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Location sensing provides endless opportunities for a wide range of applications in GPS-obstructed environ-
ments; where, typically, there is a need for higher degree of accuracy. In this article, we focus on robust range

estimation, an important prerequisite for fine-grained localization. Motivated by the promise of acoustic in
delivering high ranging accuracy, we present the design, implementation and evaluation of acoustic (both
ultrasound and audible) ranging systems. We distill the limitations of acoustic ranging; and present efficient
signal designs and detection algorithms to overcome the challenges of coverage, range, accuracy/resolution,
tolerance to Doppler’s effect, and audible intensity. We evaluate our proposed techniques experimentally on
TWEET, a low-power platform purpose-built for acoustic ranging applications. Our experiments demonstrate
an operational range of 20m (outdoor) and an average accuracy ≈ 2 cm in the ultrasound domain. Finally,
we present the design of an audible-range acoustic tracking service that encompasses the benefits of a near-
inaudible acoustic broadband chirp and approximately two times increase in Doppler tolerance to achieve
better performance.
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1. INTRODUCTION

Determining the location of a device is a fundamental problem, and its importance has
motivated a large body of research on localization for indoor and outdoor environments
where the Global Positioning System (GPS) does not work well. While the applications
of outdoor location information are widespread, our work is motivated towards indoor
applications in the field of binaural science, acoustic source detection, location-aware
sensor networking, target motion analysis, or mobile robot navigation. Location-
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aware applications deployed in indoor and GPS-obstructed environments, such as
a roof-covered canteen that is not strictly confined by physical boundaries from all
sides, require a higher degree of accuracy than typical outdoor applications. However,
accuracy of localization techniques in these environments remains a challenge.

The end-to-end process of location sensing consists of two sequential phases: (i)
measurement, and (ii) positioning. For an active-cooperative location system [Savvides
et al. 2004] wherein the target S probes the components of the system infrastructure
R with a physical signal, the measurement phase consists of processing the received
signal to estimate parameters of interest such as distance, angle or phase of arrival.
The measurements are subsequently utilized in the positioning phase to compute the
location coordinates. In this case, the measurement phase is invariably referred to as
the ranging phase. Range estimation is a crucial prerequisite for reliable and high
accuracy location information as a minor measurement bias will result in positioning
errors that scale with increasing distance. The ranging performance depends on:
(i) deployment and configuration of the location systems, and (ii) quality of the
ranging waveform and measurement technique [Win et al. 2007]. Hence, an important
research focus on fine-grained localization has been on robust distance estimation.

For high-accuracy range information, the most successful techniques are based on
measuring the time-of-flight (TOF) of signals [Savvides et al. 2001]. Other common
techniques, such as signal strength measurement or fingerprinting, tend to be highly
susceptible to environmental interference [Zhou et al. 2004]; and so, are unreliable
and are less preferred as standalone methods. In TOF approaches, there are two com-
peting technologies: radio frequency (RF) and acoustics. Acoustic signals have been
identified with a number of important features that provide significant advantages
over RF for delivering high ranging accuracy.

Ranging: Using Acoustics. There are a number of factors that make acoustic
attractive. Acoustic signals have low frequency components that are normally in the
order of Hz/kHz rather than MHz/GHz typical for RF. Therefore, acoustic processing
requires significantly lower sampling rates. Sampling rates between 40kHz to 100kHz
are sufficient to adequately recover both audible and ultrasonic acoustic signals.
Hence, the currently available commercial off-the-shelf (COTS) acoustic components
are relatively inexpensive and simple to interface.

Compared to RF, acoustic waveforms have significantly slower propagation speed.
With respect to ranging accuracy, this feature offers a key advantage that eases the
synchronization requirements among the different components of the location system.
This factor, not only provides better compensation of the timing errors, but also,
creates a scope for the use of cheap and low-frequency clocks on acoustics devices that
intrinsically consume less power than typical RF devices. The latter is an important
metric for system design considerations, which lowers the overall cost of acoustic
receivers and shifts the high power requirement to the acoustic transmitter device for
long range detectability [Girod and Estrin 2001; Girod 2000].

Although, the aforementioned benefits make acoustics an attractive choice for
location systems, it has several shortcomings. Its performance is limited by physical
factors, such as reflections from the environment and ground, variation in air density
caused by thermal effects leading to variation in sound speed, and propagation effects
caused by non-uniformities in the atmosphere (due to wind/turbulence). Acoustic
signals, below 20kHz, feature psychoacoustics clues perceivable by humans. There-
fore, acoustic systems that operate in the human audible range have not received
wide acceptability as part of a general localization strategy or for covert operations
[Kushwaha et al. 2005; Girod et al. 2006; Peng et al. 2007; Zhang et al. 2007; Kwon
et al. 2005; Borriello et al. 2005].
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In this regard, ultrasonic systems operating above the human perception range
offer the convenience of inconspicuous location sensing, but introduce other compli-
cations. Ultrasound is more sensitive to atmospheric absorption and fading effects
than frequencies in the audible spectrum, and consequently, may face the problem
of reduced coverage range [Ash and Moses 2005]. Existing COTS ultrasound sensors
exhibit a limited beam angle, which impacts their associated ranging performance
that degrades with an increased angle offset between the transmitter and the receiver
[Priyantha 2005]. In addition, higher sampling rates are required to process ultra-
sound, which inherently increases the cost, size/weight and power consumption of the
sensing platform. Considering these limitations, previous ultrasonic systems were
designed for applications restricted to only indoor environments that support dense
deployment and require short coverage range [Harter et al. 1999; Priyantha 2005;
Savvides et al. 2001].

Ranging: Impact of Signal Design. Apart from the physical waveform properties
and hardware platform features, the design of the ranging signal also plays a key role
in delivering the desired accuracy/resolution and coverage range. Narrowband signals
have a relative bandwidth Br (i.e., ratio of the bandwidth to the center frequency)
of less than 0.2. Due to their limited frequency span, they are highly sensitive to
environmental noise and also face difficulties in resolving multipath reflections [Weiss
and Weinstein 1983].

To overcome these limitations, a broad range of frequencies (with Br > 0.2) can be
used to essentially reduces the chances of the entire signal fading at any particular
time [Klauder et al. 1960; Weinstein and Weiss 1984]. Klauder et al. [Klauder et al.
1960] described pulse compression, a signal processing technique that can both resolve
multiple propagation paths as well as increase signal-to-noise ratio (SNR) of the
direct path (that gives the range) without increasing the transmission power. As a
result, a broadband signal can be processed to form a strong pulse at the line-of-sight
(LOS) path without increasing the noise to the same extent. However, depending on
the propagation channel conditions, this mechanism introduces an uncertainty in
estimating the correct correlation peak due to the presence of numerous sidelobes (i.e.,
adjacent peaks surrounding the correlation peak) that may attain similar heights,
and hence, contribute to ranging inaccuracy.

There are numerous broadband waveforms suitable for use with pulse compression
such as chirps (linear/nonlinear), pseudo-noise (PN), or maximum length sequence
(MLS) [Kottege and Zimmer 2011]. With regards to spectral simplicity and high
processing gain, linear chirps offer the best tradeoff. Linear chirps exhibit reliable
detection and ranging performance for stationary targets. However, their efficacy
tends to degrade for moving targets maneuvering with high speed as they no longer
achieve pulse compressibility with the introduction of Doppler’s effect [Kelly and
Wishner 1965; Yang and Sarkar 2006].

Contributions. We provide a comprehensive discussion of signal design and
detection methodology that address a number of shortcomings of existing techniques,
and make four research contributions.

First, we study the unidirectionality problem of narrowband ultrasound sensors,
and its impact on coverage/range by undertaking a case-study of the Cricket indoor
location system that pioneered the field of ultrasound localization.We draw insights
from the various design aspects with respect to its ranging capabilities, and present
an improved version of the existing Cricket system with detailed description of its
design and implementation. The new hardware unit comprises of an omnidirectional
ultrasonic receiver, an array of three ultrasound transducers, integrable with the
existing Cricket motes, which becomes operational when configured as a listener.
Empirical studies show a modest improvement, although the coverage range achieved
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by both the original and modified versions of Cricket is quite limited.
In order to overcome the limited multipath resolving capability of narrowband

ranging signals, we investigate the efficacy of broadband ultrasonic chirps, and study
the tradeoff between range and accuracy/resolution that is dependent on the transmit
pulse length and its bandwidth. We alleviate the peak ambiguity problem by proposing
a signal detection algorithm for estimating the envelope of the correlated (compressed)
pulse by a least-squares approximation technique. These various improvements in
signal design and detection are, finally, combined into the design and implementation
of TWEET, a mote-based ultrasonic broadband ranging system. The TWEET system
consists of two separate hardware units: beacons and listeners, each consisting of a
low-power sensor node, an audio codec, and a Blackfin DSP. Experimental results
indicate that the system has an operational range of 20m with an average accuracy
of < 2 cm with a 95% confidence interval of 2 cm. Using the TWEET platform, we
demonstrate that broadband ultrasound is also a good candidature for long distance
ranging (both indoors and outdoors), which is our second contribution.

Acoustic location systems operating in the human-audible range are often deemed
unsuitable for general ranging applications, especially in indoor environments. This
can be solved by shifting the signal frequencies to a range that is inaudible to humans.
As our third contribution, we present the signal design features of a near-inaudible
acoustic broadband chirp that combines the principles of human psychoacoustics
with signal engineering techniques. Tests with human subjects suggest that the
near-inaudible signal design is most effective when humans are not informed about
the ambient chirping sound and they are involved in other simultaneous activities.

Tracking of mobile targets requires the acoustic location systems to withstand
Doppler shifts in the signals, introduced by the relative velocity of the tracked and
infrastructure nodes. Although, nonlinear chirps are more Doppler tolerant, we show
that similar capability can be developed in linear chirps by using its sweep charac-
teristic. Therefore, finally, we propose a detection algorithm that capitalizes on the
linearly sweeping property of the linear chirp to measure the Doppler shifts caused
by the moving target, and simultaneously estimates its relative speed and range. For
tracking support, we present the design and implementation of TWEET-v2, an enhanced
version of the TWEET system. Experimental results indicate approximately two times
increase in Doppler tolerance levels of the (acoustic) linear chirp.

This article synthesizes and extends our prior work in this area, distilling our
3.5 year study down to a set of the most important findings and design challenges. Our
earlier papers on this work examined the directionality problem of ultrasound sensors
[Misra et al. 2011a] (Section 3.2.1) and introduced the TWEET ranging system [Misra
et al. 2011c] (Section 4). This article collects all of these results and also adds new
results and observations; the lessons and experiences of which will be helpful to other
engineers working on similar projects.

The rest of the article is organized as follows: In the next section, we outline the
related work followed by discussion and empirical study of the limitations of existing
ranging techniques in Section 3. Section 4 presents signal design features, detection
algorithm and implementation of TWEET as part of a broadband ultrasonic ranging
system. Section 5 introduces the design of a near-inaudible acoustic signal and a
Doppler tolerant detection algorithm as part of a tracking service with TWEET-v2. The
final section suggests potential research directions and concludes with a summary of
the areas covered in the article.
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2. RELATED WORK

Determining the location of a target is based on two basic approaches: landmarking
and dead-reckoning. The landmark based method requires selecting a set of three or
more reference points (fixed or mobile) with known coordinates, obtaining their sepa-
ration distance from the target, and finally, triangulating or multilaterating to obtain
a position estimate within the selected coordinate system. On the other hand, dead-
reckoning uses the motion dynamics of the target to determine its position with respect
to some starting point. However, it suffers from drift since errors in measured dy-
namics (e.g., velocity, acceleration, odometry) accumulate when integrated over time.
Therefore, most location systems are implemented using landmarks or a combination
of landmarks and dead-reckoning.

