
 
 
General rights 
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright 
owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. 
 

 Users may download and print one copy of any publication from the public portal for the purpose of private study or research. 

 You may not further distribute the material or use it for any profit-making activity or commercial gain 

 You may freely distribute the URL identifying the publication in the public portal 
 
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately 
and investigate your claim. 
  
 

   

 

 

Downloaded from orbit.dtu.dk on: Aug 26, 2022

Acoustic Tweezing and Patterning of Concentration Fields in Microfluidics

Karlsen, Jonas Tobias; Bruus, Henrik

Published in:
Physical Review Applied

Link to article, DOI:
10.1103/PhysRevApplied.7.034017

Publication date:
2017

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Karlsen, J. T., & Bruus, H. (2017). Acoustic Tweezing and Patterning of Concentration Fields in Microfluidics.
Physical Review Applied, 7(3), [034017 ]. https://doi.org/10.1103/PhysRevApplied.7.034017

https://doi.org/10.1103/PhysRevApplied.7.034017
https://orbit.dtu.dk/en/publications/c4fb8341-869e-42d4-b807-528d48d304c9
https://doi.org/10.1103/PhysRevApplied.7.034017


Acoustic Tweezing and Patterning of Concentration Fields in Microfluidics

Jonas T. Karlsen* and Henrik Bruus†

Department of Physics, Technical University of Denmark,

DTU Physics Building 309, DK-2800 Kongens Lyngby, Denmark
(Received 5 December 2016; published 24 March 2017)

We demonstrate theoretically that acoustic forces acting on inhomogeneous fluids can be used to pattern
and manipulate solute concentration fields into spatiotemporally controllable configurations stabilized
against gravity. A theoretical framework describing the dynamics of concentration fields that weakly
perturb the fluid density and speed of sound is presented and applied to study manipulation of
concentration fields in rectangular-channel acoustic eigenmodes and in Bessel-function acoustic vortices.
In the first example, methods to obtain horizontal and vertical multilayer stratification of the concentration
field at the end of a flow-through channel are presented. In the second example, we demonstrate acoustic
tweezing and spatiotemporal manipulation of a local high-concentration region in a lower-concentration
medium, thereby extending the realm of acoustic tweezing to include concentration fields.

DOI: 10.1103/PhysRevApplied.7.034017

I. INTRODUCTION

Sparked by the ambition to dynamically manipulate
microparticles in solution, there have been major advances
in the development of experimental methods to control
ultrasound acoustic fields at the microscale [1,2]: for
example, using bulk acoustic waves [3–5], surface acoustic
waves [6–9], transducer arrays [10–12], and 3D-printed
transmission holograms [13]. The acoustic radiation force
acting on particles in acoustic fields is used in these systems
to manipulate particles and cells, thereby concentrating
[14], trapping [15,16], separating [17], and sorting [18]
bioparticles and cells based on their acoustomechanical
properties. It would be of considerable interest if these
methods could be extended to the manipulation of solute
concentration fields in microfluidic systems. Indeed, the
ability to pattern and manipulate molecular concentration
fields plays an essential role in several lab-on-a-chip
applications and in controlled studies of biological proc-
esses such as development, inflammation, wound healing,
and cancer, for which biomolecule gradients act as cellular
signaling mechanisms [19]. The standard approach to
precisely generate specified concentration gradients is to
use microfluidic networks [20,21]—with limited temporal
control, however.
Here, we present a theoretical analysis of acoustic

tweezing, patterning, and manipulation of solute concen-
tration fields in microfluidics. We predict that acoustics will
offer a high degree of spatiotemporal control in these
dynamical operations. Our study is predominantly moti-
vated by the recent development of isoacoustophoresis [22],
a microfluidic analog to density-gradient centrifugation. In

isoacoustophoresis, cells are differentiated by their pheno-
type-specific acoustic impedance by observing their equi-
librium position in an acoustically stabilized concentration
gradient. The physics of this stabilization has only recently
been understood [23], and an increased understanding of the
ability of acoustics to shape and manipulate a concentration
field is important to further develop the method.
In this work, we explore the consequences of our recent

theory of the acoustic force density acting on inhomo-
geneous fluids in acoustic fields [23], a theory successfully
validated by experiments, which explains the acoustic
stabilization and relocation of inhomogeneous fluids
observed in microchannels [24]. We define an inhomo-
geneous fluid as a fluid with spatial variations in density
and speed of sound caused by a varying concentration of a
solute. Consequently, there is a direct correspondence
between fluid inhomogeneities and solute concentration.
We present a theoretical framework for analyzing acoustic
manipulation of such concentration fields, and we apply it
to the special cases of rectangular-channel eigenmodes and
Bessel-function acoustic vortices. In the former system, we
present methods to obtain stable horizontal and vertical
multilayer stratification of the concentration field at the end
of a flow-through channel starting from typical inlet
conditions. In the latter system, we demonstrate acoustic
tweezing and spatiotemporal manipulation of a local high-
concentration region in a lower-concentration medium.
This result extends the realm of acoustic tweezing to
include concentration fields.

II. MODEL SYSTEMS

In Fig. 1, the two typical model systems are introduced to
provide the context necessary to appreciate the ensuing
theoretical development. The implementation and design of
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the numerical model and how it corresponds to experi-
mental conditions is discussed in more detail in Sec. IV.
The first model system, shown in Fig. 1(a), is a long,

straight, rectangular glass-silicon microchannel, placed
along the x axis, with a piezoelectric transducer glued
underneath. By actuating the transducer at a resonance
frequency of the cavity, an acoustic standing-wave field can
be established in the channel cross section in the y-z plane,
which is typically a few hundred micrometers in the width
W and height H, leading to fundamental resonance
frequencies on the order of 1–10 MHz. These systems
are well characterized [4,25–28] and are used in various
biomedical applications, for example, the enrichment of
circulating tumor cells in blood [14,29].
The second model system, shown in Fig. 1(b), consists of

a transducer array with 16 elements enclosing a circular
fluid chamber. It is inspired by, and closely resembles, the
experimental systems in Refs. [9,10,30–32]. The radius of
these chambers is typically around 1 mm, and the chambers
may have between 8 and 64 transducer elements operating
at MHz frequency. By controlling the amplitude and phase
of each transducer, approximate Bessel-function acoustic
vortices may be generated by a superposition of waves,
then used to trap and move microparticles [10,31].

