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ABSTRACT 

The present work investigates the acoustical absorption and scattering 
cross-sections of spherical bubble clouds subject to harmonic far field pressure 
excitation. Bubble dynamics effects and energy dissipation due to viscosity, 
heat transfer, liquid compressibility and relative motion of the two phases are 
included. The equations of motion for the average flow and for the bubble 
radius are linearized and a closed form solution is obtained. Due to the 
presence of natural oscillatory modes and frequencies, the acoustical cross- 
sections of the cloud are very different from those of each individual bubble 
in the cloud, as well as from the acoustical cross-sections of a single large 
bubble with the same volume of vapor and gas. In general the acoustical 
properties of any given volume of the dispersed phase depend strongly on 
the degree of dispersion because of the complex interactions of the dynamics 
of the bubbles with the whole flow. 

1. INTRODUCTION 

This note illustrates part of our current research on the role played by 
the dynamics of bubble volume changes in the fluid mechanics of bubbly or 
cavitating flows and represents a natural extension of our previous work on 
the dynamics of one-dimensional unsteady flows of spherical bubble clouds 
subject to far field pressure perturbations (d'Agostino and Brennen, 1987). 
Among the practical objectives of this study is a better understanding of 
the global effects of many bubbles in the dynamics and, specifically, in the 
acoustical behavior of bubbly and cavitating flows. Traditionally the acousti- 
cal properties and, in particular, the noise radiation of these flows have been 
analysed and interpreted on the basis of single bubble dynamics assuming 
that the effects of individual bubbles can be algebraically summed. This as- 
sumption, for example, is inherent to virtually all commonly accepted scaling 
laws of noise generation in bubbly and cavitating flows; the void fraction and 
bubble concentration in the cavitation region never appear as scaling param- 
eters (Blake, 1986). The interactive effects that the bubble volume changes 
can have in many practical cases on the velocity and pressure distributions 
(and therefore ultimately on the magnitude of the bubble response itself) are 
neglected, thus eliminating the effects of any large scale internal motion in 
the bubbly region of the flow. 

The traditional approach may be adequate when the bubble concentra- 
tion is extremely low, but it clearly loses validity when the bubble concen- 
tration becomes larger and the possibility of global motion in the bubbly 
mixture arises. As early as 1969 Erdmann and his co-workers noticed a 
surprising and unexplained sharp decrease of the sound pressure level from 
traveling bubble cavitation on propeller hydrofoils when the cavitation num- 
ber dropped below 80% of its inception value and cavitation became more 
extensive. The optical observations of traveling bubble cavitation on Schiebe 
headforms in water tunnel tests by Marboe et al. (1986) and the simulta- 
neous sound measurements displayed the tendency of the noise spectrum to 
shift towards lower frequencies than expected from single bubble dynamics 
considerations. Marboe and his co-workers suggested the occurrence of asym- 
metric bubble collapse as a possible cause of this phenomenon. In view of 

our current results global bubble interaction effects in the cavitation region 
when a sufficient concentration of bubbles is present are another possible 
explanation of the observed reduction of the sound pressure level and of the 
downward shift of the noise frequency spectrum in heavily cavitating flows. 
Similar recent experimental results by Arakeri and Shanmuganathan (1985) 
and Billet (1986) have also helped identify bubble interactions in cavitating 
flows as a likely source of the observed discrepancies. The main purpose of 
this research is to provide some physical interpretation of the origin of these 
alterations. Despite the extensive linearizations inherent in the analysis we 
are confident that the results convey a qualitative understanding of the dy- 
namic and acoustical properties of real, bubbly flows and represent a useful 
guidance in the study of such flows with non-linear bubble dynamics. 