Landmark-based systems determine the target’s position based on its proximity
to the reference points, which is derived by distance/angle measurements or sig-
nal strength signatures. The time-based distance measurement techniques such as
time-of-arrival (TOA), time-difference-of-arrival (TDOA), round-trip time (RTT), and
elapsed time between two time-of-arrivals (ETOA) are widely used approaches for lo-
cation estimation. Since our primary focus is on acoustics, we only summarize the
available systems within this scope, and refer our readers to the articles by Misra
[Misra 2012] and Hui et al. [Hui et al. 2007] for a general review of location systems.

Acoustic narrowband systems. The Active Bat [Harter et al. 1999], Cricket
[Priyantha 2005], AHLoS [Savvides et al. 2001], WALRUS [Borriello et al. 2005],
Thunder [Zhang et al. 2007] and Kwon et. al. system in [Kwon et al. 2005] are existing
narrowband systems. They share a common ranging technique, wherein the beacon
transmits synchronous RF and sound (acoustic/ultrasound) pulses. The listener re-
ceives the fast propagating RF pulse (almost instantaneously) followed by the sound
pulse; and computes the separation distance by measuring the time-lag between the
arrival of these signals. However, these systems differ in their respective architecture,
implementation technique, and hardware platform.

The Active Bat system uses a centralized controller to coordinate the ranging oper-
ation between the transmitter (called the Bat) and the receiver units that are placed
at known locations on the ceiling of the instrumented rooms, and finally, computes
their position through lateration. Its drawbacks of centralized control and high sys-
tem maintenance cost were overcome by the Cricket system, wherein ranging distance
from the beacon node (placed at predefined locations) were computed locally by the
various listener nodes. Its decentralized administration with the protection of user
privacy, and low system cost are its prime advantages. However, it has the drawback
of limited coverage range characterized by its unidirectional ultrasonic transducers.

ALHoS removed the dependence on any fixed infrastructure (as required by its pre-
decessors) by establishing a fully ad-hoc system with distributed localization algo-
rithms running on every node. It overcame the unidirectional scope of the ultrasound
transducers by creating an omni-directional unit by using six pairs of transducers ar-
ranged in an hexagonal pattern on the Medusa motes. This transducer array had a
roughly constant response in azimuth, but a weaker response looking straight up and
required an additional 9V power source. Therefore, its design was altered in the next
version Medusa-2 motes, wherein three pairs of transmit/receive transducers were in-
clined with respect to the base surface, while one of the transducer pair was placed at
the center to provide a better response in the vertical direction. However, driving the
transmit array (consisting of 4 transducers) requires four times the power to drive a
single transducer, and hence increases the power consumption of the device.

The WALRUS system utilized easily available commercial off-the-shelf (COTS) com-
ponents in an office environment (desktop PC with attached speakers, 802.11 wireless
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infrastructure, and mobile devices) for localization. The system, though very simple,
provides distance resolution with reference to the room-level, and therefore lacks in
attaining fine-grained distance estimates.

In contrast to the previous systems, the Thunder and Kwon’s system were developed
for outdoor environments. Thunder requires a central entity to generate high-intensity
(or loud) acoustic signals for its sensor nodes to receive at long distances, while the sys-
tem proposed by Kwon utilized a COTS piezoelectric buzzer unit to generate acoustic
signals of higher power, and it was augmented to the MTS310 sensor board interfaced
with the Mica2 platform. However, a common drawback is the use of loud ranging sig-
nals that may be annoying to hear at constant intervals, and hence, is not suitable for
quiet surveillance operations.

Acoustic broadband systems. The system proposed by Hazas et al. in [Hazas and
Hopper 2006], Kushwaha et al. in [Kushwaha et al. 2005] , AENSBox [Girod et al.
2006] and BeepBeep [Peng et al. 2007] are existing broadband systems. They share
a common cross-correlation based signal detection technique; however, they differ in
their signal design, synchronization schemes and methods to improve the received
signal-to-noise ratio (SNR).

To mitigate the multipath resolution problem inherent with narrowband systems,
Hazas et al. [Hazas and Hopper 2006] proposed a broadband ultrasonic localization
system that was implemented on custom designed Dolphin devices. The 25ms ranging
signal was generated using a 50kHz carrier wave modulated by Gold codes (of length
511 bits) using Binary Phase Shift Keying (BPSK). The sensitivity of the receiver was
improved by using a transducer with a greater surface area (10mm radius) rather
than the general 5mm transducer applied on the transmitter. The reported ranging
results showed millimeter level accuracy that is comparable to the uncertainty in
hand-measured distances, but it was only targeted for very short range (< 3m) in-
door applications.

Kushwaha’s system was based on the Mica2 platform with an attached custom
50MHz DSP and an external speaker. The ranging signal was a Gaussian windowed
linear chirp of 50Hz-5kHz. It employed a message time stamping technique. The
SNR of the received signal was enhanced by adding a series of consecutive position-
modulated chirps at the same phase and averaging these measurements.

The AENSBox system comprised of a custom designed acoustic sensor array that
utilized beamforming to improve the received SNR, and time synchronization services
to prevent clock skew and drifting. The ranging signal was a 2048-chip code modu-
lated using BPSK on a 12kHz carrier spread over 6-18kHz. It differed from most of its
predecessors in the use of separate synchronization service that maintained metrics
to convert from one system clock to another on demand, rather than a synchronous
radio and audio pulse. This approach is beneficial in scenarios where the audio range
is greater than the radio range. The BeepBeep system used a 50ms linear chirp of 2-
6kHz. It used a two-way sensing scheme (different from the round-trip time measure-
ments) to avoid clock synchronization and was implemented on COTS mobile phones.
We compare the results of our TWEET system and related characteristics to some of the
related work in Section 4.4.1.

3. LIMITATIONS OF EXISTING RANGING TECHNIQUES

In this section, we study the limitations of existing acoustic (audible and ultrasound)
ranging techniques to identify the potential areas for improvement. We distill the
shortcomings of audible acoustic techniques, mostly from literature, and identify mul-
tipath and signal audibility as the two main problems of acoustic ranging. We provide
an empirical case study with the Cricket ultrasonic platform. The main problems that
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Table I: Mapping of Audible Intensity to Equivalent Common Sound

Acoustic System
Sound Pressure Equivalent

Level (dB) Common Sound

Thunder 73 Loud singing (at 0.9 m)
Kwon’s 105 Power mower (at 0.9 m)

Kushwaha’s 105 (at 0.1 m) Power mower (at 0.9 m)
AENSBox 100 Diesel truck (at 9 m)

we observed in our experiments are the limited range and directionality of the ultra-
sound signal, in addition to being susceptible to multipath.

3.1. Limitations of Audible Acoustic Ranging Techniques

Audibility is one of the performance metrics for an acoustic ranging system. Table I
shows the sound pressure level (SPL) of the acoustic pulse used in previous systems,
and translates that to representative human hearing experience [Sonic Studio 1999].
The observations suggest that the audible intensity of these systems were of the mag-
nitude that will annoy humans. Readers should note that most of the audible acoustic
range-finders were designed for outdoor applications where the acoustic waveforms are
not confined. For restricted and compact environments such as indoors, acoustic pulses
emitted at SPL as low as 60dB (which is equivalent to normal conversations) can be
distinctly heard, and may be annoying if continued for a period of time. In addition,
there is a large body of literature on ranging in indoor (room) acoustic environments
[Chen et al. 2006a; Chen et al. 2006b], which attributes noise and multipath reflections
as the main sources of ranging error.

3.2. Limitations of Ultrasound Transducers

We study the directionality, range, and multipath problems of narrowband ultrasound
transducers by performing a case study of the Cricket indoor localization system. We
show that, in a typical ranging setup, the first two problems are related. Specifically,
by improving directionality of the Cricket mote, we can improve its coverage range.
To explore the true limitations of ultrasound ranging, we design an omnidirectional
extension of the Cricket receiver and study its performance empirically. We show that
despite a modest improvement, the range achieved by both the original and modified
versions of Cricket is quite limited.

3.2.1. The Cricket Indoor Localization System: A Case Study. The Cricket system estimates
the range d by measuring the propagation time delay δt of the ultrasound signal from
the beacon (transmitter) to the listener (receiver), i.e., d ∼= δt× c. The accuracy of detec-
tion is dependent on δt that is measured by locating the leading edge of the ultrasound
pulse after it crosses a preset threshold, and the speed of sound c that depends on am-
bient temperature and humidity. We analyze the effect of noise (due to multipath) on
the coverage range and measurement accuracy of δt.

In case of a noise-free signal, the ultrasound pulse shape is rectangular with ampli-
tude A and has a finite rise time tr (as shown by the solid curve in Fig. 1(b)). However,
with the addition of noise to the signal1, there is a shift δtr in the time of threshold
crossing that results in an error in estimating the time delay. When the SNR is large,
the slope of the leading edge of the noise-induced pulse is nearly the same as the slope

1For simplicity, we assume a low frequency noise compared to the signal.
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Fig. 1: Measurement of time-delay using the leading-edge threshold-based technique.

of the leading edge of the noise-free pulse2, and can be represented as:

n(t)

δtr
=

A

tr
(1)

where, n(t) is a continuous analytical function representing a random noise voltage
that is characteristically “white”. Rearranging Eq. (1), we get:

δtr =
tr

A/n(t)

The Root-Mean-Square (RMS) error of δtr results in:

δTr = [(δtr)2]
1/2 =

√

t2r

(A2/n(t)2)

If tr and A are non-time varying functions, then [t2r]
1/2 = tr, [A2]1/2 = A, and:

δTr =
tr

√

(A2/n(t)2)
(2)

The denominator of Eq. (2) is the SNR of the received pulse, and equates to 2S/N for a
rectangular pulse [Minkoff 2002]. Therefore,

δTr =
tr

√

(2S/N)
(3)

If the receiver filter is of bandwidth B, then tr = 1/B. If S = E/τ , where E = signal
energy, τ = pulse width; and N = N0B, where N0 = noise power per unit bandwidth,
then:

δTr =

√

τ

2BE/N0
(4)

Also, with the increase in range, the amplitude A of the pulse decreases due to the
geometric spreading of the signal. Therefore, both range and accuracy of the Cricket
system are dependent on large signal energy, where better accuracy also requires short
pulses with large bandwidth.

The Cricket system provides a 12dB signal amplification to attain a maximum trans-
mit power. Higher amplitude signals can be generated, but at the expense of more

2The pulse shape of the noise-free pulse is rectangular as shown by the solid curve in Fig. 1(b). The pulse
shape of the noise-induced pulse is near rectangular (with distortions) as shown by the dotted curve in
Fig. 1(b). This change of pulse shape from near-rectangular to rectangular depends on the SNR. At high SNR
(i.e., low noise), the pulse shape gets less distorted, and vice-versa. Therefore, in the case of minor distortions
(at high SNR), the (low) noise-induced pulse is the most closest to its perfect replica of a rectangular pulse.
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Fig. 2: The Cricket system: demonstration of the unidirectionality (or limited beam angle)
of the narrowband ultrasound transducers. The tilting of the listener mote, with respect to
the planar surface, does provide some improvement in range.

battery power and costlier ultrasound drive circuitry. A near perfect rectangular pulse
with zero rise (tr ≈ 0) and fall time (resulting in δTr ≈ 0) can be achieved by increasing
the bandwidth of the system. However, the limited bandwidth (2kHz) of the utilized
transducers does not support the generation of a large bandwidth signal, and there-
fore, Cricket uses a single frequency sinusoidal pulse of 40kHz only.