III. THEORY

The recently developed theory for the acoustic force
density acting on inhomogeneous fluids in acoustic fields
[23] is based on the separation of time scales between the
fast acoustic time scale t and the slow hydrodynamic time
scale τ. In general, the large separation of time scales
(τ ∼ 105t) allows the acoustic fields, oscillating at the fast
time scale t, to be solved for while keeping the hydro-
dynamic degrees of freedom fixed at each instance in time τ
on the slow time scale. Because of the inhomogeneity in the
fluid medium, the resulting acoustic field yields a diver-
gence in the time-averaged acoustic momentum-flux-
density tensor [23], and this is the origin of the acoustic

force density f ac, which enters the slow-time-scale hydro-
dynamics as an external driving force.
The inhomogeneity in the fluid medium is caused by the

solute concentration field sðr; τÞ. The fluid density ρ0,
compressibility κ0, and dynamic viscosity η0 are all
functions of the solute concentration s, and thus functions
of space and time as the concentration field evolves by
advection and diffusion,

ρ0 ¼ ρ0½sðr;τÞ�; κ0¼ κ0½sðr;τÞ�; η0¼ η0½sðr;τÞ�: ð1Þ

The specific dependences of ρ0, κ0, and η0 on concentration
s depend on the solute used to establish the inhomogeneity,
e.g., iodixanol (OptiPrep), polysucrose (Ficoll), or colloidal
nanoparticles (Percoll) as commonly used in density-
gradient centrifugation. In this work, we consider solutions
of iodixanol, for which we have measured the fluid
properties as functions of concentration [22].

A. Slow-time-scale hydrodynamics

The hydrodynamics on the slow time scale τ is governed
by the momentum and mass-continuity equations for the
fluid velocity vðr; τÞ and pressure pðr; τÞ, as well as the
advection-diffusion equation for the solute concentration
field sðr; τÞ of the solute with diffusivity D,

∂τðρ0vÞ ¼ ∇ · ½σ − ρ0vv� þ f ac þ ρ0g; ð2aÞ

∂τρ0 ¼ −∇ · ðρ0vÞ; ð2bÞ

∂τs ¼ −∇ · ½−D∇sþ vs�: ð2cÞ

Here, g is the acceleration due to gravity, and σ is the fluid
stress tensor, given by

σ ¼ −pIþ η0½∇vþ ð∇vÞT � þ

�

ηb
0
−
2

3
η0

�

ð∇ · vÞI; ð3Þ

(b)(a)

FIG. 1. Sketches of the two model systems considered in this work for the controlled ultrasound manipulation of inhomogeneous
fluids at the microscale. The concentration fields (white, high; black, low) are manipulated by the acoustic field excited in the fluid
domain by the attached piezoelectric transducers. (a) Acoustic eigenmodes in the two-dimensional cross section of a rectangular
microchannel of width W and height H in the y-z plane. (b) Acoustic Bessel-function vortices in the two-dimensional x-y plane
generated by a circular 16-element phased transducer array of inner radius R. Gravity acts in the negative z direction.
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where the superscript T indicates tensor transposition, and
η0 and η

b
0
are the dynamic and bulk viscosities, respectively.

The equations constitute an advection-diffusion flow prob-
lem with an external forcing due to the acoustic and
gravitational force densities f ac and ρ0g, both appearing
on the right-hand side of the momentum equation (2a).

B. The acoustic force density

The acoustic force density f ac acting on the fluid
on the slow hydrodynamic time scale τ was derived in
Ref. [23] from a divergence in the time-averaged acoustic
momentum-flux-density tensor induced by continuous
spatial variations in the fluid parameters of density ρ0
and compressibility κ0,

f ac ¼ −
1

4
jp1j

2
∇κ0 −

1

4
jv1j

2
∇ρ0: ð4Þ

Here, p1 and v1 are the acoustic pressure and the acoustic
velocity field, respectively, assumed to be time-harmonic
first-order perturbations of the hydrodynamic degrees of
freedom.
Because the compressibility κ0 is difficult to measure

directly, it is often more convenient to work with the
fluid density ρ0 and speed of sound c0, both of which are
readily measured as functions of concentration. With
κ0 ¼ 1=ðρ0c

2

0
Þ, we find

∇κ0 ¼ ∇

�

1

ρ0c
2

0

�

¼ −κ0
∇ρ0

ρ0
− 2κ0

∇c0

c0
; ð5Þ

and the expression (4) becomes

f ac ¼
1

4
½κ0jp1j

2
− ρ0jv1j

2�
∇ρ0

ρ0
þ
1

2
κ0jp1j

2
∇c0

c0
: ð6Þ

In the weakly inhomogeneous limit where the variations in
density ρ0 and speed of sound c0 are small, we introduce
the dimensionless relative deviations ρ̂ðr; τÞ and ĉðr; τÞ and
write

ρ0ðr; τÞ ¼ ρ
ð0Þ
0
½1þ ρ̂ðr; τÞ�; jρ̂ðr; τÞj ≪ 1; ð7aÞ

c0ðr; τÞ ¼ c
ð0Þ
0
½1þ ĉðr; τÞ�; jĉðr; τÞj ≪ 1: ð7bÞ

Here, the superscript (0) indicates zeroth-order in the
inhomogeneity ρ̂ and ĉ. To first order in ρ̂ and ĉ, the force
density (6) then becomes

f
ð1Þ
ac ¼

1

4
½κ

ð0Þ
0
jp

ð0Þ
1
j2 − ρ

ð0Þ
0
jv

ð0Þ
1
j2�∇ρ̂þ

1

2
κ
ð0Þ
0
jp

ð0Þ
1
j2∇ĉ: ð8Þ

In this expression, the acoustic fields p
ð0Þ
1

and v
ð0Þ
1

are
zeroth order in ρ̂ and ĉ and, consequently, the fields are
obtained as solutions of the homogeneous-fluid wave
equation. This constitutes a significant simplification in
applications of the theory, as will be shown next.

Let pa denote the acoustic pressure amplitude, ω the

angular acoustic frequency, and k
ð0Þ
0

¼ ω=c
ð0Þ
0

the homo-
geneous-fluid wave number. The time-harmonic acoustic

fields p
ð0Þ
1

and v
ð0Þ
1

may then be written in terms of a

nondimensionalized pressure field p̂
ð0Þ
1
ðr; τÞ as

p
ð0Þ
1

¼ pap̂
ð0Þ
1
e−iωt; v

ð0Þ
1

¼
−ipa

k
ð0Þ
0
c
ð0Þ
0
ρ
ð0Þ
0

∇p̂
ð0Þ
1
e−iωt: ð9Þ

Inserting Eq. (9) into Eq. (8) and introducing the homo-
geneous-fluid oscillation-time-averaged acoustic energy

density E
ð0Þ
ac ¼ 1

4
κ
ð0Þ
0
p2
a, the acoustic force density f

ð1Þ
ac

can be rewritten as

f
ð1Þ
ac ¼ E

ð0Þ
ac ½Rðr; τÞ∇ρ̂þ Cðr; τÞ∇ĉ�; ð10aÞ

where we have introduced the dimensionless field-shape
functions Rðr; τÞ and Cðr; τÞ, given by

Rðr; τÞ ¼ jp̂
ð0Þ
1
j2 − ðk

ð0Þ
0
Þ−2j∇p̂

ð0Þ
1
j2; ð10bÞ

Cðr; τÞ ¼ 2jp̂
ð0Þ
1
j2: ð10cÞ

The field-shape functions Rðr; τÞ and Cðr; τÞ depend on
the shape of the homogeneous-fluid acoustic pressure field

p̂
ð0Þ
1
ðr; τÞ, often known analytically, and may thus be varied

in space and time. Consequently, our theoretical framework
suggests that a high level of spatiotemporal control of fluid
inhomogeneities can be achieved.