2. DYNAMICS OF SPHERICAL BUBBLE CLOUDS 
We consider the problem of a one-dimensional flow in a spherical bub- 

ble cloud of radius A and void fraction or located at  p = 0 in an un- 
bounded liquid with pressure p, density p, viscosity p, surface tension S 
and speed of sound c, as shown in Fig. 1. Let the perturbation of the 
far field pressure be represented by a one-dimensional plane acoustic wave 
pm (t) = po[l - e exp i(wt - hx)] of wave number h = w/c << 1/A, with o < 1 
and let the subscript o indicate the unperturbed conditions corresponding 
to E = 0. Following the approach used in our earlier work (d'Agostino and 
Brennen, 1987) we seek the solution of the fluid dynamic equations for the 
two phases with the relevant interaction terms, namely: the liquid conti- 
nuity and momentum equations, the bubble number continuity and bubble 
dynamic (Rayleigh-Plesset) equations and the relative motion equation for a 
spherical bubble of negligible mass with Stokes' viscous drag. These equa- 
tions are linearized to study the propagation of spherical disturbances inside 
the cloud of the form [expi(kr+wt)]/r which result from small changes in the 
bubble radius R(r, t) as a function of time t and the radial coordinate r in the 
cloud. This leads to the following expression of the dispersion equation for a 
bubbly flow (van Wijngaarden, 1980) with the inclusion of bubble dynamic 
damping, liquid compressibility and relative motion effects: 

where: 

sinhe f sine 
A& = 

cosh 0 - cos 0 



and 0 = ~,d(2w/Xc)is the ratio of the bubble radius to the bubble thermal 
diffusion length. In the dispersion relation (1) p ~ ,  = p,.+ 2S/& is the 
equilibrium pressure in the bubbles, we is the solution of the imphcit equation 
W g  = WBw (we) and: 

is the low frequency sound speed in homogeneous bubbly mixtures with in- 
compressible liquid. In the absence of damping we reduces to the natural 
frequency of oscillation of a single bubble at isothermal conditions in an un- 
bounded liquid (Plesset and Prosperetti, 1977; Knapp, Daily and Harnmit, 
1970). Similarly, when surface tension and energy dissipation are neglected 
c, reduces to the well known expression of the low frequency sound speed for 
a homogeneous mixture (van Wijngaarden, 1980). If the bubbles are in sta- 
ble equilibrium in their mean or unperturbed state then %($)p~, > 2S/R0 
and both we and c, are real. The three terms in the effective damping co- 
efficient A respectively represent the contributions of the viscous, acoustical 
and thermal dissipation, while W B ~  is the effective natural frequency of an 
individual bubble when excited at frequency w and %($)I3 can be interpreted 
as the equivalent polytropic exponent of the gas in the bubble, which respec- 
tively tends to 1 and 7 in the isothermal and isentropic limits for w -+ 0 and 
w -+ +oo (Prosperetti, 1984). 

Applying the conditions that the flow must be regular at the center of the 
cloud and that the pressure p and the radial velocity u of the liquid must be 
continnous at the cloud boundary (r rr A, in the liiearieed approximation) 
the solution for the flow inside the bubble cloud (d'Agostino and Brennen, 
1987) is: 

1 - iwR,/c sin kr eiwt - 
(cos kA, - aosin(kAo)/kAo) kr (7) 

1-a, eiwt 

P(" t, + cos kAo - aosin(kAo)/kAo ( kr ) (8) 

P O / P ~ ~  sin kr u(r, t) = i r  
cos kA, - a, sin(kA,)/kA, 

where k is the principal square root (with non-negative real and imaginary 
parts) of k2 given by the dispersion equation (7). 

For comparison, the solution for a single bubble of equilibrium radius 
R, subject to the same acoustic field is (Prosperetti, 1984): 

where p ~ ( t )  and u ~ ( t )  = ~ ( t )  are respectively the pressure and the velocity 
of the liquid at the bubble surface. 

Now, the average power absorbed by the forced oscillations of a sphere 
(whether a cloud or a single bubble) with unperturbed radius b, during a 
period T = 2?r/w of the exciting acoustic field is: 

where pb(t)t and ub(t) are the pressure and the velocity at the sphere bound- 
ary. 