We conducted the following experiment to check for the maximum signal detection
range of the Cricket system within the scope of its current deployment architecture.
We run two sets of experiments to demonstrate that the range and directionality prob-
lems are related. Fig. 2(a) shows the experimental setup. It was performed along the
walkway inside the laboratory of dimensions [10× 1.5× 5]m. Two Cricket motes were
used, wherein the first and second mote were configured as the beacon and listener
nodes respectively. The beacon node was fixed near to the ceiling of the room (at a
height of 2.30/3.02m), while the listener node was placed at 11 different positions on
the floor. Position 0 corresponds to the initial position of the listener, when it is placed
directly below the beacon, to provide a direct LOS between them. The remaining posi-
tions, from [1→4] and [−1→−6], correspond to the listener position, when it is placed
1m apart from its previous position, on either sides of the initial position 0. The range
measured by the Cricket listener was the slant range; which is the path length from
the beacon to the listener, rather than the horizontal range along the floor. Distance
estimates were not logged by the system for position numbers [3, 4,−3,−4,−5,−6] and
[4,−4,−5,−6] for the (beacon) ceiling height of 2.30m and 3.03m respectively. The best-
case distance estimate (or the lowest estimation error) was recorded when the listener
was placed directly below the beacon θ = 0o, as the sensitivity of the transducers is
highest in the direction of the Z-axis, but again, the unidirectionality of the mounted
piezo-electric transducers confines the coverage of the motes from [−40o,+40o] inclina-
tion with respect to the normal. Positions beyond this perimeter experience reduced
or absolutely no coverage. The tilting of the listener mote, with respect to the pla-
nar surface, does provide some improvement in range (Fig. 2(b)), wherein previously
unreachable positions can be estimated, but it is able to only partially recover from
dead-spots.
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(a) The Cricket listener mote integrated with
the omnidirectional receiver

(b) The standalone omnidirectional ultrasonic re-
ceiver array

Fig. 3: The modified Cricket system.

3.2.2. Omnidirectional Cricket. With the understanding of the physical limitations of the
Cricket system, we aim to improve the signal detection range, and hence, its cover-
age. A solution is to align a set of these transducers in different directions in order
to create an omni-directional transducer unit, which can capture ultrasonic signals
arriving from different directions, and hence, improve the reception strength of the di-
rect LOS pulse irrespective of its azimuth angle. An improvement can also be achieved
by reorganizing the transmitter unit to radiate the signal in all directions. However,
providing a transmit array (consisting of x transducers) would take x times as much
power to drive all the elements of the array, as to drive a single transducer. This would
result in increasing the power consumption (x times) on transmit, and may require an
additional power amplifier in the system. Therefore, a better alternative is to provide
an omnidirectional coverage to the receiver.

While more details can be found in [Misra et al. 2011a], we present a basic overview
of the improved version of the existing Cricket system. The new system is a combi-
nation of the existing Cricket mote with an omnidirectional ultrasonic receiver unit
(Fig. 3). The data sheet of the ultrasonic transducers claims that the beam is typically
about 110o wide (±55o wide at the half voltage points (−6dB)). The dodecahedron ar-
rangement of the transducers was decided because the normals of the faces make an
angle of about 63o to each other, close enough to 55o, so adjacent transducers would
add their patterns to give a roughly constant response in the plane joining them.

3.2.3. Evaluation. Ranging experiments were performed with both original (Cricket)
and modified (M-Cricket) platforms during the quiet period of the night in two different
setups:

— Case-A - Indoor, High multipath: A narrow walkway ([10× 2× 4]m).
— Case-B - Indoor, Low multipath: A spacious corridor ([10× 10× 4]m).

The same experimental setup and procedure was followed as explained in Sec. 3.2.1.
The beacon node was fixed at a height of 2.30m. Our initial set of ranging results were
promising: we could improve the Cricket range by up to 20%3. However, the results
were highly dependent on the environment: only 5% improvement was observed in
Case-A (note Cricket and M-Cricket (Before MPM) plots in Fig. 4). We suspected that

3The ranging error recorded at the maximum slant range was ≈ 50 cm.
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Fig. 4: Comparison of the maximum slant range: Cricket vs. M-Cricket (before multipath
mitigation) vs. M-Cricket (after multipath mitigation)

multipath was the problem and implemented a Multipath Mitigation (MPM) version
of M-Cricket.

An investigation into the disparity of this large range difference between Case-A
and Case-B revealed interesting facts. In practice, the ultrasonic pulse emitted by
the beacon node gets reflected off various surfaces inside the room, and therefore,
the received signal at the listener node arrives through multiple paths. Since there
is an unobstructed LOS between the devices, the receive array detects the LOS signal
prior to other reflected signals, and it appears as the strongest impulse in the oscil-
loscope trace. The other echoes, dependent on their path lengths, arrive at different
time-intervals and have varying amplitudes. We first estimate the time taken for the
channel impulse response to decay completely. It was recorded to be between [800 -
1000] ms in Case-A and < 100ms in Case-B at various positions till the maximum re-
ported range. Thus, Case-A was reported to generate more reflections with longer de-
lay spread, which suggests that the received signal takes a longer decay time, thereby
lengthening the channel impulse response. These excess delay impulses (i.e., echoes
from the previous pulse that have not fallen below an acceptable level) strike against
the next emitted pulse (after a random interval between [668 - 1332]ms). It creates a
situation of fading or destructive signal addition where the current signal amplitude
falls below the average level. This was the primary reason for the performance deteri-
oration in Case-A.

If the time taken for the ultrasonic signal to travel the maximum range d at a speed
c is at most d/c, and if the duration of ultrasonic transmission is tus, then the signal
must fade within time [d/c + tus]. Thus, for tus = 150µs (current pulse width utilized
in Cricket) and d ≈ 1m, the signal must completely die after 30ms. However, this as-
sumption holds valid when there is only a single LOS path between the beacon and
the listener, but as we have noticed, the signal reverberation time can be many times
higher than the ideal situation depending on the environment.

Range estimation relies on finding the position of the first pulse. The basic require-
ment is that the pulse repetition frequency must be low enough so that the signal from
one pulse has reduced to a small enough value by the time the next pulse is transmit-
ted. The low ranging performance of the modified Cricket system was overcome by in-
creasing the beacon interval time and maximum ultrasound time-of-flight to randomly
choose within the range [1500 - 2000] ms and 65ms respectively. With the introduction
of these new parameters, the maximum range in Case-A increased to 4.27m (an im-
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5ms

(a) LOS pulse unaffected by multipath

5ms

(b) LOS pulse affected by multipath

Fig. 5: Illustration of the widening of the narrowband pulse under the influence of multipath
echoes.

provement of 18% over the Cricket system), while there was no change in the result for
Case-B (shown as M-Cricket (After MPM) in Fig. 4).

3.2.4. Discussion. The modified Cricket system is similar in design to the ultra-
sonic board of the Medusa motes, but we only implement a omni-directional receiver
unit rather than a omni-transmit/receive unit with lesser hardware components, and
achieve better coverage range of more than 4m with no additional power consump-
tion. This system can be improved by providing multiple transducers, as we did, but
instead of wiring them together, we could provide for the best one with the aims of
increasing the signal strength, and reducing the influence of reflections. This would
apply specifically to the transmitter, which would waste power if multiple transducers
were connected together to operate at the same time. This was the main reason for
building a receiver array only. Switching of the transducers was an approach that we
considered and might still have good direction, although it would require both new
electronics hardware and developing new protocols in the nodes.

The measurement of the time delay using the leading edge threshold-based tech-
nique, though simple and cost-effective, results in large estimation errors due to its
high susceptibility to environmental noise that greatly impacts the pulse character-
istics. Most of the energy in the multipath echoes is not resolvable and the received
signal is reduced to a single wide pulse (Fig. 5). In addition, the use of a narrowband
signal (single frequency sinusodial) exhibits an inherent limitation characteristic to its
design as they have unity product of bandwidth B and pulse time duration T , which
creates a trade-off between range and resolution.

Range resolution depends on the bandwidth of the ranging signal. Narrow pulse
width provides superior resolution and accuracy, but a small range. To achieve long
distance, the transmitted signal should have larger values of E/P (i.e., signal energy
/ power spectral density). However, the amplitude of the signal reaching long range
targets is considerably low and consequently has low E/P . Low-cost and low-power
embedded systems (such as Cricket) have limitation on the maximum transmission
power. Hence, sending high amplitude signals cannot be achieved beyond a certain
threshold. An alternative is to send signals at a certain power levels (≈ amplitude)
while increasing the duration of transmission T . However, increasing T would lead to
a decrease in B which is a prime factor for resolution. A specific signal processing tech-
nique called pulse compression combines the benefits of higher energy of a longer pulse
width with the high resolution of a short pulse width, and can be effectively applied
to increase the ranging capability with lower transmission power. There are numer-
ous waveforms suitable for use with pulse compression, and will be discussed in the
following section.
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4. BROADBAND ULTRASONIC RANGING: SIGNAL DESIGN, DETECTION AND

IMPLEMENTATION

We apply the lessons learned from the previous section to guide the design of the ultra-
sonic ranging signal. To achieve robustness against multipath and to improve signal
detection latency, we selected a broadband signal with the bandwidth of 5kHz. The
frequency of the signal is selected just above 20kHz, the maximum frequency audi-
ble to humans. This is significantly lower than the frequency of traditional ultrasonic
techniques, which helps to improve directionality and coverage range of our technique.
We further improve directionality limitations by using an omni-directional receiver on
the receiver end.

4.1. Signal Design and Analysis

Based on prior work in the field of acoustical localization in air, two classes of broad-
band signal designs were identified: chirps and pseudorandom noise (PN). Chirps are
frequency modulated signals, wherein a sinusoidal wave of constant amplitude sweeps
the desired bandwidth B within a certain time-period T in a linear or non-linear (for
example following quadratic or logarithmic laws) manner. On the other hand, PN
signals are (phase) modulated sinusoidal waveforms mixed with pseudorandom se-
quences. Broadband signals are detected using a matched filter implemented by cor-
relation with a reference signal. A noteworthy point here is that the time-period T
and bandwidth B of the signal control the output parameters of the filter, and have a
key role in delivering the desired coverage range and resolution. In the following sub-
section, we explain this relationship for linear chirps, and then present comparison
studies for the remaining waveforms.

4.1.1. Analysis of Linear Chirp Waveform. A linear chirp is represented by the bandpass
signal:

s(t) =

{

cos(2π(f0t± µ t2

2 )) 0 < t < T

0 elsewhere
(5)

where, f0 is the center frequency in Hz, and µ =B (Hz) /T (s) is the chirp rate that
sweeps linearly from (f0 − B/2) to (f0 + B/2) between the time interval [0, T ]. The ±
term defines its sweep direction.

When the signal in Eq. (5) is passed through its matched filter, the following output
is generated [Cook and Bernfeld 1967]:

g(t) =
T

2
cos(2πf0t)

[

sin(πµt(T − |t|))
πµTt

]

where 0 < t < T (6)

This is the approximate autocorrelation of the linear chirp s(t) and it provides two
important results:

— The peak value (that signifies the energy of the signal) occurs at t = 0 and is propor-
tional to T .

— The correlation envelope, expressed as
[

sin(πµt(T−|t|))
πµTt

]

is approximately
[

sin(πµtT )
πµTt

]

for

t ≪ T , with its first zeros at t = ±1/(µT) = ±(1/B); and is inversely proportional B.

This gives the important relationship that an increase in T increases the size of the
post-correlation signal, and an increase in B gives better resolution by narrowing the
envelope of the correlation peak.