C. Eigenmodes in a rectangular microchannel

Consider a long, straight, hard-walled microchannel of
widthW and heightH, with the aspect ratio α ¼ H=W. The
acoustic fields obtained at resonance conditions in the
two-dimensional channel cross section take the form of
eigenmode solutions to the Helmholtz wave equation with
hard-wall boundary conditions. Choosing the fluid domain
in the y-z plane defined by 0 < y < W and 0 < z < H, and
introducing the normalized coordinates ŷ ¼ ðπ=WÞy and

ẑ ¼ ðπ=HÞz, the eigenmodes p̂ð0Þ
1
ðŷ; ẑÞ are

p̂
ð0Þ
1

¼ cosðnŷÞ cosðmẑÞ; ð11aÞ

with fnm ¼
ωnm

2π
¼

c

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�

n

W

�

2

þ

�

m

H

�

2

s

: ð11bÞ

Here, n ¼ 0; 1; 2;… and m ¼ 0; 1; 2;… are the mode
numbers in the y and z directions, respectively, and fnm
is the resonance frequency of the nm mode.
Inserting the eigenmode solution (11) into Eq. (10), one

obtains the acoustic force density acting on the fluid in the
nm mode. After some algebra, the field-shape functions
Rnmðŷ; ẑÞ and Cnmðŷ; ẑÞ take the form
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Rnmðŷ; ẑÞ ¼
1

2

�

n2

n2 þm2α−2
½cosð2nŷÞ − cosð2mẑÞ�

þ cosð2nŷÞ cosð2mẑÞ þ cosð2mẑÞ

�

; ð12aÞ

Cnmðŷ; ẑÞ ¼
1

2
½1þ cosð2nŷÞ�½1þ cosð2mẑÞ�: ð12bÞ

In the horizontal half-wave resonance ðn;mÞ ¼ ð1; 0Þ, we
obtain R10 ¼ cosð2ŷÞ and C10 ¼ 1þ cosð2ŷÞ, in agree-
ment with Ref. [23], given an appropriate change of the
coordinate system.

D. Bessel-function acoustic vortex fields

It has been demonstrated that transducer arrays can be
used to generate acoustic vortices in fluid-filled cham-
bers [10,31–33]. By controlling the amplitude and
phase of each transducer in a circular array, one can
generate approximate Bessel-function pressure fields of
the form [31]

p̂
ð0Þ
1

¼ Jlðk
ð0Þ
0
rÞeilθ: ð13Þ

Here, we are using cylindrical polar coordinates ðr; θ; zÞ
with the origin at the center of the Bessel function.
Jl is the lth-order Bessel function of the first kind,
and l is the number of 2π phase shifts around the
axis of the vortex, often referred to as the topological
charge.
The acoustic force density acting on an inhomogeneous

fluid in the acoustic vortex is obtained by inserting Eq. (13)
into Eq. (10). Introducing the normalized radial coordinate

r̂ ¼ k
ð0Þ
0
r and making use of the recurrence relations

ð2n=rÞJnðr̂Þ ¼ Jn−1ðr̂Þ þ Jnþ1ðr̂Þ and 2J0nðr̂Þ ¼ Jn−1ðr̂Þ−
Jnþ1ðr̂Þ, the field-shape functions Rlðr̂Þ and Clðr̂Þ of the
lth-order vortex take the form

Rlðr̂Þ ¼ ½Jlðr̂Þ�
2
−
1

2
½Jl−1ðr̂Þ�

2
−
1

2
½Jlþ1ðr̂Þ�

2; ð14aÞ

Clðr̂Þ ¼ 2½Jlðr̂Þ�
2: ð14bÞ

IV. NUMERICAL MODEL IN 2D

In this section, we present the implementation and design
of our numerical models. Emphasis is put on the consid-
erations that went into designing numerical models that
describe experimental conditions that may be reproduced
with the setups introduced in Sec. II and sketched in Fig. 1.
In order to reduce computational complexity, we model
only the 2D dynamics in the perpendicular planes specified
for each model in Fig. 1.

A. Numerical implementation

In the numerical models of the slow-time-scale hydro-
dynamics, the coupled field equations (2) are implemented
and solved on weak form using the finite-element solver
COMSOL Multiphysics [34]. We consider the limit of weakly
inhomogeneous fluids and use the analytical expression

(10a) for the acoustic force density f ð1Þac with the field-shape
functions given in the rectangular-channel eigenmodes and
acoustic vortex fields, respectively, in Eqs. (12) and (14).
For numerical stability, a logarithmic concentration field

ŝ, with s ¼ s0 expðŝÞ, is used as the independent concen-
tration variable. A free triangular mesh with an element
mesh size around Δh ¼ 2 μm is used. Lagrange shape
functions are used with cubic-order elements in the velocity
and concentration fields and quadratic-order elements in
the pressure. A backward differentiation formula is used for
the time stepping with an initial time step of 50 μs and a
maximum time step of Δt ¼ 5 ms in all of the simulations,
except that of acoustic tweezing, where the maximum time
step is reduced to Δt ¼ 0.5 ms. These choices of param-
eters are motivated by the numerical stability criteria that
the cell Péclet number Pe ¼ UΔh=D and the Courant
number Co ¼ UΔt=Δh, where U is a characteristic flow
speed, should be on the order of unity or smaller.
The boundary conditions imposed on the slow-time-

scale velocity and concentration fields vðr; τÞ and sðr; τÞ at
the boundary ∂Ω of the fluid domainΩ, with normal vector
n, are the standard no-slip and no-flux conditions,

v ¼ 0; n · ∇s ¼ 0; for r ∈ ∂Ω: ð15Þ

Several convergence tests are carried out to ensure numeri-
cal convergence. For example, the integrated concentration
is conserved with a maximum relative error of 2 × 10−3 at
all times.