The oscillating sphere also acts as a monopole source which generates 
the acoustic field: 

Hence the average power radiated by the sphere is: 

Normalization of wa and W# with the average power density sZp?/pc of 
the excitation wave gives the following expressions for the acoustical absorp- 
tion and scattering cross-sections of an oscillating sphere: 

where Pa, Ub, Pf(r )  and U1(r) respectively indicate the complex amplitudes 
of ~b ( t ) ,  ub(t), ql(r,t) and pf(:,t). 

The acoustical cross-sections of either a bubble cloud or of a single bubble 
can then be computed from the above formulas. Clearly, for a bubble cloud 
1, = A,, while pb(t) and ub(t) are given by equations (8 and (9) for r = A,. 
On the other hand, for a single bubble b, = R,, with pb(t and ub(t) expressed 
by equations (10) and (11). 

I 
8. RESULTS AND DISCUSSION 

In this Section we consider the case of air bubbles (7 = 1.4, XG = 
0.0002m2/s) in water (p = 1000kg/m3, p = 0.001Ns/m2, S = 0.0728N/m, 
c = 1485m/s). Unless otherwise specified the remaining flow parameters 
are: p, = lo6 Pa, R, = 0.001 m, A, = 0.1 m and r = 0.1. In most cases the 
parameter wiAZ,/ck = 3a0(1 - a,)Az/R: is assigned and the void fraction 
or, is determined accordingly. 

Free oscillations of the cloud only occur in the absence of damping when 
the exciting frequency w experienced by each bubble is equal to the natural 
frequency w~ of an individual bubble in an infinite liquid (bubble resonance 
condition) or to  one of the natural frequencies of the bubble cloud. In the 
limit of low void fraction the natural frequencies w, of the cloud are approx- 
imated by the infhite sequence: 

For large n this sequence converges to the frequency we corresponding to 
the bubble resonance conditions. For small n the behavior of this sequence 
depends on the value of 3or0(l - a,)A:/Rz = w ~ A ~ / c ~ .  When this pa- 
rameter is of order unity or larger the lowest natural modes can occur at 
comparatively low frequency. When the reverse is the case all the natural 
modes of the system take place with a frequency only slightly lower than the 
bubble resonance frequency. The occurrence of resonances in the cloud also 
divides the flow solution into three different regimes, namely: sub-resouant 
(0 < w < wl), trans-resonant (wl < w < us) and super-resonant (w > w ~ ) .  
As we shall see later, this has significant consequences on the behavior of the 
flow. 

The relative amplitudes of the bubble radius oscillations at the center 
and at the surface of the cloud are shown in Fig. 2 as a function of the nor- 
malized square frequency for a typical case of 3a,(l - a,)A:/RZ, = a2/4. 
At the boundary of the cloud all resonance peaks except the first are virtu- 
ally eliminated by the presence of damping and replaced by a second much 
smaller and broader peak around the individual bubble natural frequency. 
At the center of the cloud the peak corresponding to the second resonant 
mode (whose amplitude is larger in the inner regions of the cloud) is still rec- 
ognizable, although greatly attenuated. On the other hand, the peak at the 
bubble resonance frequency is absent because it is not associated with any 
global motion in the flow and because any external disturbance at the bubble 
natural frequency is quickly attenuated by the resonant response of the bub- 
bles in the outer regions of the cloud. Also note that the amplitude of the 
bubble radius response is larger at the center of the cloud than at the surface. 
The other flow variables behave in a qualitatively similar manner (d7Agostino 
and Brennen, 1987). Therefore the first natural mode of oscillation of the 
cloud at a frequency w = wl represents the most important component of 
the cloud response. Its effects also dominate the contributions of individual 
bubbles at their own natural frequency. The above results clearly indicate 
that the acoustical  ropert ties of bubble clouds are not adequatelv described 
in terms of the indepeident responses of individual bubbles, at I& as long 
as the parameter 3a,(l - cr,)A:/R: is of order one or larger and therefore 
the first natural frequency of the cloud is significantly smaller than we. 