4.1.2. Comparison of Broadband Waveforms. In this subsection, we compare the features
of various types of broadband chirps based on B and T . For studying the change of
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Fig. 6: Study of the change in (a) bandwidth and (b) time-period on the characteristics of the
correlation envelope for linear, quadratic and logarithmic chirps. [P1/P0] denotes the ratio
between the height of the first sidelobe [P1] to the correlation peak [P0].

bandwidth, four types of chirp with constant time-period of 1 s and varying frequency
range (and thus bandwidth) were designed: Chirp-1 [20-25kHz], Chirp-2 [20-30kHz],
Chirp-3 [20-35kHz] and Chirp-4 [20-40kHz]. Fig. 6(a) shows the ratio between the
height of the first sidelobe [P1] to the correlation peak [P0] denoted as [P1/P0] for
linear, quadratic and logarithmic chirps for the different types (chirp-[1/2/3/4]). These
peaks are related to the envelope of the correlation output, which is an important
factor. A lower ratio of [P1/P0] signifies a narrower correlation envelope and is best
supported by the highest bandwidth signal (i.e. Chirp-4). The linear and logarithmic
chirps have similar correlation envelopes; however, the envelope cover of the quadratic
chirp is even narrower. This suggests that although B does not define the acoustic
pressure level of the chirp, a higher bandwidth signal is preferable due to its narrower
correlation envelope that can improve the resolution of the range measurement.

Similarly, for studying the change in time-period, four types of chirp were designed
with constant bandwidth of 20kHz and varying time-periods: Chirp-1 [1s], Chirp-2
[0.5s], Chirp-3 [0.1s] and Chirp-4 [0.05s]. Fig. 6(b) shows that [P1/P0] is constant for
all the different chirps, which suggests that the correlation envelope is independent
of the time-period irrespective of the chirp type. As T controls the peak value of the
correlated signal, one may consider choosing a longer signal duration that has higher
energy to travel longer distances. However, a longer ranging signal increases the sys-
tem reaction time, wherein the pulse repetition frequency has to be kept low; which
means that the entire system is required to wait for one signal and all its echoes to de-

Table II: Chirps vs. PN Signal Characteristics

Signal Type [P1/P0] [P2/P0]

Chirp (Linear) 0.8332 0.4358
Chirp (Logarithmic) 0.8201 0.3961
Chirp (Quadratic) 0.7802 0.3030

Pseudonoise 0.8106 0.6211
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cay before transmitting the next pulse. Second, it increases the overall system cost, in
terms of processing time, energy consumption and storage, thereby making its imple-
mentation difficult on resource-deficient sensor motes. B determines the width of the
correlation envelope, and therefore, determines the range resolution. Although, work-
ing in the ultrasonic domain provides the flexibility to use band of signal frequencies
above 20kHz, higher frequencies are more vulnerable to atmospheric absorption. This
limits the use of an ultrawide bandwidth ultrasonic signal. The appropriate choice of
B and T depends on the application requirements, but from the study presented in the
previous subsection, it appears reasonable to choose a broadband signal of the highest
bandwidth (for best detection accuracy) and shortest time-period (for long range incur-
ring the least processing cost).

With regards to the choice between linear/nonlinear chirps and PN signal, we gen-
erated a 20-40kHz/1 s pulse for each category, and compared them on the basis of their
individual envelope cover (height of the first [P1] and second sidelobe [P2] to the cor-
relation peak [P0]) and spectral complexity. For a PN signal of certain B and T , we
observed that the correlation (peak and sidelobes) properties vary across different
pseudorandom numbers, and therefore, we calculated the running average across 1000
randomly chosen PN codes.

Table II summarizes the overall statistics4. A lower value of [P1/P0] and [P2/P0]
signifies a narrower signal envelope, and is best supported by chirp waveforms than
PN signals. Of the different types of chirps, we choose a linear chirp (as our ranging
signal) since it allows Doppler measurements (that is useful in tracking) despite its
higher [P1/P0] and [P2/P0] value.

4.2. Signal Detection and Post-processing

The system is presented with an indoor environment using a reverberation geometri-
cal acoustic model5 [Crocker 1998]. For the mathematical formulation, we adopt the
following notation: s(t) and d(t) represent the signal emitted by the transmitter (Tx)
and received at the receiver (Rx) respectively; the respective impulse responses of the
transmitter, environment (channel) and receiver are represented by htx(t), h(t) and
hrx(t); and the white Gaussian noise in the channel is denoted by v(t). We also assume
that the system is linear and time-invariant.
s(t) is a broadband signal in the form of a linear chirp and is transmitted at t = 0 by

Tx. The signal d(t) received at Rx is the convolution:

d(t) = s(t) ∗ htx(t) ∗ h(t) ∗ hrx(t) + v(t) ∗ hrx(t) (7)

Assuming htx(t) and hrx(t) are of unit magnitude (i.e., neither the transmitter nor the
receiver change the signal characteristics):

d(t) = s(t) ∗ h(t) + v(t) (8)

4With respect to a cross-correlation based detection mechanism, narrowband signals result in a quasi-
periodic output where it is nontrivial to distinguish unambiguously between adjacent peaks of the corre-
lation function. Typically, signal bandwidth of 2-5kHz (for ultrasonic narrowband systems) with respect
to the center frequency of 40kHz is only a small fraction of [0.05-0.125] which is ≪ 1. As a result, adjacent
peaks have very nearly equal heights, and hence, identification of the tallest correlation peak either requires
a very large SNR or a long observation time-period - none of which are not desirable.
5Geometrical acoustic model is an approximation to the wave acoustic model, and is valid if: (a) the dimen-
sions of the enclosure are large compared to acoustic wavelengths, and (b) the considered acoustic signal is
broadband [Vorlander 2001].

ACM Transactions on Sensor Networks, Vol. 0, No. 0, Article 00, Publication date: 0000.



00:16 P. Misra et al.

h(t) is modeled as the sum of M + 1 impulses corresponding to the direct path with
propagation delay τ0 and M other possible paths between Tx and Rx as:

h(t) =

M
∑

i=0

Aiδ(t− τi) (9)

where Ai is the amplitude of the i-th ray and δ(t− τi) represents the delay in propaga-
tion from Tx to Rx. Ray i = 0 is defined here as the direct sound ray from the source
to the receiver, and rays i > 0 are defined as reflected rays. τi = di/c, where di is the
distance traveled by ray i and c is the speed of sound under room conditions.

The received signal d(t) is processed using a matched filter implemented by corre-
lating it with a reference signal s(t) (i.e., a locally stored copy of the original emitted
signal), and result in:

y(t) = [d(t) ⋆ s(t)]

y(t) = [s(t) ∗ s(−t)] ∗ h(t) + v(t) ∗ s(−t)
(10)

y(t) has its earliest component [s ⋆ s](t− τ0) (where: ⋆ implies correlation), whose peak
can be used to determine τ0 (direct path signal) with considerable precision, provided
the other multipath components of d(t) are sufficiently weak and/or separated in time
from t = τ0. The noise term v(t) ∗ s(−t) may shift the peak at τ0 from its actual time-
line, which may result in an inaccurate estimate of the range information.

The signal detection scheme discussed in existing work provide resistance to mul-
tipath and low-noise signals [Kushwaha et al. 2005; Hazas and Hopper 2006; Girod
et al. 2006; Peng et al. 2007] by using a peak detection approach, which under the
condition of a direct line-of-sight (DLOS) between the transmitter and receiver, iden-
tifies the first tallest correlation peak that exceeds a preset threshold. However, from
our study and observations, we noticed two potential problems. First, the correlation
peak is surrounded by numerous sidelobes (i.e., adjoining peaks). Second, the correla-
tion plot obtained from processing the band-limited signal is highly oscillating within
its envelope cover. Both these conditions provide an inaccurate estimate of the correct
detection peak in the vicinity of similar peaks of approximately equivalent heights un-
der noisy conditions. Therefore, we propose a simple envelope detection mechanism
that makes the role of sidelobes irrelevant and counters the effect of noise through the
least-square curve fitting approach. In addition, it also provides the benefit of finer
resolution that can be fractions of a sampling period.

The envelope detection approach estimates the maximum value of the envelope of
the compressed (correlated) pulse that should give the best estimate of its position. A
simple least-squares approximation technique has been used to find the envelope of the
rectified signal, rather than the standard approach of calculating the magnitude of the
analytical signal. The algorithm identifies the position of the local peak (t2, y2) that is
greater than its left and right neighbor peaks at (t1, y1) and (t3, y3), finds the parabola
that passes through these points exactly, and finally, calculates the time coordinate of
the maximum of this parabola (t = tpeak). Therefore, fitting a parabola to these three
points [Boucher and Hassab 1981; Moddemeijer 1991; Jacovitti and Scarano 1993;
Jameson 2006] requires solving the following system of three linear equations for the
three unknown [a, b, c]:

y1 = at21 + bt1 + c

y2 = at22 + bt2 + c

y3 = at23 + bt3 + c

(11)
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The corresponding representation in matrix form is:

Ax̂ = B (12)

where x̂ = [a b c]T is the matrix of unknown parameters, and:

A =







t21 t1 1

t22 t2 1

t23 t3 1






B = [y1 y2 y3]

T
(13)

Thus, x̂ = A
−1

B, where A
−1 is the inverse matrix of A. The maximum of the envelope

occurs at tpeak = −b/(2a).
In case of low-noise signals, there are more peaks surrounding the highest peak as

shown in Fig. 7(a). The parabolic curve fitting using least-square approximation tech-
nique does the best to pass as near as possible to all the adjacent peaks, and thus,
provides resistance to noise on the data points. To illustrate the least-square approx-
imation process, suppose there are n data points that can be modeled by a system of
n quadratic equations for the three unknown coefficients [a, b, c]. If n is greater than
the number of unknowns (i.e., 3), then it is an overdetermined system, and is solved
by the least-square parabolic fitting process that minimizes the summed square of the
residuals.
Let the difference ei between the ith data point (ti, yi) and the fitted parabola be:

ei = yi − (at2i + bti + c) (14)

Then, the sum of squared errors is given by:

E =

n
∑

i=1

e2i (15)

The goal is to minimize E, and is determined by differentiating E with respect to
each parameter (or unknown), and setting the result to zero (i.e., ∂E/∂a = ∂E/∂b =
∂E/∂c = 0).
Thus, we obtain the following three equations for the three unknowns [a, b, c]:

n
∑

i=1

yit
2
i = a

n
∑

i=1

t4i + b

n
∑

i=1

t3i + c

n
∑

i=1

t2i (16)

n
∑

i=1

yiti = a

n
∑

i=1

t3i + b

n
∑

i=1

t2i + c
n
∑

i=1

ti (17)

n
∑

i=1

yi = a
n
∑

i=1

t2i + b
n
∑

i=1

ti + cn (18)

This linear system can be solved (as explained before) for [a, b, c] to provide an estimate
for the position of the peak: tpeak = −b/(2a). tpeak is the estimate of the pulse position,
and thus, provides a range estimate.

We simulated a custom environment and evaluated the performance of the proposed
ranging algorithm. The simulator was designed to construct a virtual 2D rectangular
room with (top,left) and (bottom,right) coordinates as: (−5, ζ/2) and (ζ + 5,−ζ/2) re-
spectively, where ζ is the distance between Tx and Rx and is varied from 1-20m for
every set of measurements. Tx and Rx were placed at positions (0, 0) and (ζ, 0). It was
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Fig. 7: (a): Signal detection and post-processing. Simulation results for range estimation.
(b): Mean error with vertical bars representing 95% confidence intervals.

configured to generate fixed number of reflection points at random positions in the en-
closed geometry and was programmed as per the described system model.