B. Modeling the fluid inhomogeneity

We model aqueous solutions of iodixanol (OptiPrep), for
which the fluid parameters have been measured experi-
mentally as functions of the iodixanol volume-fraction
concentration s [22]. OptiPrep is a cell-friendly medium
that is used in density-gradient centrifugation and isoa-
coustic focusing. In the models, we consider initial con-
centration fields with iodixanol volume fractions ranging
from smin ¼ 0.1 to smax ¼ 0.3, yielding a relative density
difference of up to 10%, while the maximum relative
variation in the speed of sound is 0.5%. Consequently, we
neglect variations in c0, which means that only gradients in
ρ0 contribute to the acoustic force density.
The polynomials fitting the measured density ρ0ðsÞ and

dynamic viscosity η0ðsÞ, as functions of the iodixanol
volume-fraction concentration s, are [22]

ρ0 ¼ ρ
ð0Þ
0
½1þ a1s�; ð16aÞ
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η0 ¼ η
ð0Þ
0
½1þ b1sþ b2s

2 þ b3s
3�: ð16bÞ

Here, ρð0Þ
0

¼ 1005 kg=m3 and η
ð0Þ
0

¼ 0.954 mPa s, and the
dimensionless constants are a1 ¼ 0.522, b1 ¼ 2.05,
b2 ¼ 2.54, and b3 ¼ 22.8. In Ref. [22], the diffusivity of
iodixanol was measured to D ¼ 0.9 × 10−10 m2=s. For the
bulk viscosity, we use the value of pure water [35].

C. Modeling the rectangular microchannel

In this model, we consider a long, straight, rectangular
microchannel of widthW¼375μm and heightH¼150μm,
as sketched in Fig. 1(a). In acoustophoresis experiments,
acoustic eigenmodes of the two-dimensional channel cross
section transverse to the flow are used extensively to
manipulate and focus particles and cells based on their
mechanical properties. Two notable advantages of using
acoustic eigenmodes, or bulk acoustic waves, are that the
eigenmodes are easily excited by an attached piezoceramic
transducer actuated at the resonance frequency and that
high acoustic energy densities can be obtained in the
resonant modes. Typical quality factors in glass-silicon
microchips are between 102 and 103, and typical measured
acoustic energy densities are in the range 1–1000 J=m3

[25,27]. We use Eð0Þ
ac ¼ 10 J=m3, approximately an order of

magnitude larger than the hydrostatic pressure difference
across the channel height, ensuring that gravity plays only a
minor role in the fluid relocation [23].
Referring again to Fig. 1(a), we are modeling a flow-

through microchannel system where the flow rate can be
controlled, thereby setting the retention time of the fluid in
the channel. In our time-dependent model, the time τ can
thus be translated into a downstream length L from the
inlet. For example, in the system under consideration, a
fluid retention time of τret ¼ 1.0 s over a length of L ¼
5.0 mm implies a flow rate of 17 μL=min, all of which are
realistic experimental parameters [22]. Diffusion generally
plays a role in manipulating concentration fields. However,
the time scale of diffusion across one third of the channel
width is τdiff ¼ ð1=2DÞð1

3
WÞ2 ¼ 87 s, leaving enough time

to conduct typical steady-flow experiments at relevant flow
rates without diffusion flattening the gradients.
The validity of this 2D model of the flow-through

channel requires that the gradients of the concentration s
in the axial direction r∥ of the flow are small in comparison
to the gradients in the transverse direction r⊥, that is,
jΔs=Δr∥j ≪ jΔs=Δr⊥j. Because the length scales Δr∥ and
Δr⊥ are set by the characteristic flow speeds, the condition
is that the flow speed U∥ in the axial direction should be
much larger than the acoustically induced flow speed U⊥

in the transverse plane, U∥ ≫ U⊥. In our simulations,
considering typical experimental flow rates, U∥ is approx-
imately an order of magnitude larger than U⊥.

D. Modeling the acoustic vortex field

In this model, we consider a circular fluid chamber, as
sketched in Fig. 1(b), in which an acoustic vortex field of
the form (13) is excited by the surrounding transducer array
or by swirling surface acoustic waves [9,10,32]. Notice
that, in contrast to the rectangular-microchannel acoustic
fields, the acoustic vortices are nonresonant fields, and the
center of the vortex can be moved relative to the chamber.
In our model, we use a chamber of radius R ¼ 250 μm,

an acoustic energy density of E
ð0Þ
ac ¼ 10 J=m3, and a

frequency of f ¼ 7.5 MHz.

V. SIMULATION RESULTS

We present a selection of simulation results demonstrat-
ing acoustics as a means to spatiotemporally control,
manipulate, and relocate solute concentration fields in
microsystems. Specifically, we demonstrate the manipula-
tion of concentration fields in rectangular-channel eigenm-
odes and in acoustic vortex fields in circular chambers. In
the former, we demonstrate the use of sequential eigen-
mode actuation to obtain horizontal or vertical multilayer-
ing of the fluid inhomogeneities. We further motivate and
introduce the simple but useful concept of orthogonal
relocation. In the circular chamber, we demonstrate the
trapping and translation of a fluid inhomogeneity using
Bessel-function acoustic tweezers.

A. Multilayering of concentration fields

in rectangular-channel eigenmodes

We consider the patterning of concentration fields in the
nm eigenmodes in the rectangular microchannel using the
modes ðn;mÞ ¼ ð1; 0Þ, (2,0), (0,1), (0,2), and (2,1) as
examples. The resonance frequency fnm of these eigenm-
odes is obtained from Eq. (11b), yielding f10 ¼ 2.0 MHz,
f20 ¼ 4.0 MHz, f01 ¼ 5.0 MHz, f02 ¼ 10 MHz, and
f21 ¼ 6.4 MHz.
In Fig. 2, we consider three different initial conditions, a,

b, and c (first column), on the concentration field sðr; 0Þ. In
the following columns are shown the concentration fields
sðr; τÞ in the selected nm modes after a time τ ¼ 1.0 s for
each of the three initial configurations, a, b, and c. The
resulting configurations are denoted i − nm, with i indicat-
ing the initial configuration (i ¼ a, b, or c) and nm denoting
the mode of actuation. The top row shows the field-shape
functions Rnm of the corresponding modes. In general, the
denser high-concentration fluid (30% iodixanol, white) is
relocated into the minima of Rnm appearing at pressure
nodes, as one might anticipate from the analogy to the
acoustic radiation force acting on a particle. It should be
emphasized, however, that, in contrast to the acoustic
radiation force acting on a particle in a standing wave, f ac
is a nonconservative force and it cannot, in general, be
written as the gradient of a potential. The acoustic force
density f ac, moreover, depends on the history of the system,
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which is also in contrast to the particle force. For a given
mode, the concentration fields tend to evolve towards the
same quasistable equilibrium configuration; however, the
different initial conditions generally influence the resulting
configurations.
Inspecting Fig. 2, one finds that relocation of the

