the finite 3D acoustic
insulator. The simulated acoustic pressure field distribution exhibited higher-order topology, and the
acoustic energy was efficiently transported along the hinges in three independent directions (figure 6(b)).
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Figure 5. Topological hinge states in the out-of-plane and in-plane directions. (a) Numerical projected dispersion along kz
direction, with r1/r2 = 10.8 and 3R/a= 1.09. Green area: frequency range of the second-order hinge bands; gray area: bulk
bands. (b) and (c) Acoustic pressure field distribution of bulk state [blue star in the gray area of (a)] and hinge states [blue star at
the red dots of (a)] at kz = 0. (d) Numerical projected dispersion along ky direction in the acoustic ribbon-shaped supercell. Gray
areas and red curves represent the surface and hinge states, respectively. (e) and (f) Acoustic pressure field distribution of the
surface state [blue star in the gray areas of (d)] and hinge states [blue star in the red curves of (d)] at ky = 0, respectively, together
with the interface profiles of acoustic pressure field distribution.

Figure 6. 3D hinge transport. (a) and (c) Schematic illustration of the finite acoustic structure comprising trivial and nontrivial
TIs, with different interface angles between trivial and nontrivial regions. Green line: zigzag-type interface; red line: broken
armchair-type interface. (b) and (d) Acoustic pressure field distribution excited by the source at a frequency of 1.27 kHz.
Cross-sectional view on the right side of (b) and (d) shows the distribution of sound pressure field in the hinge state at the
interface between the trivial and nontrivial regions, where the arrow represents the direction of sound wave transport.

Thereafter, we changed the interface angle of the trivial and nontrivial regions (figure 6(c)) and placed an
excitation source with a frequency of 1.27 kHz at the same location (white star in figure 6(d)). As expected,
acoustic energy was transport along the interface, successfully achieving 3D hinge transport (figure 6(d)).
This finding enables us to design an expected interface to realize flexible transport.
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6. Conclusion

In this study, we realized Dirac hierarchy in bulk and boundary using the same basic configuration that is
used in acoustic crystals. We broke the symmetry of the 3D acoustic structure step-by-step and realized the
2D surface DC with unequal interlayer coupling strengths and equal intralayer coupling strengths. We
achieved the 1D hinge DC with unequal interlayer and intralayer coupling strengths. In particular, hinge
states were observed along the three independent directions in the 3D HOTIs, successfully achieving the
controllable transport of acoustic waves at the hinges. The findings of our study provide a versatile platform
for exploring controllable topological phase transitions, different dimensional Dirac hierarchies, and also
provides a new idea for designing acoustic devices with flexible 3D hinge transports. We expect that the work
can be extended to other classical wave systems by regulating interlayer and intralayer coupling strengths
based on this simple 3D structure, and it can greatly enrich the content of higher-order topological states,
which can be of great significance for the controllable transport of optical, acoustic, and elastic waves in 3D
structures.
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