Measurements were taken at different positions inside the room for distances be-
tween 1-20m. Every simulation was run for a length of 1000 iterations. The simulator
was configured for 5 reflection points with attenuation factor of 0.9, and the transmit-
ted signal of [20-40] kHz/50ms (sampled at 96kHz) was added with white Gaussian
noise (SNR = 10dB). The choice for these simulation parameters has been explained
in [Misra 2012].

Fig. 7(a) shows the output from the correlation function, the result of rectification
and envelope detection of the correlated pulse. Fig. 7(b) shows the distance estimation
accuracy obtained from the simulation measurements. We observe that the magnitude
of the mean errors is consistently less than 1cm for distances upto 20m. Therefore, we
conclude that our detection methodology is precise enough for fine-grained ranging.

4.3. TWEET: System Implementation

We, initially, developed a proof-of-concept PC-based ranging system consisting of var-
ious COTS devices and custom designed units to experimentally verify the feasibility
of our proposed scheme before incorporating them into an embedded design. Based on
its understanding, we improved on its various stages to finally assemble all the differ-
ent components onto a single mote-based ranging system named as the TWEET. In this
section, we describe its hardware platform and software architecture.

4.3.1. System Design: Hardware & Software. TWEET has been implemented on CSIRO
Audio nodes using its wireless sensor network platform: the Fleck-3z. Its main
components include the Atmega1281 microcontroller, 1MB external flash memory
and a low-bandwidth Atmel RF212 radio transceiver operating in the 900MHz band.
It supports a flexible range of digital I/Os and a daughter board interface, which
allows the use of expansion boards to enhance its base functionality. The architecture
relies heavily on the SPI bus, where the microcontroller acts as the SPI master and
communicates with the remaining system components over the SPI interface. Fig. 8
and Fig. 9, respectively, show the architecture of the implemented TWEET system and
its different components.
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Fig. 8: The TWEET ranging system: architecture of the (a)-(b) beacon and the (c)-(d) listener.

The audio signal processing daughter board (designed by CSIRO) was used
for ultrasonic ranging. It includes four TI TLV320AIC3254 audio codecs, each provid-
ing two audio I/O channels along with internal functionalities such as programmable
gain amplifiers and software configurable filtering; micro SD flash memory card slot,
and a connector to hold the CM-BF537E digital signal processor module manufactured
by Bluetechnix. The CM-BF537E module combines a (Analog Devices) Blackfin
DSP running at up to 600MHz, a 32MB RAM and an Ethernet interface. The DSP
communicates with the low power Fleck mote through a serial interface. The power
consumption of this daughter board is in excess of 1200mA in the active state, and so
(in its present implementation) Fleck-3z mote controls power to this board ensuring
that the relatively high power consumption is only incurred during audio transmission
and acquisition. There are two simple daughter boards that provide connector access
to the audio I/O ports and an Ethernet socket.

The transmitting front-end of the beacon mote consisted of a power amplifier driv-
ing a tweeter transducer (VIFA 3/4” tweeter module MICRO), which is a speaker opti-
mized for high frequencies. It was chosen due to its small size ([2× 2× 1] cm) and good
high-frequency response compared to existing broadband transducers or piezoelectric
ceramic/piezo film transducers reported in existing literature. The amplifier is a light-
weight portable unit with a maximum output power of 0.5W. It is powered by batteries
and has a tunable gain controller.

The receiving front-end of the listener mote consisted of the Knowles microphone
(SPM0404UD5 [Misra et al. 2011b]) fixed to the pre-amplifier PCB designed by
CSIRO. The surface mount wideband ultrasonic sensor was chosen due to its omni

Fig. 9: TWEET components.
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Table III: Power consumption of the audio node

Process Power (mW)

Mote Idle 60× 10−3

Mote Tx/Rx 60
Audio codec 4.2-21.9
DSP Startup/ Processing/ Idle 1200

directionality, high sensitivity and SNR within an extremely small form factor of
[4.72 × 3.76 × 1.40]mm. The small PCB has been designed to operate in close prox-
imity with the microphone in order to minimize the susceptibility of the low amplitude
microphone output signals to corruption by electrical noise. The frequency response
characteristics, for both the transmitting and receiving front-ends, have an approx-
imately 20dB acoustic pressure level above the noise floor for frequencies between
[20-40]kHz [Misra 2012].

As temperature compensation is required for range measurements, a small form-
factor PCB ([2.5 × 2.5] cm) was designed to mount the Sensirion SHT15 temperature
and humidity sensor (along with a filter cap and necessary discrete components such
as capacitors and pull-up resistors), and was controlled by the Fleck-3z microcontroller
via a GPIO digital interface. It consumes < 5mA of current, thus allowing it to be pow-
ered directly from the digital I/O ports of the mote.

Fleck-3z runs the TinyOS-2.x OS. The software performs the tasks of maintaining
and executing a schedule of system operations, maintaining a persistent log of sys-
tem actions and status, sampling from attached on-board/external sensors, controlling
the operation and power switch of the audio signal processing daughter board. The
software for the Blackfin DSP is responsible for configuring (sampling rate, gain, etc)
and enabling the audio codec ICs, managing the incoming and outgoing digital audio
stream, transferring data/information to the micro-SD card, command exchange from
the Fleck-3z via serial interface, such as start/stop audio playback/recording, interro-
gate operational status, etc. The power consumption of the different components in the
audio node are shown in Table III.

4.3.2. Ranging Methodology. For the TWEET system, a [20-25]kHz/50ms ranging signal
was chosen and the audio codes were configured to sample at 64kHz. Although the
audio codecs could support a maximum sampling rate of 192kHz that can generate a
signal upto 96kHz, our system tests revealed that there was a significant drop in the
audio output of approximately 30-40dB beyond 25kHz frequency range.
TWEET uses the TDOA of RF and ultrasound signals to measure the beacon-to-listener

distances. The beacon periodically transmits a RF message containing the measured
ambient temperature and humidity. At the start of each RF message, the beacon trans-
mits a broadband ultrasonic linear chirp pulse. The fast propagating RF signal leads
its synchronous ultrasound pulse and reaches the listener almost instantaneously,
which then measures the TDOA between them. The TOA of the ultrasound pulse is
measured by cross-correlating the received chirp pulse with a copy of the reference
signal stored in the receiver, and then, the range estimate is computed by the envelope
detection technique (Section 4.2). Since the speed of sound has a relatively large sen-
sitivity to temperature variations than relative humidity and atmospheric pressure,
the final distance estimate is computed by the corresponding speed of sound obtained
by averaging the ambient temperature measured at the beacon (sent in the RF mes-
sage) and the listener (measured at the TOA of the ultrasound pulse). After carefully
estimating the various system induced time-delays, a final calibration exercise was
performed by conducting a series of ranging experiments for short distances between
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Fig. 10: The TWEET ranging system: accuracy in terms of mean error, deviation (shown in
blue vertical lines), and confidence intervals for the different experimentation cases.

5-10 cm. The mean ranging error of 6.42 cm, obtained from its corresponding error dis-
tribution, was subtracted from the final result.

4.4. Evaluation

To evaluate the performance of the TWEET system under different multipath conditions,
we conducted ranging experiments in the following environments:

— Case-C - Indoor, Low multipath: A quiet lecture theatre ([25 × 15 × 10]m) with a
spacious podium at one end of the large room.

— Case-D - Indoor, High mutipath: A quiet meeting room ([7 × 6 × 6]m) with a big
wooden table in the center and other office furnitures.

— Case-E - Outdoor, Very low multipath: A less frequently used urban walkway, and
the weather being sunny with occasional mild breeze.

In all our experiments, the beacon mote was fixed while we performed a controlled and
careful movement of the listener mote along the direct LOS using a measuring tape
and markers for establishing the correct ground distance. The beacon was calibrated
to chirp at 70dB. The speed of sound used in distance calculation was according to
the model: cair = 331.3 + 0.6θ (θ: air temperature in oC). For every setting (i.e., differ-
ent distances under different test cases), the experiments were repeated 30 times. The
metrics used to evaluate the system were accuracy (difference between the ranging
results and the true distance) and confidence interval for the measured errors. The
accuracy and confidence measurements for the case-C setting are shown in Fig. 10(a)
and Fig. 10(d), where we can observe that our system yields accurate and stable rang-
ing results in a (less severe) multipath environment. The mean ranging error is within
±[1-2] cm with a 95% confidence interval of < 2 cm. High percentage of experiments
recorded less than 2 cm accuracy, however, the performance deteriorates for distance
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measurements at [9-10] m when the listener mote approaches close to the walls. Even
then, the error deviation from the mean is < 5 cm. Fig. 10(b) shows the accuracy for
case-D, where the mean ranging error is 1.5 cm and the maximum deviation is 2.5 cm
at its maximum measured distance of 5m. Due to the multipath dominated environ-
ment, the reported error levels (for each measurement) is quite fluctuating, even for
shorter distances. Nevertheless, the system was able to record a confidence interval of
< 1.5 cm (Fig. 10(e)).

The ranging statistics for case-E has been shown in Fig. 10(c) and Fig. 10(f). The sys-
tem shows similar performance as reported for indoor case-A/B for distances < 10m
with a maximum mean error and deviation of ≈ 2.5 cm and an estimated confidence in-
terval of 2 cm. We also observe that the the ranging error increases and shows a larger
dynamic range for distance measurements at 15m and 20m, which is primarily due
to the a lower SNR of the received signal caused by attenuation and non-uniformities
in the atmosphere caused by wind. The measurements at 5m shows a sudden drop in
accuracy and an increased deviation, which is due to a strong breeze at that instant,
but the system quickly recovers and attains a stable mean error.

For all the measurements, we observe that the absolute distance estimation error
increases with the increase in separation between the transmitter and the receiver.
In practice, distance information is not known a priori, therefore we plot the distribu-
tion of all ranging errors in the different test environments (reported in [Misra et al.
2011c]) so as to provide an overall system snapshot. The statistics suggest that the
overall performance of TWEET is accurate with a mean error of 1 cm and deviation of
3.63 cm with the best performance obtained in indoor spacious facilities.

4.4.1. Discussion. Our work has similarities to the linear chirp based system designed
by Kushwaha [Kushwaha et al. 2005]; but instead of using an additional Gaussian
window to compensate for high correlation sidelobes, we use a simpler and effective
envelope detection method. Our ranging precision (after temperature compensation)
is generally 3 times better, where for ranges between [10-20]m, our standard devia-
tion is 5 cm compared to [15-25] cm reported by Kushwaha et al. Further, Kushwaha’s
system achieved a maximum detection range of 30m at a SPL of 105dB at 10 cm (i.e.,
measured at the near-field of the speaker). Such near-field measurements may not pro-
vide the correct SPL representation, as they are dominated by the physical dimension
of the speaker membrane and the volume of displaced air. Our experiences with two
different speakers of different sizes used with our system (wherein we supplied the
same power) showed different SPL values when measured in the near-field (10 cm),
but were the same at 1m. In contrast, TWEET attained at maximum range of 30m, but
its operational range was 20m at SPL of 70dB (SPL measured at 1m).