inhomogeneity into vertical layers is obtained for m ¼ 0,
while horizontal layers are obtained for n ¼ 0. This result is
to be expected from the geometry of the acoustic field.
However, comparing a-01, b-01, and c-01, it is evident that
the concentration field after 1 s of actuation in the 01 mode
depends strongly on the initial configuration (a, b, or c).
Indeed, configurations a and c have been relocated into
much “cleaner” 01-mode configurations with a single
horizontal layer compared to configuration b. The reason
is that the relocations a → a-01 and c → c-01 are orthogo-
nal relocations, in the sense that the initial and final
stratifications are orthogonal to one another. By contrast,
the relocation b→ b-01 is a parallel relocation, where
whole fluid layers are to be moved into new parallel
positions, which can only proceed by an instability. The
instability is particularly evident in the 02 mode comparing
the orthogonally relocated configurations a-02 and c-02 to
b-02, the latter for which the parallel relocation proceeds by
a Rayleigh–Taylor-like instability, shooting up three
streams that slowly feed the second horizontal layer.
These observations suggest that orthogonal relocation

provides the most effective way of relocating and pattern-
ing concentration fields. In the event that a desired
relocation is parallel, as in the example b-01 starting from
the configuration b, the resulting horizontally layered 01-
mode configuration is blurred because it proceeds by an
instability. The solution to obtaining sharp horizontally
layered 01- and 02-mode configurations starting from b is
to go through a sequence of orthogonal relocations. By

applying the sequence b-10-0m, the 10 mode being an
intermediate, one can achieve sharp horizontally layered
0m-mode configurations from the initial configuration b.
This operational principle is illustrated in Fig. 3, where the
relocation dynamics is also indicated by showing

FIG. 2. Patterning of inhomogeneous iodixanol solutions in rectangular-channel eigenmodes. The top row shows the field-shape
functions Rnm for each mode nm (min, dark blue; max, light green). Three different initial concentration fields sðr; 0Þ of the dense (30%
iodixanol, white) and less dense (10% iodixanol, black) solutions are considered (first column, a, b, and c). The next columns show the
resulting concentration fields sðr; τÞ after a retention time of τ ¼ 1.0 s in either the 10 mode (second column), the 20 mode (third
column), the 01 mode (fourth column), the 02 mode (fifth column), or the 21 mode (sixth column), starting from the initial condition a
(second row), b (third row), or c (bottom row).

FIG. 3. Vertical and horizontal layering of iodixanol concen-
tration fields sðr; τÞ starting from the horizontally layered initial
configuration b with the dense fluid (30% iodixanol, white) at the
bottom of the channel and the less dense fluid (10% iodixanol,
black) at the top (top row). Each arrow (blue) represents an
orthogonal relocation obtained by exciting an nm eigenmode in
the rectangular channel for 1 s, with the miniature showing the
transition 50 ms after the mode shift. Vertical layering is obtained
directly by actuation of the 10 or the 20 mode, yielding the
configurations b-10 and b-20, respectively. Horizontal layering
involves an intermediate step going through the 10 mode,
yielding the b-10-01 and b-10-02 configurations.
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intermediate configurations. A movie of the dynamics in
the sequence b-10-01-20 can be found in the Supplemental
Material [36].
In summary, starting from a single-layer configuration,

one can achieve multilayering of concentration fields on a
1-s time scale in the rectangular-channel eigenmodes
commonly employed in acoustophoresis. While we focus
on the spatial patterning, the ability to switch between
modes provides temporal control of the concentration field
at the end of the flow-through channel. This type of
acoustic fluid manipulation is best performed by orthogo-
nal relocation, and a parallel relocation can always be
substituted by two sequential orthogonal relocations.

B. Patterning and tweezing of concentration fields

in acoustic vortex fields

Next, we demonstrate the patterning and spatiotemporal
manipulation of concentration fields in Bessel-function
acoustic vortex fields in circular fluid chambers. Starting
from the initial concentration field sðr; 0Þ, shown in Fig. 4(a),
with the denser fluid (30% iodixanol, white) occupying half
of the circular domain. Figures 4(b)–4(d) show the concen-
tration fields sðr; τÞ after τ ¼ 3.0 s of actuation in acoustic
vortices of orders l ¼ 0, l ¼ 1, and l ¼ 2, respectively.
Again, it is observed that the denser fluid tends to be
relocated into the minima of the field-shape functions Rl.
The central region of an acoustic vortex is of particular

interest because it provides a trapping potential that can be
used to trap and manipulate particles. Here, considering
inhomogeneous fluid manipulation, we define the central
region of the lth-order vortex from the condition r̂ < r̂�l ,
where r̂�l is the first nonzero root of the field-shape
function, Rlðr̂

�
l Þ ¼ 0. This condition yields the approxi-

mate values, r̂�
0
¼ 1.44, r̂�

1
¼ 1.18, and r̂�

2
¼ 2.26. As

demonstrated in Fig. 4, in the vortex with l ¼ 0, the denser
fluid (white) is forced outside of the central region, while in

the vortices with l ¼ 1 and l ¼ 2, the denser fluid is forced
into the central region. Mathematically, this result follows
directly from Eq. (10a) (with ∇ĉ ¼ 0) by inspecting the
field-shape functions RlðrÞ shown in Fig. 4 because they
indicate the initial radial distribution of the acoustic force
density acting on the blurred interface. Physically, the
acoustic pressure is maximum at the center for l ¼ 0, while
it is zero for l > 0. Note, furthermore, that, for l > 0, the
central trapping region becomes larger for an increasing l.
These findings for manipulation of inhomogeneous fluids
are analogous to those of the acoustic tweezing of par-
ticles [10].
Acoustic tweezing of a high-concentration region in a

lower-concentration medium can thus be realized in the
central region of vortices with l > 0. Hence, the central
region may be used to confine and translate a fluid
inhomogeneity, as will be demonstrated next using the l ¼
1 vortex. We consider an initial concentration field sðr; 0Þ
that has a Gaussian high-concentration region (30% iodix-
anol, white) centered at the position ðr; θÞ ¼ ð1

2
R; 1

2
πÞ, as

given in polar coordinates, in the lower-concentration
medium (10% iodixanol); see Fig. 5(a). The width (or
standard deviation) of the Gaussian is set to σ ¼ 0.5r̂�

1
, half

the width of the central trapping region. The acoustic vortex
is initially centered at the position of the inhomogeneity,
and it is then translated in a closed-loop equilateral triangle
moving in straight lines from ð1

2
R; 1

2
πÞ to ð1

2
R;− 1

6
πÞ to

ð1
2
R;− 5

6
πÞ, and finally back to the starting position in

ð1
2
R; 1

2
πÞ. The translation speed U ¼ 0.7 mm=s of the

center of the vortex is chosen such that it takes 0.3 s to
move the distance from one corner of the triangle to the
next. The resulting concentration field sðr; τÞ after τ ¼ 0.3,
0.6, and 0.9 s is shown in Figs. 5(b), 5(c), and 5(d),
respectively, with the central region of the vortex indicated
by the green circle, and the path of the center of the vortex

(a) (b) (c) (d)

