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Mathematical expressions are derived for the far-field backscattering amplitude spectrum resulting
from oblique insonification of an infinite, transversely isotropic elastic cylinder by a plane acoustic
wave. The normal-mode solution is based on decoupling of the scalar potential representing the
horizontally polarized shear wave from those of the compressional and vertically polarized waves.
The solution degenerates to the well-known simple model for isotropic cylinders in the case of very
weak anisotropy. The solution is used to study the influence of each element of the stiffness matrix
on the various resonant modes of vibration. Perturbations of the elementsc33 and c44, which
characterize the cylinder along the axis, significantly affect resonant frequencies corresponding to
axially guided waves. Perturbations ofc11 andc12, which characterize the material on the transverse
plane, predominantly affect the Rayleigh and Whispering Gallery resonance frequencies.
Perturbations ofc13 affect all three types of resonances. These results are consistent with elasticity
theory and the known modal shapes of these resonances. ©1996 Acoustical Society of America.

PACS numbers: 43.20.Bi, 43.20.Fn, 43.20.Ks@WGN#

INTRODUCTION

One possible application of resonance acoustic scatter-
ing is in nondestructive evaluation~NDE! of cylindrical
components. This is achieved by studying the perturbations
in the resonant frequencies of the backscattered amplitude
spectrum, and correlating these perturbations to changes in
certain properties of the cylinder.

Previous studies in resonance acoustic scattering are
mostly concerned with isotropic cylinders and shells. In the
NDE of cylindrical components, such as wires, rods, and
pipes, the sample is usually transversely isotropic due to the
processes used in manufacturing these products. Transverse
isotropy is usually desirable, since it provides higher
strength/stiffness along the cylinder axis. This paper dis-
cusses the development of a mathematical model for acoustic
wave scattering from such transversely isotropic cylinders.

Numerous works on acoustic wave scattering from iso-
tropic cylinders and shells have appeared in the literature
during the past few years. The first, pioneering study of
acoustic wave scattering from submerged solid elastic cylin-
ders based on a normal-mode expansion is due to Faran.1

The more general problem, when the propagation direction
of the incident wave makes an arbitrary anglea with the
normal to the cylinder, was considered by Flaxet al.2 The
similar problem for a cylindrical shell was studied by Le´on
et al.3 and Veksler.4

Theoretical studies on wave propagation inanisotropic
cylinders and shells have also been pursued for many years.
Mirsky5,6 has studied the propagation of free harmonic
waves in transversely isotropic circular cylinders. Tsaiet al.7

and Tsai8 investigated the cylindrically guided waves in
transversely isotropic shafts and thick hollow cylinders.

Theoretical works are also available for propagation of
acoustic waves in cylindrical boreholes surrounded by aniso-
tropic media. White and Tongtaw9 developed a mathematical
model for elastic wave propagation in a cylindrical, fluid-

filled borehole in a transversely isotropic solid. Chan and
Tsang10 extended this problem to the propagation of acoustic
waves in a fluid-filled borehole surrounded by concentrically
layered, transversely isotropic media. Kundu and Bostro¨m11

studied the scattering of a plane wave by a circular crack in
a transversely isotropic solid. Zhanget al.12 analyzed the
acoustic field excited by multipole sources in a fluid-filled
borehole surrounded by a transversely isotropic medium.
The procedures followed in these related works have been
considered in formulating the problem at hand.

Quite recently, some purely experimental results on
acoustic wave scattering from anisotropic cylinders were re-
ported by de Billy.13,14 To the best of our knowledge, no
theoretical work on acoustic wave scattering from aniso-
tropic cylinders has appeared in the literature.

I. FORMULATION OF THE PROBLEM

In the mathematical model, an infinite plane acoustic
wave of frequencyv/2p incident at an anglea on a sub-
merged transversely isotropic circular cylinder of infinite
length and outer radiusa is considered, Fig. 1. A cylindrical
coordinate system (r ,u,z) is chosen with thez direction co-
incident with the axis of the cylinder. The pressurepi of the
incident plane wave external to the cylinder at a point
M (r ,u,z) is represented by1

pi5P0(
n50

`

eni
nJn~k'r !cosnuei ~kzz2vt !, ~1!

where

kz5k sin a, k'5k cosa, ~2!