Our system reports, approximately, the same level of accuracy as the BeepBeep
[Peng et al. 2007] for ranges under 10m. The authors do not provide any ranging anal-
ysis for distances over 10m, which is where our system is more useful. There is no
mention of the SPL for this system, therefore, comparing the ranges would be un-
fair. The techniques of EchoBeep and DeafBeep [Nandakumar et al. 2012] and Whis-
tle [Xu et al. 2011] improve on the basic BeepBeep mechanism. While EchoBeep and
DeafBeep, respectively, are provisioned for NLOS conditions and distance difference

Table IV: Resource Usage

System Power (W) Approx. Processing Cost

TWEET 2.5 2*FFT + 1*IFFT
AENSBox 3.6 5*FFT + 4*IFFT
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Fig. 11: System Comparison.

measurements (for devices without microphones), Whistle measures the TDOA. In the
current implementation, TWEET has been designed to provide accurate TOA ranging (to
within a few cm) in LOS environments, but will under perform in NLOS conditions.
Nevertheless, TWEET’s envelope detection mechanism can prove to be more efficient in
catering to the above ranging conditions as the core idea of EchoBeep, DeafBeep and
Whistle are based on peak detection, the disadvantages of which have been discussed
in Section 4.2. Yang et al. [Yang et al. 2011] detect the arrival time of the ranging pulse
by the sequential change-point mechanism, where the key idea is to identify the first
arriving signal that deviates from the noise after filtering out background noise. This
simple technique is useful when there is relatively little noise and interference from
outside sources in the frequency range of the ranging pulse (such as inside a car), and
therefore, cannot be used for general ranging applications. The results presented in
[Yang et al. 2011] denote the distance difference from the receiver to two transmitters,
and hence, a direct comparison with the TWEET system is not feasible.

The AENSBox system [Girod et al. 2006], calibrated to 105dB SPL at 10 cm, attains
a maximum range of 60m with a mean error of 1.73 cm and deviation of 1.76 cm. It is 3
times better than the TWEET system in maximum operational range, but the accuracy is
comparable to ours with a mean of 1 cm and deviation of 3.63 cm. This additional bene-
fit in range comes at the cost of using a longer (1/3 s) ranging signal and an expensive
matched-filter. However, under the condition of duty-cycling (Fig. 11(a)), our system
scores over AENSBox in consuming 80% lesser power. Table IV compares the various
resource usage between these two systems, where again, TWEET proves economical in
saving power and processing cost. It is important to note that AENSBox was designed
for outdoors, and therefore, the various design choices were made for delivering high
power.

A comparison of the signal envelope (an important factor for precision) among TWEET,
AENSBox and BeepBeep has been shown in Fig. 11(b), where we consider the signal
length of the various systems to be 1 s (for easy analysis). We observe that TWEET has a
narrower signal envelope than the other systems, which implies that if the same SPL
is generated from all, then our system would be able to attain comparable detection
range, but with better accuracy. In addition, the TWEET system reported better transmit
directionality (Fig. 11(c)) than the Cricket system analyzed in Section 3.2.1.

The applicability of the parabolic curve fitting using the least square approxima-
tion technique used in TWEET can get limited by the SNR condition. If the SNR is
very low, then the proposed interpolation method will introduce significant bias. In the
outdoor experimentation environment, TWEET was able to cover a maximum range of
30m, but its (useful) operational range was limited to 20m only. The low SNR recorded
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at distances beyond 20m was a prime hurdle that affected the performance of cross-
correlation, which in turn impacted the proposed envelope detection method.

The different system tests with TWEET showed that its performance was similar to
AENSBox [Girod et al. 2006] (operating below 20kHz) except for improvements in
power consumption, processing cost and (minor) accuracy. Although the performance
of ultrasound was similar to audible signals in terms of accuracy, it provided major
benefits in terms of inaudibility to human perception, which is a critical factor for
urban deployments.

5. NEAR-INAUDIBLE TRACKING OF MOBILE TARGETS USING ACOUSTIC DOPPLER SHIFTS

There exists a wide range of audible acoustic ranging systems, but the fact that an au-
dible signal is used makes the appeal of these techniques quite limited. In addition, al-
though the efficacy of linear chirps has been successfully demonstrated for static point-
to-point ranging, the capabilities of its simplistic spectrum has not been investigated
thoroughly for improving Doppler tolerance in tracking devices maneuvering with high
speed. In this section, we present the design of a tracking service that achieves better
performance by combining the benefits of a near-inaudible acoustic broadband chirp
and a dual-input receiver system. The key motivation to switch the sound signal from
ultrasonic to audible domain was to make detection and tracking process faster as it
will benefit by the need to process fewer samples.

We envision that the tracking system should locate humans and objects inside a
building within a meter at any given time. We envision that sensor tags are attached
to the targets, where each tag first broadcasts its identity and then starts the ranging
process with a network of static anchor nodes that are installed inside the room of
interest. The position of each tag is determined by the localization algorithm running
on a centralized server. In the following sections, we discuss the challenges, solutions,
and experiments conducted to evaluate our end-to-end tracking system.

5.1. Signal Design for Near-Inaudibility

Many signal sources sharing the same channel (or frequency spectrum) result in inter-
ference. The state of mutual coexistence of different signals is achieved by broadening
the range of signal frequencies; thereby, alleviating the chances of the entire signal fad-
ing at a particular time, and decreasing the signal time-period to reduce the channel
occupancy. However, audible-range acoustic signals add another constraint by oper-
ating in the frequency range that is easily perceived by the human auditory system.
Therefore, achieving near-inaudibility is an important signal design feature for coex-
istence of acoustic signals in the audible domain.

The design of our proposed near-inaudible acoustic signal combines the principles
of human psychoacoustics with signal engineering techniques. Psychoacoustics high-
lights the fact that the human ear shows a nonlinear frequency response between
20Hz to 20kHz, and records the highest sensitivity between [1-5] kHz (equal-loudness-
contour)[Moore 2004]. The science of signal engineering suggests that the peak-to-
average power ratio (PAPR) of a signal is a measure of its intensity. If the physical sig-
nal is acoustic, then a higher value of PAPR signifies loudness and vice-versa. There-
fore, a simple solution to moderate (or reduce) the sound intensity is to broaden the
frequency span of the signal that decreases the overall PAPR. Fig. 12 shows the re-
lationship between PAPR and bandwidth B of a signal (which in our case is a linear
chirp) with different time-periods T of 0.001 s and 0.01 s. We observe that PAPR de-
creases with the increase of bandwidth irrespective of the time-period of the signal. In
addition, the signal with a smaller pulse duration (0.001 s) shows a lower PAPR value
compared to the signal with a longer time-period (0.01 s). Therefore, designing a rang-
ing signal with a very small pulse duration would result in a better near-inaudible

ACM Transactions on Sensor Networks, Vol. 0, No. 0, Article 00, Publication date: 0000.



Acoustical Ranging Techniques in Embedded Wireless Sensor Networked Devices 00:25

0 0.5 1 1.5 2

x 10
4

1.395

1.4

1.405

1.41

1.415

1.42

P
e

a
k

-t
o

-A
v

e
ra

g
e

 
P

o
w

e
r 

R
a

ti
o

Bandwidth (kHz)

 

 

T = 0.001s
T = 0.01s

Fig. 12: Sound intensity (measured by peak-to-average power ratio) decreases with increas-
ing bandwidth.

Table V: Evaluation of Inaudibility showing the percentage of humans that did not hear the
signal.

Environment
Test-1 Test-2

Uninformed (%) Informed (%)

Env-1 (Quiet) 44.4 0
Env-2 (Noisy) 77.8 44.4

acoustic signal with significant reduction in sound intensity. However, a smaller T sig-
nifies lesser energy in the transmitted pulse, and hence, reduces the maximum range
of the sensing system. This, in fact, introduces a trade-off between sound intensity (in-
dicated by PAPR) and maximum range (dependent on T ), and their appropriate choice
depends on the application requirements.

Based on these observations and our functional requirement of an operational
range of 10m, we use a linear chirp with the highest bandwidth in the audible-range
[1− 20]kHz and pulse duration of 0.01 s. In order to further limit the perceived sound
intensity (for human hearing), the frequencies between [1-5] kHz were partially atten-
uated.

5.1.1. Test of Near-Inaudibility. To evaluate the near-inaudible signal design, we con-
ducted sound perceptibility experiments6 with 9 human test subjects in an office en-
vironment. Taking into account the different responses a human would have when
subjected to informed and uniformed events, we formulate two specific test cases.

— Test-1 - Uninformed: None of the subjects were advised about the periodic chirping
signal inside the room.

— Test-2 - Informed: All subjects were alerted a-priori.

These test cases were applied to the subjects in two different environments.

— Env-1 - Quiet: Office setting wherein the subjects were not talking to each other for
approximately 90% of the observation time.

6Human psychoacoustic analysis is necessary as humans can actually hear sounds in inaudible range due
to the speaker response (for certain chirps).
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— Env-2 - Noisy: Office setting wherein the subjects were involved in discussions for
approximately 90% of the observation time.

The total observation time for each set of experiment was 30minutes. The transmitter
was configured to chirp at 70dB SPL.

Table V shows the results wherein the values represent the percentage of test sub-
jects that did not perceive the presence of the chirping sound signal in the experimen-
tation room. The results suggest that the near-inaudible signal design is most effec-
tive (more than 75% unperceived) when humans are not informed about the ambient
chirping sound and they are involved in other simultaneous activities. However, the
non-perceptibility rate decreases when humans are informed about their surrounding
irrespective of whether their minds are engaged or relaxed. With respect to the track-
ing applications (human and object tracking inside buildings), the results are encour-
aging because the tracking service operators are not expected to reveal the tracking
modality and the human subjects are expected to be performing their routine activities
while they are being tracked ubiquitously.

5.2. Measuring Acoustic Doppler Shifts in Ranging

Doppler effect is a known phenomenon that is observed when objects exchange signals
while moving relative to each other. The Doppler law states that if an object transmits
a signal while being in motion relative to an observer, the frequency of the perceived
signal will be Doppler shifted, and the magnitude of this shift depends on the fre-
quency of the transmitted signal and the relative velocity between the object and the
observer. Specifically, two effects will be observed in the received signal: first, the car-
rier frequency will be shifted proportional to the relative velocity; and second, pulse
duration of consecutive received signal segments from the same range will be progres-
sively time-shifted with respect to the time of transmission.

A criterion for validating the Doppler’s effect on the linear frequency modulation of
the linear chirp can be expressed in terms of its time-bandwidth product. If the signal
duration is T and the target velocity is v, then the Doppler shifted received signal has
a duration T (1 − v/c) = T -∆T . The Doppler’ effect on the signal can be ignored only if
[Kelly and Wishner 1965]:

∆T ≪ 1

B
≡ v

c
TB ≪ 1 (19)

However, this change is noticeable if ∆T is comparable to the inverse of the bandwidth
B. At this threshold, the detection performance of the matched-filter degrades as the
received signal does not stay matched with its reference copy. As a result, the output
of the matched-filter does not show a distinct peak, but instead, a wider peak with its
height significantly reduced and obscured by its sidelobes. This detection state intro-
duces large errors in range estimation.

According to Eq. (19), the designed near-inaudible linear chirp signal of B=19kHz
and T=0.01 s will deteriorate in performance at an approximate source velocity of 3m/s
under Doppler’s effect. This information is also conveyed in Fig. 13, where there is
a significant increase in range estimation error and a corresponding decrease in the
correlation peak when the velocity of the source exceeds 3m/s. Fig. 13 also indicates
that nonlinear chirps, following the quadratic or logarithmic laws, are more tolerant
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Fig. 13: Doppler’s effect on linear and nonlinear chirps. For the designed near-inaudible
linear chirp of B=19kHz and T=0.01 s, there is a significant increase in range estimation
error and a corresponding decrease in the correlation peak when the velocity of the source
exceeds 3m/s.

to ranging inaccuracies due to Doppler’s effect7, and therefore, are better suited for
tracking of very high velocity targets. However, with respect to typical indoor and semi-
indoor applications where target velocity may not exceed 5m/s, linear chirps are more
befitting.