FIG. 4. Patterning of inhomogeneous iodixanol solutions in acoustic vortices of topological charge l. (a) Initial concentration field
sðr; 0Þ with the dense (30% iodixanol, white) and less dense (10% iodixanol, black) solutions each occupying half of the circular
domain. The radial field-shape function RlðrÞ is shown for l ¼ 0 (blue), l ¼ 1 (green), and l ¼ 2 (violet), indicating the initial magnitude
and (negative) direction of the acoustic force density acting on the blurred interface. (b)–(d) Resulting concentration fields sðr; τÞ after
τ ¼ 3.0 s in the acoustic vortex with l ¼ 0, l ¼ 1, and l ¼ 2, respectively, with a central trapping region for l > 0. The denser fluid
(white) is relocated into the minima of the field-shape functions Rl.
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by the straight green lines. To a good approximation, the
high-concentration solution is kept within the central region
of the vortex as it is translated in space, leaving only a
trailing diffusive residue. Movies showing the manipulation
in real time for two different translation speeds are available
in the Supplemental Material [36]. We find that when the
translation speed of the vortex is increased by a factor of 3,
the inhomogeneity does not remain trapped at the center
during the full loop. Conversely, for slower translation
speeds, the inhomogeneity stays in the center of the vortex,
but the increased loop time leads to a more pronounced
diffusion broadening.
The results presented in this section provide theoretical

evidence that the applicability of acoustic tweezers can be
extended beyond particle manipulation to include manipu-
lation of concentration fields—a phenomenon that has yet
to be demonstrated experimentally.

VI. DISCUSSION

In this paper, we explore some consequences of our
recent theory of the acoustic force density acting on
inhomogeneous fluids [23]. For this purpose, a useful
formulation of the theory is given in terms of the field-
shape functions R and C in the experimentally relevant
limit of weakly inhomogeneous fluids. The theory of the
acoustic force density acting on inhomogeneous fluids
show resemblance to the Gorkov theory of the acoustic
radiation force acting on a particle [37], for example, by the
tendency of dense fluids being focused at the pressure
nodes. However, the two theories have important distinc-
tions. (1) The theory of the acoustic force density acting on
inhomogeneous fluids is a field theory with f ac generally
acting on the fluid in every point in space, in contrast to the
Newtonian theory for the radiation force acting on a point
particle. (2) The acoustic force density f ac is a noncon-
servative force, and, in general, it cannot be written as the
gradient of a potential, as can the radiation force on a

particle in a standing wave [38,39]. Instead, one may use
the field-shape functions to assess the direction and
magnitude of the forces acting on the fluid for a given
initial concentration field. For density inhomogeneities, the
denser fluid tends to relocate to the minima of the field-
shape function R. (3) Not unrelated, in the theory of the
acoustic force density, the force density f ac depends on the
history of the system and it evolves as the concentration
field changes by advection and diffusion.
While the acoustic force density can stabilize a fluid

inhomogeneity against destabilizing forces, such as gravity
in the case of a density gradient, it cannot counteract
molecular diffusion. Consequently, an inhomogeneity
always has a finite lifetime set by the characteristic
diffusion time, and it will broaden due to diffusion.
Interestingly, diffusion is an advantage in isoacoustic
focusing because it allows fine-tuning of the gradient at
the end of a steady-flow-through channel by varying the
flow rate [22]. In acoustic tweezing of a high-concentration
region, diffusion limits the time that the inhomogeneity can
be manipulated in a closed chamber. One can obtain longer
diffusion times by going to larger scales or by using Ficoll
or Percoll solutions with larger solute molecules that
diffuse slower.
Importantly, the ability to manipulate concentration

fields requires that the concentration field introduces
inhomogeneities in the fluid density or the speed of sound.
A weaker inhomogeneity will, in general, result in weaker
acoustic forces acting on the fluid. This scaling sets a lower
limit to the weakness of an inhomogeneity that can be
manipulated because, at some point, the fluid manipulation
speed Uac becomes smaller than the speed Udiff of the
diffusing concentration profile. One may estimate the
critical density deviation ρ̂crit at which manipulation
becomes impossible by the condition Uac ¼ Udiff .
Balancing the magnitude of the acoustic force density with
the viscous shear stress, one obtainsUac ∼ Eaclρ̂=η0, where
l is a characteristic length scale. Equating Uac with the

(a) (b) (c) (d)

FIG. 5. Acoustic tweezing and translation of a local high-concentration region using an acoustic vortex with topological charge l ¼ 1.
(a) Initial concentration field sðr; 0Þwith a Gaussian high-concentration region (30% iodixanol, white) in a lower-concentration medium
(10% iodixanol, black). Initially, the acoustic vortex is centered at the position of the inhomogeneity, with the green circle indicating the
central region of the vortex. At time τ > 0.0 s, the vortex is moved at constant speed U ¼ 0.7 mm=s along the green path in a closed-
loop triangle. The resulting concentration fields sðr; τÞ after τ ¼ 0.3, 0.6, and 0.9 s are shown in (b), (c), and (d), respectively.
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characteristic diffusive speed Udiff ∼D=l, one obtains the
rough estimate ρ̂crit ∼ η0D=ðEacl

2Þ ∼ 10−4, where the num-
ber is for l ¼ 10 μm. In practice, for the manipulation to be
effective, the manipulation speed should be at least an order
of magnitude larger than the diffusion speed. Consequently,
for the parameters used in this study, the density deviation
should be larger than 0.1% in order that the fluid can be
manipulated. Note that, for concentrations of iodixanol
(OptiPrep), polysucrose (Ficoll), or colloidal nanoparticles
(Percoll), all used in density-gradient separation, this
requirement is easily fulfilled. One can, in principle, enable
manipulation of any specific solution of biomolecules at
low concentration by adding a density modifier that
increases the acoustic contrast to other fluids.

VII. CONCLUSION

Advances in the development of experimental methods
to control acoustic fields for microparticle-manipulation
purposes—for example, using transducer arrays, surface
acoustic waves, and transmission holograms—allow spa-
tiotemporal tailoring of acoustic fields. In this paper, we
demonstrate theoretically that this tailoring provides
dynamic control of solute concentration fields at the
microscale. We can think of this as acoustic “landscaping”
of concentration fields because of the ability to dynamically
manipulate “hills” and “valleys” of high and low concen-
tration. Using acoustic landscaping, one may relocate,
shape, and pattern concentration fields with the methods
already developed for particle handling as demonstrated by
our two examples: First, in rectangular microchannels, we
describe an operational principle for obtaining multilayer
stratification of concentration fields using acoustic eigenm-
odes. Second, we demonstrate acoustic tweezing and
manipulation of a high-concentration fluid region in a
lower-concentration fluid medium using a Bessel-function
acoustic vortex.
We envision that the insights obtained in this study will

find applications in the further development of isoacous-
tophoresis and other gradient-based separation methods.
Another use may be found in studies of biological
processes with active spatiotemporal control of solute
gradients. Finally, the ability to pattern fluid inhomogene-
ities using acoustics might also find applications in drug
delivery, tissue engineering, and the 3D printing of
microstructures.