andk5vc, c is the compressional wave velocity in the liq-
uid medium outside the cylinder,en is the Neumann factor
~en51 for n50, anden52 for n.0!, P0 is the incident pres-
sure wave amplitude, andJn is the Bessel function of the first
kind of ordern. The outgoing scattered wave pressure,ps , at
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point M must be symmetrical aboutu50 and, therefore, of
the form,

ps5P0(
n50

`

eni
nAnHn

~1!~k'r !cosnuei ~kzz2vt !, ~3!

whereHn
(1) is the Hankel function of the first kind of ordern,

andAn are the unknown scattering coefficients.
The general Hooke’s law for a transversely isotropic

material is

5
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6 , ~4!

wheresi j are stress components,ei j are strain components,
andci j are the elastic constants. A transversely isotropic ma-
terial is characterized by five independent elastic constants.

In a continuum, equations of motion in the absence of
body forces are15
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whererc is the cylinder density andUr , Uu , andUz are the
displacements in ther , u, andz directions, respectively. Sub-
stituting Eq.~4! in Eqs.~5!–~7! gives
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~10!

The displacement vector can be written in terms of three
scalar potentialsf, x, andc,16

u5“f1“3~xêz!1a“3“3~cêz!, ~11!

wherea is the radius of the cylinder which is a constant with
dimensions of length. Substituting Eq.~11! in Eqs.~8!–~10!
will result in the following set of equations:
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FIG. 1. Plane wave insonification of submerged cylinders.
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S ¹22
]2

]z2D F ~c112c12!

2
¹2x1S c442 ~c112c12!

2 D ]2x
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2rc
]2x

]t2 G50. ~14!

The first two equations, Eqs.~12! and ~13!, represent theP
~compressional! andSV ~vertically polarized shear! waves.
The compressional wave, represented byf, and theSV
wave, represented byc, are coupled. As can be seen in Eq.
~14!, theSH ~horizontally polarized shear! wave, represented
by x, is decoupled. Equations~12!–~14! should be solved for
f, c, andx. The normal mode expansion method is used,
assuming solutions of the form:

f5 (
n50

`

BnJn~sr!cosnuei ~kzz2vt !, ~15!

c5 (
n50

`

CnJn~sr!cosnuei ~kzz2vt !, ~16!

x5 (
n50

`

DnJn~sr!sin nuei ~kzz2vt !. ~17!

Substituting Eqs.~15! and ~16! in Eqs.~12! and ~13! gives

F2@2c11s
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21rcv
2#s2 2aikz@2~c112c132c44!s
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GFBn
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G50. ~18!

For a nontrivial solution, the coefficient determinant in Eq.
~18! must be zero. This yields the following characteristic
equation:

c11c44s
42js21z50, ~19!

where
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There are two solutions,s1 ands2, for Eq. ~19!,

s1
25

j2Aj224zc11c44
2c11c44

, ~22!

s2
25

j1Aj224zc11c44
2c11c44

, ~23!

which implies that the potential functions should be of the
form:9,12

f5 (
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`
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q152
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2
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It can be easily shown that for the potential functionx cor-
responding to theSH wave,

s3
25

2~rcv
22c44kz

2!

c112c12
, ~28!

and therefore,

x5 (
n50

`

DnJn~s3r !sin nuei ~kzz2vt !. ~29!

For an isotropic cylinder theci j values can be written in
terms of the Lame´ constantsl andm,

c115c335l12m, c125c135l, c445m. ~30!

It can be easily shown that by substituting the above values
into Eqs.~24!, ~25!, and~29!, these equations are reduced to

f5 (
n50

`

BnJn~klr !cosnuei ~kzz2vt !, ~31!

c5 (
n50

`

CnJn~ktr !cosnuei ~kzz2vt !, ~32!

x5 (
n50

`

DnJn~ktr !sin nuei ~kzz2vt !, ~33!

where

kl5S v2

cl
22kz

2D 1/2, kt5S v2

ct
22kz

2D 1/2. ~34!

Equations~31!–~33! are the corresponding potential func-
tions for an isotropic cylinder.