The relative amplitudes, at various frequencies, of the damped bubble 
radius oscillations as a function of r/A, are illustrated in Fig. 3 for 3&(l - 
or,)AZ,/Rz = a2/4. Note that the bubble response is larger at the center of 
the cloud for forcing frequencies below the bubble natural frequency, while 
the reverse is the case for super-resonant excitation. In fact, in the sub- 
resonant regime the bubbles have ample time to react and therefore behave 
in a compliant way, with the largest motion concentrated in the interior of 
the cloud. The pressure change is essentially in phase with the excitation and 
the bubble response is almost in phase opposition. On the other hand, in 
super-resonant flows the bubbles cannot respond as quickly as the excitation 
requires because of their inertia and therefore appear to be 'stiffer". This 
effect clearly increases with the excitation frequency and therefore the cloud 
response, initially concentrated in the outer regions, becomes more uniform at 
higher frequencies. The pressure and the bubble radius changes are almost in 
phase with the excitation. Finally, in the trans-resonant regime the situation 
is complicated by the presence of more articulated internal motions of the 
cloud due to the occurrence of resonances. The phase of the flow parameters 
with respect to the excitation depends on the dominant oscillation mode in 
the cloud. Between the first and the second natural frequencies, for example, 



the bubble radius response is essentially in phase with the excitation, whiie 
the pressure is almost in phase opposition. 

The effects of different void fractions are illustrated in Figs. 4 and 5, 
which show the acoustical absorption and scattering cross-sections of a bub- 
ble cloud as a function of the normalized square frequency for various values 
of the parameter 3a0(l  - ar,)Az/R;. Note the presence of two peaks corre- 
sponding to the first and the second natural modes of the bubble cloud and 
the absence of a third peak at bubble resonance conditions. Since the natu- 
ral frequencies are determined by the parameter 3a,(l- a,)Az/Rz through 
equation (17), the peak frequencies corresponding to the cloud's natural 
modes of oscillations decrease at higher void fractions. Also note that the 
maximum values of the acoustical absorption and scattering cross-sections 
increase slinhtlv with void fraction and the second resonant ~ e a k s  tend to -~ - - --- v-- -< 

become more pronounced due to the greater compressibility of the cloud. 
Comparisons of the acoustical absorption and scattering cross-sections 

of a bubble cloud with those of each individual bubble in the cloud and of a 
single large bubble with the same total volume as the bubbles in the cloud 
are shown in Figs. 6 and 7 for 3a0(l - a , ) A ~ / R ~  = 7r2/4. Note that the re- 
sults in the various cases vary by orders of magnitude in both amplitude and 
spectral distribution. In particular, the large bubble has the highest acous- 
tical absorption cross-section with the lowest peak frequency. On the other 
hand, the individual bubble has a lower maximum value of the acoustical 
absorption cross-section, but the highest peak frequency, while the bubble 
cloud is characterized by an intermediate value of the peak frequency and 
bv a much smaller maximum amplitude of the acoustical absor~tion cross- 
section. The situation for the acoustical scattering cross-sections is similar, 
with the peaks located at the same frequencies. However, the spread in the 
maximum values is significantly reduced because the scattering cross-section 
of the bubble cloud is larger than that of the individual small bubble and 
only slightly lower that the scattering cross-section of the single large bubble. 
It appears therefore that the acoustical properties of any given volume of the 
dispersed phase depend strongly on the degree of dispersion in the bubbly 
mixture. This has important consequences in the analysis of noise in bubbly 
and cavitating flows. 

Clearly, the validity of the previous theory is limited by the various 
simplifying assumptions that have been made. The discussion of these as- 
sumptions is beyond the scope of this short note. Here we simply indicate 
that the most important restrictions are due to the introduction of the con- 
tinuum model of the flow, to the use of the linear perturbation approach in 
deriving the solution and to the neglect of the local pressure perturbations in 
the neighborhood of each individual bnbble. The implications of the above 
approximations are examined in our previous work on the dynamics of bubble 
clouds (d'Agostino and Brennen, 1987). 