[1] B. W. Drinkwater, Dynamic-field devices for the ultrasonic
manipulation of microparticles, Lab Chip 16, 2360 (2016).

[2] H. Bruus, J. Dual, J. Hawkes, M. Hill, T. Laurell, J. Nilsson,
S. Radel, S. Sadhal, and M. Wiklund, Forthcoming lab on a
chip tutorial series on acoustofluidics: Acoustofluidics-
exploiting ultrasonic standing wave forces and acoustic
streaming in microfluidic systems for cell and particle
manipulation, Lab Chip 11, 3579 (2011).

[3] T. Laurell, F. Petersson, and A. Nilsson, Chip integrated
strategies for acoustic separation and manipulation of cells
and particles, Chem. Soc. Rev. 36, 492 (2007).

[4] P. Augustsson, R. Barnkob, S. T. Wereley, H. Bruus, and T.
Laurell, Automated and temperature-controlled micro-PIV
measurements enabling long-term-stable microchannel
acoustophoresis characterization, Lab Chip 11, 4152
(2011).

[5] I. Leibacher, S. Schatzer, and J. Dual, Impedance matched
channel walls in acoustofluidic systems, Lab Chip 14, 463
(2014).

[6] X. Ding, S.-C. S. Lin, B. Kiraly, H. Yue, S. Li, I.-K. Chiang,
J. Shi, S. J. Benkovic, and T. J. Huang, On-chip manipula-
tion of single microparticles, cells, and organisms using
surface acoustic waves, Proc. Natl. Acad. Sci. U.S.A. 109,
11105 (2012).

[7] S. B. Q. Tran, P. Marmottant, and P. Thibault, Fast acoustic
tweezers for the two-dimensional manipulation of individ-
ual particles in microfluidic channels, Appl. Phys. Lett. 101,
114103 (2012).

[8] A. Riaud, J.-L. Thomas, E. Charron, A. Bussonnière, O. Bou
Matar, andM.Baudoin,Anisotropic Swirling SurfaceAcous-
tic Waves from Inverse Filtering for On-Chip Generation of
Acoustic Vortices, Phys. Rev. Applied 4, 034004 (2015).

[9] A. Riaud, M. Baudoin, O. Bou Matar, L. Becerra, and J.-L.
Thomas, Selective Manipulation of Microscopic Particles
with Precursor Swirling Rayleigh Waves, Phys. Rev.
Applied 7, 024007 (2017).

[10] C. R. P. Courtney, C. E. M. Demore, H. Wu, A. Grinenko,
P. D.Wilcox, S. Cochran, andB.W.Drinkwater, Independent
trapping and manipulation of microparticles using dexterous
acoustic tweezers, Appl. Phys. Lett. 104, 154103 (2014).

[11] A. Marzo, S. A. Seah, B. W. Drinkwater, D. R. Sahoo, B.
Long, and S. Subramanian, Holographic acoustic elements
for manipulation of levitated objects, Nat. Commun. 6, 8661
(2015).

[12] D. Baresch, J.-L. Thomas, and R. Marchiano, Observation
of a Single-Beam Gradient Force Acoustical Trap for Elastic
Particles: Acoustical Tweezers, Phys. Rev. Lett. 116,
024301 (2016).

[13] K. Melde, A. G. Mark, T. Qiu, and P. Fischer, Holograms for
acoustics, Nature (London) 537, 518 (2016).

[14] M. Antfolk, C. Magnusson, P. Augustsson, H. Lilja, and T.
Laurell, Acoustofluidic, label-free separation and simulta-
neous concentration of rare tumor cells from white blood
cells, Anal. Chem. 87, 9322 (2015).

[15] M. Wiklund, A. E. Christakou, M. Ohlin, I. Iranmanesh, T.
Frisk, B. Vanherberghen, and B. Önfelt, Ultrasound-induced
cell-cell interaction studies in a multi-well microplate,
Micromachines 5, 27 (2014).

[16] D. J. Collins, B. Morahan, J. Garcia-Bustos, C. Doerig, M.
Plebanski, and A. Neild, Two-dimensional single-cell pat-
terning with one cell per well driven by surface acoustic
waves, Nat. Commun. 6, 8686 (2015).

[17] K. Lee, H. Shao, R. Weissleder, and H. Lee, Acoustic
purification of extracellular microvesicles, ACS Nano 9,
2321 (2015).

[18] C. Grenvall, C. Magnusson, H. Lilja, and T. Laurell,
Concurrent isolation of lymphocytes and granulocytes using

ACOUSTIC TWEEZING AND PATTERNING OF … PHYS. REV. APPLIED 7, 034017 (2017)

034017-9

http://dx.doi.org/10.1039/C6LC00502K
http://dx.doi.org/10.1039/c1lc90058g
http://dx.doi.org/10.1039/B601326K
http://dx.doi.org/10.1039/c1lc20637k
http://dx.doi.org/10.1039/c1lc20637k
http://dx.doi.org/10.1039/C3LC51109J
http://dx.doi.org/10.1039/C3LC51109J
http://dx.doi.org/10.1073/pnas.1209288109
http://dx.doi.org/10.1073/pnas.1209288109
http://dx.doi.org/10.1063/1.4751348
http://dx.doi.org/10.1063/1.4751348
http://dx.doi.org/10.1103/PhysRevApplied.4.034004
http://dx.doi.org/10.1103/PhysRevApplied.7.024007
http://dx.doi.org/10.1103/PhysRevApplied.7.024007
http://dx.doi.org/10.1063/1.4870489
http://dx.doi.org/10.1038/ncomms9661
http://dx.doi.org/10.1038/ncomms9661
http://dx.doi.org/10.1103/PhysRevLett.116.024301
http://dx.doi.org/10.1103/PhysRevLett.116.024301
http://dx.doi.org/10.1038/nature19755
http://dx.doi.org/10.1021/acs.analchem.5b02023
http://dx.doi.org/10.3390/mi5010027
http://dx.doi.org/10.1038/ncomms9686
http://dx.doi.org/10.1021/nn506538f
http://dx.doi.org/10.1021/nn506538f


prefocused free flow acoustophoresis, Anal. Chem. 87,
5596 (2015).

[19] T. M. Keenan and A. Folch, Biomolecular gradients in cell
culture systems, Lab Chip 8, 34 (2008).

[20] S. Takayama, J. C. McDonald, E. Ostuni, M. N. Liang,
P. J. A. Kenis, R. F. Ismagilov, and G. M. Whitesides,
Patterning cells and their environments using multiple
laminar fluid flows in capillary networks, Proc. Natl. Acad.
Sci. U.S.A. 96, 5545 (1999).