The Doppler shift of a signal changes the frequency and time-period of the transmit-
ted pulse. If the signal is a linear chirp, then this change in frequency and time-period
inevitably changes the sweep rate µ of the pulse. We capitalize on the linearly sweep-
ing characteristic feature of a linear chirp, and propose an algorithm to measure the
Doppler shift.

5.2.1. System Model. The system model described in Section 4.2 is modified as follows
to represent the operation of a tracking system. Fig. 14 shows a single transmitter
node S moving with velocity ~v in an area deployed with m receiver (i.e., anchor) nodes
(Ri where i = 1 to m). We are interested in tracking S.

The magnitude of the Doppler shifts observed at node Ri depends on the relative
speed of S and Ri, which can be found by projecting the velocity vector ~v on the SRi

line. If the unit vector pointing from Ri to S is denoted by ~ui = ~RiS/‖RiS‖, then the
relative speed of Ri and S can be defined as the following dot product.

vi = ~ui.~v (20)

In Eq. (20), vi is a scalar quantity with a positive value if ~v points away from Ri (i.e., the
transmitter is moving away from the receiver), and vice-versa. Moreover, the length of
the projected vectors depends on both ~v and the location of S, which means that vector
~v can be same at different time instances, but the corresponding projected vectors will
have different lengths.

7For a Doppler-invariant waveform, the instantaneous frequency of the signal at the time of transmission
should remain unaltered at any instant of time. Nonlinear chirps preserve this property [Yang and Sarkar
2006], even under high velocity. Its explanation lies in the basic characteristic of the quadratic and logarith-
mic functions, which generate a nonlinear sweep (i.e., a curve) rather than a linear sweep (i.e., a straight
line). This means that nonlinear chirps, inherently, have a long curve head of low frequencies (i.e., less
Doppler shifted) followed by the short curve tail with high frequencies (i.e., more Doppler shifted). Hence,
cumulatively, the impact of Doppler effect is less severe in nonlinear chirps.

ACM Transactions on Sensor Networks, Vol. 0, No. 0, Article 00, Publication date: 0000.



00:28 P. Misra et al.

(a) (b)

Fig. 14: The system model for tracking. (a): The receiver nodes Ri are tracking the mo-
bile target S. Ri calculates the relative speed of S (red arrow) from the measured Doppler
shifted signal.
(b): S maneuvering with a velocity ~v transmits a linear chirp signal. Ri measures the
Doppler shifted signal that depends on vi (the relative speed of S and Ri).

Let S transmit a linear frequency modulated chirp (Eq. (5)) with start frequency f1,
end frequency f2 (i.e., center frequency f0 = (f1 + f2)/2), and time-period T . Since S
moves relative to a number of static nodes Ri, the frequencies in the received wave-
form rdi are Doppler shifted by a factor bi at each node Ri. bi is referred to as the
expansion/compression factor, and depends on the relative speed vi of S and Ri. If c is
the speed of sound in the medium, then bi is given as:

bi =

(

c

c+ vi

)

(21)

At each node Ri, the Doppler shifted start frequency fd
1i, end frequency fd

2i and time-
period T d

i of the received pulse (linear chirp) is given as:

fd
1i = bif1 (22)

fd
2i = bif2 (23)

T d
i = T

bi (24)

Consequently, their Doppler effected sweep rates µd
i are given as:

µd
i =

fd
2i−fd

1i

Td
i

(25)

Substituting Eq. (22), Eq. (23) and Eq. (24) in Eq. (25), we obtain:

µd
i = b2iµ (26)

where, µ is the sweep rate of the transmitted linear chirp.
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Fig. 15: Illustration of Doppler’s effect on the properties (i.e., bandwidth and time-period) of
a linear chirp. The instantaneous frequency and time-period of three signals are shown: the
transmitted signal (f2 − f1)/T , the received signal (f2 − f1)/T ) from a static transmitter,
and the Doppler shifted received signal (bf2 − bf1)/(T/b) from a mobile transmitter.

Using Eq. (21) and Eq. (26), we derive the following expression for calculating vi (where
the ‘+’ sign for the square-root term is ignored as it will result in imaginary values8):

vi = −c

[

1−
√

µ

µd
i

]

(27)

The only unknown parameter that needs to be computed for estimating vi using
Eq. (27) is µd

i . In the following subsection, we propose an algorithm using the charac-
teristic linear sweep feature of the linear chirp to measure µd

i , and hence, the Doppler
shift. A major advantage of our approach is that the speed and range information is
derived implicitly and simultaneously from the same observation.

5.2.2. Measurement Algorithm for µd. The measurement algorithm needs to be executed
on every stationary receiver node associated with the tracking service, or at a higher
level data fusion node that has the information of the received pulses at each individ-
ual receiver. For description simplicity, we explain the functionality at a single receiver
(say R1). As a result of the Doppler shift, the sweep rates (or their respective slopes
in the time-varying spectral representation as shown in Fig. 15) of the transmitted
linear chirp and its received copy would be different. Therefore, the objective of this al-
gorithm is to estimate the sweep rate of the received signal rd1 (i.e., µd

1) from the sweep
rate of the reference (i.e., locally stored copy of the original transmitted) waveform µ
that can be computed from the known parameters f1, f2 and T .

The key idea is to progressively change the sweep rate of the reference signal by an
increment factor δ until it best fits with the sweep rate of the received signal rd1 , thus
providing an estimate of µd

1. In a time-varying spectral representation, this process is
equivalent to rotating the transmitted signal line in steps of δ until its slope matches
completely with the received signal line. However, the question here is: of the three
parameters f1, f2 and T that control the sweep rate, which one should be chosen for
controlling the sweep rate ?

8The maximum value of
√

µ/µd

i
in Eq. (27) can be 1. In this case, using the ‘+’ sign for this square-root term

will result in: vi = −2c, which is not possible.
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According to Doppler’s theory, the magnitude of the Doppler shift observed at a
given velocity is proportional to the frequency of the respective transmitted signal,
i.e., the higher the frequency, the larger the observed frequency shift. Alternately, de-
creasing the frequency of the signal results in smaller Doppler shifts, but requires im-
proved measurement accuracy. With respect to our designed linear chirp signal where
f1 = 1kHz, f2 = 20kHz and T= 0.01 s, the magnitude of the Doppler shift at f1 will be
very small compared to f2 and will be difficult to precisely quantify. Therefore, we fix
f1 and progressively change f2 in steps of δ to estimate µd

1.
The measurement algorithm is as follows, and requires iterating the steps 1-4 until

the generated sweep rate matches with the Doppler shifted sweep rate.

— Step 1: Generate a new sweep rate (using the existing information in the transmitted
pulse) by changing only f2 to f2 + δ (i.e., by an increment factor of δ).

— Step 2: Generate a new copy of the transmitted pulse using Step-1.
— Step 3: Using a matched-filter, cross-correlate the new copy of the transmitted pulse

obtained in Step-2 with the received signal rd1 and obtain the correlation peak.
— Step 4: If the magnitude of the correlation peak obtained in Step-3 (which is an indi-

cation of the success/failure of the matching process) is greater than the one observed
in the previous iteration, then goto Step-1; else terminate the process by notifying
that the best match for the Doppler shifted sweep rate has been derived. An increase
in the correlation peak height with every iteration signifies an additional scope for
better matching, and so, the process is iterated. However, a decrease of the same is a
trigger for termination as it indicates worsening of the matching process.

For a respective transmitter-receiver pair (S,R1), the results of the measurement al-
gorithm are interpreted as follows:

— Result 1: The magnitude of the tallest cross-correlation peak and its corresponding
index among all iterations provides the time-of-arrival estimate (Fig. 16(a)), and thus,
the range.

— Result 2: The sweep rate (or µd
1) at which the tallest cross-correlation peak was

obtained (for Result-1) provides the relative speed estimate using Eq. 27.

The choice of the increment factor of δ defines a trade-off between estimation time
and measurement accuracy. A smaller δ provides better range estimation accuracy
but prolongs the processing time, and vice-versa for a larger δ (Fig. 16). However, a
smaller δ increases the probability of false detection, wherein the estimator gets stuck
in the local maxima and terminates the process without reaching its global maxima
(Fig. 16(b)).

Fig. 17 shows the impact of δ on the estimation accuracy of distance and speed.
For accurate distance estimates, a smaller δ is desirable (Fig. 17(a)) as it provides a
fine-grained representation to approximate µ by µd

1. However, with respect to veloc-
ity estimation, a smaller δ destabilizes the ratio (µ/µd

1) in Eq. (27), and increases the
probability of frequent (positive and negative) oscillations about µ. This effect can be
observed by the large deviations at smaller δ (Fig. 17(b)), which translates to an over-
all increase in error for the velocity estimate. Based on these observations, we choose
the pivotal value of δ = 50 as the best trade-off between (distance,speed) accuracy and
estimation time.

5.3. Tracking with dual-input receivers

In the design of the tracking system, we assume that a fixed number of anchor nodes
are deployed with sufficient accuracy at known locations in the area of interest (i.e.,
their locations are known a-priori). A moving target node transmits a linear chirp
signal with known sweep rate parameters. The received signal is measured by the
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(b) δ = 10

Fig. 16: (a): Illustrates the effect of progressive increase and subsequent decrease of the
match percentage (indicated by the cross-correlation peak magnitude) of the rotated ver-
sion of the transmitted signal with the received signal to compensate for Doppler’s shift.
(b): Illustrates the problem of increased false detection with smaller δ. Observe that the es-
timator may wrongly indicate a local peak as the correct solution without executing further
to reach the global peak.
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Fig. 17: Impact of increment factor δ on (a): distance and (b): speed estimation error.

anchor nodes, and they assist the moving node to find its location and speed.
The tracking service consists of three phases.

— Coordination phase: The tracked node sends a synchronous RF/acoustic pulse to
synchronize its local clock with those of the anchor nodes. This is required for com-
pensating the various timing errors in the ranging process as well to allow for data
fusion of the ranging data.

— Measurement Phase: The location, bearing and/or speed of the tracked node are
computed from range measurements, which are collected locally at each anchor node,
and then, transferred to a data fusion node/workstation for trajectory estimation.
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Fig. 18: Angle-of-Arrival derivation.

The tracked node initiates every measurement by synchronously broadcasting a ra-
dio packet followed by a (near-inaudible) linear chirp [1− 20]kHz/0.01 s, while the
multiple anchor nodes listen for incoming acoustic waves. The respective ranges are
estimated by measuring the TDOA between the radio packet and the acoustic pulse,
which is detected using a matched-filter and is identified by the first tallest peak.

— Tracking Phase: A Particle Filter (PF) is used to estimate the location and velocity
of the tracked target. In each subsequent time step, the filter reduces the measure-
ment (i.e., range, bearing and speed) error by combining these data measured at
multiple anchor nodes to confidently predict the movement of the target.

We assume that a subset of infrastructure nodes will be equipped with more capa-
ble acoustic ranging hardware to estimate the angle-of-arrival (AOA) of the acoustic
signal. Figure 18 demonstrates this scenario with a transmitter at S and and two re-
ceivers at R(1) and R(2). The signal from S takes two different paths to reach R(1) and
R(2), traversing path lengths of d1 and d2 respectively. The corresponding path length
difference can be denoted as:

∆d = d1 − d2 (28)

Considering the spacing between the two receivers as h and following the standard
definition of a hyperbola, the locus of S can be defined as lying on the branch of a
hyperbola with its foci at R(1) and R(2), and eccentricity h/|∆d|. If r1 denotes the
distance from S to the midpoint O of the two receivers, and considering the polar
coordinates of S as (r1, θ) where the polar axis lies along R(1)R(2) with the pole at O,
the polar coordinate equation of the hyperbola provides the AOA of a signal originating
from S as:

θ = ± arctan

(

√

(4r21 −∆d2)(h2 −∆d2)

∆d
√

(4r21 + h2 −∆d2)

)

(29)

Usually, r1 is not available during measurements. However, if the transmitter is posi-
tioned sufficiently far away compared to the spacing between the receivers (in practice
r1 > 2h), then AOA can be expressed using the polar coordinate equation of the asymp-
totes of the hyperbola as:

θ = ± arctan

(√
h2 −∆d2

∆d

)

(30)

where tan θ is the gradient of the asymptotes.
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In the following section, we discuss a Particle Filter (PF) based tracking method to
fuse the range and relative speed information to estimate the trajectory (i.e., location
and velocity) of the moving target.