The boundary conditions atr5a are4

2
1

r

]

]r
~pi1ps!5

]2Ur

]t2
, s rr52~pi1ps!,

s ru50, s rz50, ~35!
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wherer is the density of the fluid surrounding the cylinder.
Expanded expressions for displacements and stresses in
terms of potential functions are given in the Appendix. By
inserting the potential functions from Eqs.~24!, ~25!, and
~29! in Eq. ~35!, a system of four linear algebraic equations
is obtained for each value ofn:

S a11 a12 a13 a14

a21 a22 a23 a24

0 a32 a33 a34

0 a42 a43 a44

D S An

Bn

Cn

Dn

D 5S b1b20
0
D . ~36!

Elementsai j andbi of the matrices in Eq.~36! are given in
the Appendix. Equation~36! can be solved forAn for any
specified frequency and position angleu using Kramer’s
rule. The usual approach is to solve the problem in the far
field (r@a) at a specific angleu for a range of frequencies.
The resulting far-field backscattered amplitude spectrum,
which is called theform function, is obtained from the fol-
lowing equation:17

u f `u5S 2ra D 1/2S pspi De2 ikr . ~37!

II. RESULTS AND DISCUSSION

To verify the mathematical model, it is initially applied
to an isotropic aluminum cylinder. Acoustic properties of the
cylinder and water are given in Table I.18 Noting that for an
isotropic material,

cL5Al12m

r
, cT5

m

r
, ~38!

and using Eq.~30!, the five elastic constantsci j for the iso-
tropic aluminum cylinder can be found to be

c115c3351.1087231011 N/m2,

c125c1356.1152331010 N/m2, ~39!

c4452.4859931010 N/m2,

where it is noted that there are only two independent con-
stants due to the condition of isotropy. Using the above val-
ues, the form function of the aluminum cylinder is calculated
for four different values ofa, see Fig. 2. The resulting form
functions are identical to those in Fig. 2 of Ref. 18, thereby
verifying that the model works for isotropic cylinders and
generates the same results as the simple mathematical model
used for isotropic cylinders. In these numerical calculations
and those which follow, the number of normal modes,N,
used in evaluating the series is equal toN5kamax15, where
kamax is the maximum value of the normalized frequencyka
on the graph. This number of normal modes guarantees that

for the desired range of frequencies, the form function is
correct~Ref. 4, p. 245!.

To further investigate the mathematical model, elastic
constants of the aluminum cylinder are perturbed and the
resulting effects on the form functions are studied. What is
expected is that by varyingc33, which characterizes the ma-
terial along the cylinder axis, only the resonances associated
with guided waves19 would be affected. Although the depen-
dency of guided waves on the value ofc44 is not as obvious
as their dependency onc33, perturbations ofc44 are expected
to show a similar effect on the resonant frequencies of the
guided modes. This is becausec44 links the stresses and
strains in ther2z andu2z planes for a transversely isotro-
pic material. If guided waves which travel along the axis are
of a shear type, they are either generated in ther2z or the
u2z plane, which means they will be disturbed by perturba-
tions inc44. Variations ofc11 andc12, which characterize the
cylinder on the transverse plane, should mostly affect the
resonances associated with Rayleigh and Whispering Gallery
~WG! waves. Variations ofc13, which links stresses and
strains along all three principal axes, should affect all three
types of resonances.

In all the calculations that follow, the angle of incidence
is taken to be equal to 3°. Firstc33 andc44 are perturbed. A
5% increase inc44 shifts all resonances associated with
guided waves to the right while Rayleigh and WG reso-
nances remain almost unaffected, see Fig. 3. In Fig. 3~a!,
each resonance is designated by two integers. The first inte-
ger is the mode numbern, and the second one is the mode
type, designated by eitherl or p. For resonances associated
with Rayleigh wavesl51 and for those associated with WG
wavesl>2. Values ofp correspond to axially guided waves
and are underlined so that they can be distinguished froml
values. The effect of a perturbation inc44 can be seen more
clearly on Regge pole trajectories in Fig. 3~b!. Each pole is
designated by a ‘‘1’’ sign and corresponds to one of the
resonant frequencies of Fig. 3~a!.

Doubling the value ofc33 has a similar effect to that of
perturbingc44, as shown in Fig. 4. While the sensitivity of
the resonances to perturbations in these two elastic constants
are different, 5% forc44 and 100% forc33, the general effect
is the same. An increase in the value of each of these param-

TABLE I. Physical parameters.

r
~kg/m3!

cL
~m/s!

cT
~m/s!