4. CONCLUSIONS 
The results of this study reveal a number of important effects occurring 

in confined bubbly and cavitating flows. As anticipated in the introduction 
and confirmed by the present theory, the dynamics of the bubbles is strongly 
coupled through the pressure and velocity fields with the global dynamics of 
the flow in the bubble cloud. The bubbles are responsible for the occurrence 
of bubble resonance phenomena and for the drastic modification of the sonic 
speed in the medium, which decreases and becomes dispersive (frequency de- 
pendent). Furthermore, internal resonant modes of oscillation are possible at 
the system's natural frequencies due to the presence of boundaries confining 
the bubbly region of the flow. 

The occurrence of resonances leads in turn to the identification of three 
different flow regimes, referred to as sub-resonant, trans-resonant and super- 
resonant. These are defined by the relation between the exciting frequency 
and the first natural frequency of the cloud and the individual bubble natural 
frequency. The natural frequencies of the cloud are always lower than the 
natural frequency of the individual bubbles. In particular, they become sig- 
nificantly smaller than the bubble resonance frequency when the parameter 
3a0(l  - ao)Az/Rz = w ~ A ~ / c ~  is of order unity or larger. In the presence 
of damping the first natural mode of oscillation of the cloud is the most 
important component of the cloud dynamic response. Its effects dominate 
those of higher modes and the contributions of individual bubbles at their 
own natural frequency. Substantial global bubble interactions occur in the 
flow, with the result that the acoustical properties of bubbly clouds are no 
longer adequately described in terms of the collective but independent re- 
sponses of the individual bubbles. In particular, the acoustical absorption 
and scattering cross-sections of a bubble cloud are very significantly different 
in both amplitude and frequency distribution from the acoustical absorption 
and scattering cross-sections of individual bubbles in the cloud. They are 
also very diierent from the cross-sections of a single large bubble with the 
same total volume of vapor and gas. It appears therefore that the acoustical 
properties of any given volume of the dispersed phase depend strongly on 
the degree of dispersion of the vapor/gas phase in the bubbly mixture. An 
increase of the void fraction also causes a substantial reduction in the ampli- 
tude of the bubble response. This, in turn, could reduce the acoustic noise in 
bubbly mixtures or the damage potential in cavitating' flows. The above phe- 
nomena may help to explain some of the unexpected changes experimentally 

observed in the noise spectrum of bubbly cavitating flows. 
The present theory contains many s impl i i ig  assumptions involving the 

flow geometry and the linearization of both the velocity field and the bubble 
dynamics. It cannot, therefore, be expected to provide a quantitative descrip- 
tion of the unsteady behavior of bubble clouds subject to far field pressure 
excitation, except in the acoustical limit. Large bubble radius perturbations 
occur in most flows of practical interest; hence the most crucial limitation 
in the present paper is the linearization of the bubble dynamics, whiie the 
assumption of small velocity perturbations is likely to be more widely jus- 
tified. If all the above linearizations were omitted, only numerical solutions 
could be realistically attempted. However, if only the hypothesis of linear 
bubble dynamics is relaxed, the development of quasi-linear theories might 
be possible and would have a much broader applicability. 
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Figure 1. Schematic of a spherical cloud of bubbles. 
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SQUARE OF THE REDUCED FREQUENCY, w2/w: 

Figure 2. Normalized amplitude of the bubble radius damped oscillations 

at the surface ( r  = A,, solid line) and at the center of the cloud (r = 

0, broken line) as a function of the square reduced frequency w2/wi for 

3a0(l - ~ , ) A ~ / R ~  = a2/4. 

NORMALIZED RADIAL COORDINATE, r/A. 

Figure S. Normalized amplitude of the bubble radius damped oscillations 
in a bubble cloud as a function of the normalied radial coordinate r/A, for 

3a0(l - a,)A:/R: = a2/4 and various values of the excitation frequency: 
w2 = wf/2 (solid line), (wf + wi)/2 (dash-dotted line), 1.1 w g  (dotted line) 

and 2 w i  (broken line). 
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