5.3.1. Tracking Model. Among the different available variants of the PF, we use a re-
cursive Bayesian tracking algorithm that incorporates measurements from all sensors
(in our case static anchor node referred to as receivers) into the estimation of the tar-
get (or transmitter) state. The PF is a suboptimal nonlinear filter that estimates the
probability density function of the target state using sequential Monte Carlo methods.
For the purpose of this work, the design of the filter has been limited to estimating the
state of a single target.

The system state (or parameters) that need to be estimated are the location (x, y) and
the velocity vector ~v = (vx, vy) of the tracked object as it maneuvers with a constant
velocity in the environment. At each discrete time step k, the tracked object estimates
its distance from the static nodes. The current state xk of the system is calculated re-
cursively from the previous state xk−1 and a new observation vector ck. The parameter
vector xk of the current state at time step k to be estimated is defined as:

xk = (x, y, vx, vy)
T

The system state xk evolves according to:

xk = Fxk−1 + w (31)

where xk−1 is the previous state, F models the system dynamics, and w is the pro-
cess noise with covariance W. w represents the noise in our state model wherein the
tracked node is expected to move with a constant velocity. The state transition matrix
F is given as:

F =









1 0 k 0

0 1 0 k

0 0 1 0

0 0 0 1









(32)

Assuming that m static nodes measure the Doppler shifted acoustic signal, the obser-
vation (or measurement) vector c is defined as:

c = (o1,o2, ...,om)
T

where oi = (d1, d2, vi, θ) for i = 1, ...,m.
oi contains the distances d1 and d2 between the tracked object S and stationary node
Ri to each of its two (left and right channel) receivers, relative speed vi, and AOA θ.
Considering h to be the spacing between the two receivers, the calculated distance r is
given as [Kottege 2009]:

r =

√

d21 + d22
2

−
(

h

2

)2

(33)

Therefore, the measurement vector c for each infrastructure node reduces to:

c = (o1,o2, ...,om)
T

where oi = (r, vi, θ) for i = 1, ...,m. The ± sign of vi is resolved in oi by taking θ into
account, where its increasing/decreasing value provides an indication regarding the
movement of the target towards or away from the respective infrastructure node.
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Fig. 19: The TWEET-v2 ranging system.

The observations ck of the current state is modeled as:

ck = H(xk) + uk (34)

where, H is the nonlinear measurement function, and uk is the normally distributed
measurement noise with covariance U. The function H is a vector function consisting
of m functions Hi : R

4 → Rm, and is given as:

Hi(xk) =
vx(xi−x)+vy(yi−y)

ri
i = 1, ...,m

vx = vi cos θ

vy = vi sin θ

(35)

The standard technique of Monte Carlo sampling is used to estimate the current state
xk, and therefore, we refer our readers to [Ahmed et al. 2010] for information on the
functional mechanism.

5.4. Implementation with TWEET-v2

The tracking service was implemented using TWEET-v2: an improved version of the
TWEET system. This newer version consisted of the same beacon mote, but featured
a more capable listener mote with dual omnidirectional acoustic receivers for estimat-
ing the AOA (Fig. 19(a)).
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The angular resolution depends on the separation distance h between the two re-
ceivers on the listener mote. It can be improved by increasing h, but will enlarge the
receiver array size. Apparently, a more compact design can be obtained by reducing h,
but at the cost of lower AOA measurement accuracy. This, in fact, introduces a design
trade-off between angular resolution and form-factor. Fig. 19(b) characterizes the un-
certainty of angular estimates for different values of h on the TWEET-v2 listener mote.
The result indicates that, irrespective of h, highly inaccurate angle estimates appear
in the range [0o-20o] and [160o-180o]; but tend to improve in accuracy as the true AOA
approaches 90o. Moreover, the best AOA estimates were observed for h = 30 cm, while
the worst were recorded for h = 10 cm. Therefore, h was fixed at 20 cm so as to strike a
good trade-off between AOA measurement accuracy and the dimensional compactness
of the listener platform. Fig. 19(c) shows the respective UI screen shot captured for
AOA measurements.

We conducted experiments in two different environments to calculate the accuracy
of the location and velocity estimates of the tracked target.

— Case-F - Semi-indoor, Very low multipath: Roof covered canteen with the experimen-
tal area covering approximately [7× 7] m.

— Case-G - Indoor, Low multipath: A quiet lecture theatre ([12 × 15 × 10]m) with the
experimental area covering approximately [10× 7]m.

We have utilized three infrastructure (anchor) nodes in each of the two experimen-
tal settings to track the mobile target node. A major challenge in evaluation was to
measure the ground truth (both spatially and temporally) for the moving node with
sufficient accuracy. We simplified this task by restraining the trajectory of the moving
node to a series of straight line segments. A person carrying the transmitter node was
maneuvering at approximately constant speed at each of the segments with a variable
change in speed noticed while moving onto a different segment. The ground truth of
the entire track was consolidated as the individual ground truths for each segment.
The location and speed in a given line segment was estimated by recording the times
when the moving node passed the endpoints of a given line segment. Its speed was cal-
culated as the length of the respective line segment over its total time taken to span
the segment, and its location was computed by interpolating the line segment with its
corresponding measurement time. Therefore, for any given ranging measurement, we
were able to reconstruct the ground truth location of the target as well as its velocity
vector. The update interval was 250ms, which was the time interval between subse-
quent chirps.

Fig. 20 shows the location and speed errors of the tracked node with respect to the
ground truth. In both the experimentation environments, the mean location error var-
ied between [0.22 − 0.50] m and the mean speed error varied between [0.45 − 1.20] m/s
for different maneuvering speeds between [1.1− 5.0] m/s. As observed from the results,
the tracking accuracy degrades with increasing velocity, but is within a meter at any
given time. We also ran two other tracking methods on the same data set: (i) simple
multilateration using only the measured distances (TOA), and (ii) hybrid: combination
of distance (TOA) and AOA estimates. The results show a significant improvement
in tracking performance using PF over these two methods. Without compensating for
Doppler effect, a 5 times increase in tracking error was recorded for all the three meth-
ods for target speed exceeding 3m/s. Although, we have covered a relatively small area
for tracking, our goal was to show that linear chirps can be tailored for tracking tar-
gets above their breaking point (which in our case was 3ms−1) using the detection
algorithm presented in Section 5.2.2. We show how the design of a linear chirp and its
characteristic sweep feature can be used as an additional tool for curtailing measure-
ment errors arising from Doppler’s effect.
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Fig. 20: Tracking performance for target speeds between [1− 5] m/s using a linear chirp.

Relying on distances between nodes only, a simple setup with three anchor nodes
requires three distance measurements to determine the location of the target in a two-
dimensional plane. The additional information of the angle of the target movement
is also able to solve the localization problem with two anchor nodes. However, mea-
surements to additional anchor nodes with multiple ranging parameters improve the
positioning accuracy. The near-inaudible capability is a useful addition to the track-
ing mechanism as it facilitates mutual coexistence with humans. For overcoming the
inaccuracies from multipath effects in the Doppler shift measurement algorithm, we
resort to the idea of rotating the transmitted signal (typically, a multipath free copy)
rather a noisy trace of the received signal. This mechanism imparts robustness to the
detection process and makes it less susceptible to multipath.

6. FUTURE WORK AND CONCLUSION

Although our work closely studies the two extreme ends of the acoustic spectrum (i.e.,
audible-range and ultrasonic) and two different signal design techniques (narrowband
vs. broadband), there exist several directions for future study. While the performance
of these ranging systems are impressive, they require hardware components that are
costly and power exhaustive. This is a major drawback for the new fields of pervasive
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Table VI: Comparison: M-Cricket vs. TWEET vs. TWEET-v2

Features M-Cricket TWEET TWEET-v2

Ranging Signal Narrowband Broadband Broadband
(40kHz/150µs) ([20-25]kHz/50ms) ([1-20]kHz/10ms)

Maximum Range 10m 30m –
Operational Range 10m 20m –
Ranging Accuracy < 5 cm < 4.5 cm < 4.5 cm

Ranging Resolution 10 cm 5mm 7mm
Coverage Omni Omni Omni

3 Mic. Array 1 Mic. 2 Mic. Array
Obtrusiveness Inaudible Inaudible Near-inaudible

Processing Hardware MCU Audio codec & DSP Audio codec & DSP
Cost ≈ $400 ≈ $1000 ≈ $1000

Operational Environment Indoor Indoor/Outdoor Indoor/Outdoor

computing and WSN that aim to achieve similar functional capability on low-cost and
low-power hardware. Generally, resource constraints of WSNs limit the implementa-
tion of complex algorithms. Therefore, an interesting future direction is to design light-
weight signal detection and post-processing algorithms that can be a reliable substi-
tute to high-performance signal processing operations of high-dimensional data such
as cross-correlation. Another direction is to revisit the conventional cross-correlation
method (whose implementation has a running time of O(n2) in the time domain and
O(n log n) in the frequency domain), and investigate into the design of a light-weight
cross-correlation algorithm that has the same runtime complexity but a much smaller
space complexity (competent with the mote constraints).

In this article, we studied the limited coverage problem of existing narrowband lo-
cation sensing systems (such as the Cricket) due to the unidirectionality of available
COTS (narrowband) ultrasound sensors. To overcome it, we designed and developed an
omnidirectional ultrasonic receiver unit that was interfaced with the standard Cricket
mote and showed improved coverage range results. With the understanding of the
limited performance of narrowband systems, we transcended to broadband signal de-
signs and studied the dependence of their bandwidth and time-period on resolution
and range. Using a matched-filter (a benchmark signal processing method for TOA
estimation), we also analyzed the uncertainty in estimating the correct correlation
peak. We alleviated this problem by a simple proposition of estimating the envelope of
the correlated pulse that make the role of correlation sidelobes irrelevant (which are
a prime noise introduction factor in simple correlation). We combined these benefits
onto a mote-based platform called the TWEET ranging system, and demonstrated the
efficacy of ultrasound for long distance ranges (contrary to anecdotal records) in both
indoor and outdoor environments. As the performance of the TWEET system was almost
similar to standard audible-range systems (such as AENSBox) in ranging accuracy,
and no additional benefits were obtained except for its (human) inaudible property,
we presented the design an acoustic signal (in the audible range) with near-inaudible
perception feature. Finally, we showed that linear chirps succumb to Doppler’s effect
under mobility. Hence, we proposed an additional algorithm for its mitigation when
the velocity of the moving target exceeded the breaking point of linear chirps, and pre-
sented its working as part of a standard tracking service using the TWEET-v2 platform.
A comparison among the three systems (i.e., M-Cricket, TWEET and TWEET-v2) proposed
in this work has been tabulated in Table VI.

In the past decade, the sensor networks community has been successful in replicat-
ing the functionality of traditional location systems into mote scale devices. Now that
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the small form factor systems exist, our next task is to make the existing detection
algorithms work efficiently on these restricted platforms.
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