[21] S. K. W. Dertinger, D. T. Chiu, N. L. Jeon, and G.M.
Whitesides, Generation of gradients having complex shapes
using microfluidic networks, Anal. Chem. 73, 1240 (2001).

[22] P. Augustsson, J. T. Karlsen, H.-W. Su, H. Bruus, and J.
Voldman, Iso-acoustic focusing of cells for size-insensitive
acousto-mechanical phenotyping, Nat. Commun. 7, 11556
(2016).

[23] J. T. Karlsen, P. Augustsson, and H. Bruus, Acoustic Force
Density Acting on Inhomogeneous Fluids in Acoustic
Fields, Phys. Rev. Lett. 117, 114504 (2016).

[24] S. Deshmukh, Z. Brzozka, T. Laurell, and P. Augustsson,
Acoustic radiation forces at liquid interfaces impact the
performance of acoustophoresis, Lab Chip 14, 3394 (2014).

[25] R. Barnkob, P. Augustsson, T. Laurell, and H. Bruus,
Measuring the local pressure amplitude in microchannel
acoustophoresis, Lab Chip 10, 563 (2010).

[26] P. B. Muller, M. Rossi, A. G. Marín, R. Barnkob, P.
Augustsson, T. Laurell, C. J. Kähler, and H. Bruus, Ultra-
sound-induced acoustophoretic motion of microparticles in
three dimensions, Phys. Rev. E 88, 023006 (2013).

[27] J. van’t Oever, R. Frentrop, D. Wijnperlé, H. Offerhaus, D.
van den Ende, J. Herek, and F. Mugele, Imaging local
acoustic pressure in microchannels, Appl. Opt. 54, 6482
(2015).

[28] A. Lamprecht, S. Lakamper, T. Baasch, I. A. T. Schaap, and
J. Dual, Imaging the position-dependent 3D force on
microbeads subjected to acoustic radiation forces and
streaming, Lab Chip 16, 2682 (2016).

[29] P. Augustsson, C. Magnusson, M. Nordin, H. Lilja, and T.
Laurell, Microfluidic, label-free enrichment of prostate
cancer cells in blood based on acoustophoresis, Anal. Chem.
84, 7954 (2012).

[30] A. L. Bernassau, C. R. P. Courtney, J. Beeley, B. W.
Drinkwater, and D. R. S. Cumming, Interactive manipula-
tion of microparticles in an octagonal sonotweezer, Appl.
Phys. Lett. 102, 164101 (2013).

[31] C. R. P. Courtney, B. W. Drinkwater, C. E. M. Demore, S.
Cochran, A. Grinenko, and P. D. Wilcox, Dexterous
manipulation of microparticles using Bessel-function acous-
tic pressure fields, Appl. Phys. Lett. 102, 123508 (2013).

[32] A. Riaud, J.-L. Thomas, M. Baudoin, and O. Bou Matar,
Taming the degeneration of Bessel beams at an anisotropic-
isotropic interface: Toward three-dimensional control
of confined vortical waves, Phys. Rev. E 92, 063201
(2015).

[33] B. T. Hefner and P. L. Marston, An acoustical helicoidal
wave transducer with applications for the alignment of
ultrasonic and underwater systems, J. Acoust. Soc. Am.
106, 3313 (1999).

[34] COMSOL Multiphysics 5.2, http://www.comsol.com (2015).
[35] P. B. Muller and H. Bruus, Numerical study of thermovis-

cous effects in ultrasound-induced acoustic streaming in
microchannels, Phys. Rev. E 90, 043016 (2014).

[36] See Supplemental Material at http://link.aps.org/
supplemental/10.1103/PhysRevApplied.7.034017 for mov-
ies of the time evolution of the concentration fields.

[37] L. P. Gorkov, On the forces acting on a small particle in an
acoustical field in an ideal fluid, Dokl. Akad. Nauk SSSR
140, 88 (1961) [Sov. Phys. Dokl. 6, 773 (1962)].

[38] M. Settnes and H. Bruus, Forces acting on a small particle in
an acoustical field in a viscous fluid, Phys. Rev. E 85,
016327 (2012).

[39] J. T. Karlsen and H. Bruus, Forces acting on a small particle
in an acoustical field in a thermoviscous fluid, Phys. Rev. E
92, 043010 (2015).

JONAS T. KARLSEN and HENRIK BRUUS PHYS. REV. APPLIED 7, 034017 (2017)

034017-10

http://dx.doi.org/10.1021/acs.analchem.5b00370
http://dx.doi.org/10.1021/acs.analchem.5b00370
http://dx.doi.org/10.1039/B711887B
http://dx.doi.org/10.1073/pnas.96.10.5545
http://dx.doi.org/10.1073/pnas.96.10.5545
http://dx.doi.org/10.1021/ac001132d
http://dx.doi.org/10.1038/ncomms11556
http://dx.doi.org/10.1038/ncomms11556
http://dx.doi.org/10.1103/PhysRevLett.117.114504
http://dx.doi.org/10.1039/C4LC00572D
http://dx.doi.org/10.1039/b920376a
http://dx.doi.org/10.1103/PhysRevE.88.023006
http://dx.doi.org/10.1364/AO.54.006482
http://dx.doi.org/10.1364/AO.54.006482
http://dx.doi.org/10.1039/C6LC00546B
http://dx.doi.org/10.1021/ac301723s
http://dx.doi.org/10.1021/ac301723s
http://dx.doi.org/10.1063/1.4802754
http://dx.doi.org/10.1063/1.4802754
http://dx.doi.org/10.1063/1.4798584
http://dx.doi.org/10.1103/PhysRevE.92.063201
http://dx.doi.org/10.1103/PhysRevE.92.063201
http://dx.doi.org/10.1121/1.428184
http://dx.doi.org/10.1121/1.428184
http://www.comsol.com
http://www.comsol.com
http://www.comsol.com
http://dx.doi.org/10.1103/PhysRevE.90.043016
http://link.aps.org/supplemental/10.1103/PhysRevApplied.7.034017
http://link.aps.org/supplemental/10.1103/PhysRevApplied.7.034017
http://link.aps.org/supplemental/10.1103/PhysRevApplied.7.034017
http://link.aps.org/supplemental/10.1103/PhysRevApplied.7.034017
http://link.aps.org/supplemental/10.1103/PhysRevApplied.7.034017
http://link.aps.org/supplemental/10.1103/PhysRevApplied.7.034017
http://link.aps.org/supplemental/10.1103/PhysRevApplied.7.034017
http://dx.doi.org/10.1103/PhysRevE.85.016327
http://dx.doi.org/10.1103/PhysRevE.85.016327
http://dx.doi.org/10.1103/PhysRevE.92.043010
http://dx.doi.org/10.1103/PhysRevE.92.043010