Aluminum 2690 6420 3040
Water 1000 1475

FIG. 2. Form functions for aluminum cylinder.
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eters produces a significant shift in resonant frequencies as-
sociated with guided waves, as predicted. The relatively high
sensitivity of guided waves to perturbations ofc44 indicates
that these waves are mostly of a shear type.

Next the values ofc11 andc12 are each increased by 4%.
The resulting form functions are shown in Figs. 5 and 6,
respectively. In Fig. 5 all Rayleigh and WG resonances are
shifted to the right while resonances associated with guided
waves remain unchanged. Similar behavior is observed in
Fig. 6, but with the shift of resonances to the left. Again
these results are as expected. Since Rayleigh and WG waves
propagate mostly on the transverse plane, in particular for
small angles of incidencea, these waves are significantly
affected by variations ofc11 and c12. On the other hand,
guided waves which propagate along the cylinder axis are
hardly affected by perturbations ofc11 andc12.

The form function resulting from increasing the value of
c13 by a factor of 2.5 is shown in Fig. 7~a!. In this case, all

three types of resonances, i.e., Rayleigh, WG, and guided
wave modes, are affected. Rayleigh resonances are the least
sensitive to changes inc13 while guided waves show the
largest shift. This result also agrees with the earlier predic-
tions.

III. SUMMARY AND CONCLUSIONS

A mathematical model for acoustic wave scattering from
a transversely isotropic cylinder is developed. Numerical cal-
culations for isotropic cylinders yield identical results to
those achieved with traditional simple models. The validity
of the new formulation in modeling an anisotropic cylinder is
investigated by perturbing the elastic constants of an isotro-
pic aluminum cylinder. As expected, variations ofc11 and
c12, which characterize the cylinder on the transverse plane,
affect the Rayleigh and WG resonances while guided waves,
which propagate along the cylinder axis, remain unaffected.
Conversely, changes inc33 and c44, which characterize the

FIG. 3. Aluminum cylinder insonified by an infinite plane acoustic wave at
an angle of incidencea53°. ~a! Form function.~b! Regge trajectories. Solid
lines correspond to isotropic material properties as given in Eq.~40! and
dashed lines illustrate the resulting changes in the form function if the value
of c44 is increased by 5%.

FIG. 4. Aluminum cylinder insonified by an infinite plane acoustic wave at
an angle of incidencea53°. ~a! Form function.~b! Regge trajectories. Solid
lines correspond to isotropic material properties as given in Eq.~40! and
dashed lines illustrate the resulting changes in the form function if the value
of c33 is doubled.

FIG. 5. Aluminum cylinder insonified by an infinite plane acoustic wave at
an angle of incidencea53°. ~a! Form function.~b! Regge trajectories. Solid
lines correspond to isotropic material properties as given in Eq.~40! and
dashed lines illustrate the resulting changes in the form function if the value
of c11 is increased by 4%.

FIG. 6. Aluminum cylinder insonified by an infinite plane acoustic wave at
an angle of incidencea53°. ~a! Form function.~b! Regge trajectories. Solid
lines correspond to isotropic material properties as given in Eq.~40! and
dashed lines illustrate the resulting changes in the form function if the value
of c12 is increased by 4%.
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cylinder along the axis, cause the resonances associated with
guided waves to be significantly affected while Rayleigh and
WG resonances remain unchanged. Variations ofc13 affect
all resonances, although axially guided modes appear to be
particularly sensitive to values of this parameter. Further in-
vestigation is required in this area.

The mathematical model developed in this paper can be
used in conjunction with experimental data for nondestruc-
tive testing of cylinders and on-line monitoring of the varia-
tions of mechanical properties of cylindrical products. Simi-
lar mathematical models could be developed for shells and
multilayered cylinders.
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APPENDIX

Expanding the displacements, Eq.~11!, and stresses, Eq.
~4!, in terms of potential functions gives
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Elements of the matrices given in Eq.~36! are as follows:
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FIG. 7. Aluminum cylinder insonified by an infinite plane acoustic wave at
an angle of incidencea53°. ~a! Form function.~b! Regge trajectories. Solid
lines correspond to isotropic material properties as given in Eq.~40! and
dashed lines illustrate the resulting changes in the form function if the value
of c13 is increased by a factor of 2.5.
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